The maximum value of RCU CPU stall-warning timeouts has historically been
five minutes (300 seconds). However, the recently introduced expedited
RCU CPU stall-warning timeout is instead limited to 21 seconds. This
causes problems for CI/fuzzing services such as syzkaller by obscuring
the issue in question with expedited RCU CPU stall-warning timeout splats.
This commit therefore sets the RCU_EXP_CPU_STALL_TIMEOUT Kconfig options
upper bound to 300000 milliseconds, which is 300 seconds (AKA 5 minutes).
[ paulmck: Apply feedback from Hillf Danton. ]
[ paulmck: Apply feedback from Geert Uytterhoeven. ]
Reported-by: Dave Chinner <david@fromorbit.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Time stamps are added to the output in kernels built with
CONFIG_PRINTK_TIME=y, which causes misaligned output. Therefore,
replace pr_cont() with pr_err(), which fixes alignment and gets
rid of a couple of despised pr_cont() calls.
Before:
[ 37.567343] rcu: INFO: rcu_preempt self-detected stall on CPU
[ 37.567839] rcu: 0-....: (1500 ticks this GP) idle=***
[ 37.568270] (t=1501 jiffies g=4717 q=28 ncpus=4)
[ 37.568668] CPU: 0 PID: 313 Comm: test0 Not tainted 6.1.0-rc4 #8
After:
[ 36.762074] rcu: INFO: rcu_preempt self-detected stall on CPU
[ 36.762543] rcu: 0-....: (1499 ticks this GP) idle=***
[ 36.763003] rcu: (t=1500 jiffies g=5097 q=27 ncpus=4)
[ 36.763522] CPU: 0 PID: 313 Comm: test0 Not tainted 6.1.0-rc4 #9
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Because RCU CPU stall warnings are driven from the scheduling-clock
interrupt handler, a workload consisting of a very large number of
short-duration hardware interrupts can result in misleading stall-warning
messages. On systems supporting only a single level of interrupts,
that is, where interrupts handlers cannot be interrupted, this can
produce misleading diagnostics. The stack traces will show the
innocent-bystander interrupted task, not the interrupts that are
at the very least exacerbating the stall.
This situation can be improved by displaying the number of interrupts
and the CPU time that they have consumed. Diagnosing other types
of stalls can be eased by also providing the count of softirqs and
the CPU time that they consumed as well as the number of context
switches and the task-level CPU time consumed.
Consider the following output given this change:
rcu: INFO: rcu_preempt self-detected stall on CPU
rcu: 0-....: (1250 ticks this GP) <omitted>
rcu: hardirqs softirqs csw/system
rcu: number: 624 45 0
rcu: cputime: 69 1 2425 ==> 2500(ms)
This output shows that the number of hard and soft interrupts is small,
there are no context switches, and the system takes up a lot of time. This
indicates that the current task is looping with preemption disabled.
The impact on system performance is negligible because snapshot is
recorded only once for all continuous RCU stalls.
This added debugging information is suppressed by default and can be
enabled by building the kernel with CONFIG_RCU_CPU_STALL_CPUTIME=y or
by booting with rcupdate.rcu_cpu_stall_cputime=1.
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The trigger_all_cpu_backtrace() function attempts to send an NMI to the
target CPU, which usually provides much better stack traces than the
dump_cpu_task() function's approach of dumping that stack from some other
CPU. So much so that most calls to dump_cpu_task() only happen after
a call to trigger_all_cpu_backtrace() has failed. And the exception to
this rule really should attempt to use trigger_all_cpu_backtrace() first.
Therefore, move the trigger_all_cpu_backtrace() invocation into
dump_cpu_task().
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
This pull request contains the following branches:
doc.2022.06.21a: Documentation updates.
fixes.2022.07.19a: Miscellaneous fixes.
nocb.2022.07.19a: Callback-offload updates, perhaps most notably a new
RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to
be offloaded at boot time, regardless of kernel boot parameters.
This is useful to battery-powered systems such as ChromeOS
and Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel
boot parameter prevents offloaded callbacks from interfering
with real-time workloads and with energy-efficiency mechanisms.
poll.2022.07.21a: Polled grace-period updates, perhaps most notably
making these APIs account for both normal and expedited grace
periods.
rcu-tasks.2022.06.21a: Tasks RCU updates, perhaps most notably reducing
the CPU overhead of RCU tasks trace grace periods by more than
a factor of two on a system with 15,000 tasks. The reduction
is expected to increase with the number of tasks, so it seems
reasonable to hypothesize that a system with 150,000 tasks might
see a 20-fold reduction in CPU overhead.
torture.2022.06.21a: Torture-test updates.
ctxt.2022.07.05a: Updates that merge RCU's dyntick-idle tracking into
context tracking, thus reducing the overhead of transitioning to
kernel mode from either idle or nohz_full userspace execution
for kernels that track context independently of RCU. This is
expected to be helpful primarily for kernels built with
CONFIG_NO_HZ_FULL=y.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmLgMcgTHHBhdWxtY2tA
a2VybmVsLm9yZwAKCRCevxLzctn7jArXD/0fjbCwqpRjHVTzjMY8jN4zDkqZZD6m
g8Fx27hZ4ToNFwRptyHwNezrNj14skjAJEXfdjaVw32W62ivXvf0HINvSzsTLCSq
k2kWyBdXLc9CwY5p5W4smnpn5VoAScjg5PoPL59INoZ/Zziji323C7Zepl/1DYJt
0T6bPCQjo1ZQoDUCyVpSjDmAqxnderWG0MeJVt74GkLqmnYLANg0GH8c7mH4+9LL
kVGlLp5nlPgNJ4FEoFdMwNU8T/ETmaVld/m2dkiawjkXjJzB2XKtBigU91DDmXz5
7DIdV4ABrxiy4kGNqtIe/jFgnKyVD7xiDpyfjd6KTeDr/rDS8u2ZH7+1iHsyz3g0
Np/tS3vcd0KR+gI/d0eXxPbgm5sKlCmKw/nU2eArpW/+4LmVXBUfHTG9Jg+LJmBc
JrUh6aEdIZJZHgv/nOQBNig7GJW43IG50rjuJxAuzcxiZNEG5lUSS23ysaA9CPCL
PxRWKSxIEfK3kdmvVO5IIbKTQmIBGWlcWMTcYictFSVfBgcCXpPAksGvqA5JiUkc
egW+xLFo/7K+E158vSKsVqlWZcEeUbsNJ88QOlpqnRgH++I2Yv/LhK41XfJfpH+Y
ALxVaDd+mAq6v+qSHNVq9wT3ozXIPy/zK1hDlMIqx40h2YvaEsH4je+521oSoN9r
vX60+QNxvUBLwA==
=vUNm
-----END PGP SIGNATURE-----
Merge tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull RCU updates from Paul McKenney:
- Documentation updates
- Miscellaneous fixes
- Callback-offload updates, perhaps most notably a new
RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to be
offloaded at boot time, regardless of kernel boot parameters.
This is useful to battery-powered systems such as ChromeOS and
Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel boot
parameter prevents offloaded callbacks from interfering with
real-time workloads and with energy-efficiency mechanisms
- Polled grace-period updates, perhaps most notably making these APIs
account for both normal and expedited grace periods
- Tasks RCU updates, perhaps most notably reducing the CPU overhead of
RCU tasks trace grace periods by more than a factor of two on a
system with 15,000 tasks.
The reduction is expected to increase with the number of tasks, so it
seems reasonable to hypothesize that a system with 150,000 tasks
might see a 20-fold reduction in CPU overhead
- Torture-test updates
- Updates that merge RCU's dyntick-idle tracking into context tracking,
thus reducing the overhead of transitioning to kernel mode from
either idle or nohz_full userspace execution for kernels that track
context independently of RCU.
This is expected to be helpful primarily for kernels built with
CONFIG_NO_HZ_FULL=y
* tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (98 commits)
rcu: Add irqs-disabled indicator to expedited RCU CPU stall warnings
rcu: Diagnose extended sync_rcu_do_polled_gp() loops
rcu: Put panic_on_rcu_stall() after expedited RCU CPU stall warnings
rcutorture: Test polled expedited grace-period primitives
rcu: Add polled expedited grace-period primitives
rcutorture: Verify that polled GP API sees synchronous grace periods
rcu: Make Tiny RCU grace periods visible to polled APIs
rcu: Make polled grace-period API account for expedited grace periods
rcu: Switch polled grace-period APIs to ->gp_seq_polled
rcu/nocb: Avoid polling when my_rdp->nocb_head_rdp list is empty
rcu/nocb: Add option to opt rcuo kthreads out of RT priority
rcu: Add nocb_cb_kthread check to rcu_is_callbacks_kthread()
rcu/nocb: Add an option to offload all CPUs on boot
rcu/nocb: Fix NOCB kthreads spawn failure with rcu_nocb_rdp_deoffload() direct call
rcu/nocb: Invert rcu_state.barrier_mutex VS hotplug lock locking order
rcu/nocb: Add/del rdp to iterate from rcuog itself
rcu/tree: Add comment to describe GP-done condition in fqs loop
rcu: Initialize first_gp_fqs at declaration in rcu_gp_fqs()
rcu/kvfree: Remove useless monitor_todo flag
rcu: Cleanup RCU urgency state for offline CPU
...
Context tracking's state and dynticks counter are going to be merged
in a single field so that both updates can happen atomically and at the
same time. Prepare for that with converting the state into an atomic_t.
[ paulmck: Apply kernel test robot feedback. ]
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicolas Saenz Julienne <nsaenz@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Cc: Yu Liao <liaoyu15@huawei.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Paul Gortmaker<paul.gortmaker@windriver.com>
Cc: Alex Belits <abelits@marvell.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
The RCU eqs tracking is going to be performed by the context tracking
subsystem. The related nesting counters thus need to be moved to the
context tracking structure.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicolas Saenz Julienne <nsaenz@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Cc: Yu Liao <liaoyu15@huawei.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Paul Gortmaker<paul.gortmaker@windriver.com>
Cc: Alex Belits <abelits@marvell.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
The RCU eqs tracking is going to be performed by the context tracking
subsystem. The related nesting counters thus need to be moved to the
context tracking structure.
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicolas Saenz Julienne <nsaenz@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Cc: Yu Liao <liaoyu15@huawei.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Paul Gortmaker<paul.gortmaker@windriver.com>
Cc: Alex Belits <abelits@marvell.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
In order to prepare for merging RCU dynticks counter into the context
tracking state, move the rcu_data's dynticks field to the context
tracking structure. It will later be mixed within the context tracking
state itself.
[ paulmck: Move enum ctx_state into global scope. ]
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicolas Saenz Julienne <nsaenz@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Cc: Yu Liao <liaoyu15@huawei.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Paul Gortmaker<paul.gortmaker@windriver.com>
Cc: Alex Belits <abelits@marvell.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
This reverts commit 2bb2b7b57f.
The testing of 5.19 release candidates revealed missing synchronization
between early and regular console functionality.
It would be possible to start the console kthreads later as a workaround.
But it is clear that console lock serialized console drivers between
each other. It opens a big area of possible problems that were not
considered by people involved in the development and review.
printk() is crucial for debugging kernel issues and console output is
very important part of it. The number of consoles is huge and a proper
review would take some time. As a result it need to be reverted for 5.19.
Link: https://lore.kernel.org/r/YrBdjVwBOVgLfHyb@alley
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20220623145157.21938-7-pmladek@suse.com
If the rcutree.use_softirq kernel boot parameter is disabled, then it is
possible that a RCU CPU stall is due to the rcuc kthreads being starved of
CPU time. There is currently no easy way to infer this from the RCU CPU
stall warning output. This commit therefore adds a string of the form "
rcuc=%ld jiffies(starved)" to a given CPU's output if the corresponding
rcuc kthread has been starved for more than two seconds.
[ paulmck: Eliminate extraneous space characters. ]
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAmKLXH8ACgkQUqAMR0iA
lPIABhAAtAZRmvg9UjUS8dpmS3plXdg/zJU0AbK9o/m/hGzMfs2bgHxwM7mbGa1O
VC0Jczj9tfJXESfrBsV0ZpY5H+iGilEkTF86/ME4sS8lmIeSim9dAxF4sTvM1vw/
IST4llN0IRuNHwrb20GyH44MOG9JwFwEyIgYITwkB8iYK/lo/sP8xkZuC44CmaJf
28ZZAwICigtyR9lF0psQGLgMc4+laT5l3XF/c9OyqEFbB5khBGxT0RwV0WS4ZcPA
mTn5kW6WcDbTNKUVUHW1jzmJBq3ci+0ckh6jLNJWc6Olh5jbGU7selVTst96GQKm
sgWF7uykURls3ZFPzTJSY6E3Gnwrsw75RQYDLtTOSxqB2NlVsBTyZq4jgNtxiR3z
ovA9souDe4t/BPqkHTHZkVEyaFWZlRwNlzJZIwN2Auy/uFjznWnOQxT2t3BYUZt5
8qnUt+JBvtSNyLDvoNtQnyCiCyEZdyrHQ+3RsFWIQz6CnA34Xh6oZPxbK24pnfDy
F5OuIulrpIPfEFufV6ZR30QeB2gLkvCorUfl5pde4QL/Pujxrk6CCikv39QOfL7K
6+X7hq/Moq8vhzMfWl+LEPS6qpAwNJl69JIaQrp18JHVGeKVagS1e6pOmThSOPv7
bDucE08oOK8KTnR6ysfKf24JC6HopB7vFYfhSEa8rgssDLtcGso=
=pN3o
-----END PGP SIGNATURE-----
Merge tag 'printk-for-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux
Pull printk updates from Petr Mladek:
- Offload writing printk() messages on consoles to per-console
kthreads.
It prevents soft-lockups when an extensive amount of messages is
printed. It was observed, for example, during boot of large systems
with a lot of peripherals like disks or network interfaces.
It prevents live-lockups that were observed, for example, when
messages about allocation failures were reported and a CPU handled
consoles instead of reclaiming the memory. It was hard to solve even
with rate limiting because it would need to take into account the
amount of messages and the speed of all consoles.
It is a must to have for real time. Otherwise, any printk() might
break latency guarantees.
The per-console kthreads allow to handle each console on its own
speed. Slow consoles do not longer slow down faster ones. And
printk() does not longer unpredictably slows down various code paths.
There are situations when the kthreads are either not available or
not reliable, for example, early boot, suspend, or panic. In these
situations, printk() uses the legacy mode and tries to handle
consoles immediately.
- Add documentation for the printk index.
* tag 'printk-for-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux:
printk, tracing: fix console tracepoint
printk: remove @console_locked
printk: extend console_lock for per-console locking
printk: add kthread console printers
printk: add functions to prefer direct printing
printk: add pr_flush()
printk: move buffer definitions into console_emit_next_record() caller
printk: refactor and rework printing logic
printk: add con_printk() macro for console details
printk: call boot_delay_msec() in printk_delay()
printk: get caller_id/timestamp after migration disable
printk: wake waiters for safe and NMI contexts
printk: wake up all waiters
printk: add missing memory barrier to wake_up_klogd()
printk: cpu sync always disable interrupts
printk: rename cpulock functions
printk/index: Printk index feature documentation
MAINTAINERS: Add printk indexing maintainers on mention of printk_index
Currently both expedited and regular grace period stall warnings use
a single timeout value that with units of seconds. However, recent
Android use cases problem require a sub-100-millisecond expedited RCU CPU
stall warning. Given that expedited RCU grace periods normally complete
in far less than a single millisecond, especially for small systems,
this is not unreasonable.
Therefore introduce the CONFIG_RCU_EXP_CPU_STALL_TIMEOUT kernel
configuration that defaults to 20 msec on Android and remains the same
as that of the non-expedited stall warnings otherwise. It also can be
changed in run-time via: /sys/.../parameters/rcu_exp_cpu_stall_timeout.
[ paulmck: Default of zero to use CONFIG_RCU_STALL_TIMEOUT. ]
Signed-off-by: Uladzislau Rezki <uladzislau.rezki@sony.com>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Once kthread printing is available, console printing will no longer
occur in the context of the printk caller. However, there are some
special contexts where it is desirable for the printk caller to
directly print out kernel messages. Using pr_flush() to wait for
threaded printers is only possible if the caller is in a sleepable
context and the kthreads are active. That is not always the case.
Introduce printk_prefer_direct_enter() and printk_prefer_direct_exit()
functions to explicitly (and globally) activate/deactivate preferred
direct console printing. The term "direct console printing" refers to
printing to all enabled consoles from the context of the printk
caller. The term "prefer" is used because this type of printing is
only best effort. If the console is currently locked or other
printers are already actively printing, the printk caller will need
to rely on the other contexts to handle the printing.
This preferred direct printing is how all printing has been handled
until now (unless it was explicitly deferred).
When kthread printing is introduced, there may be some unanticipated
problems due to kthreads being unable to flush important messages.
In order to minimize such risks, preferred direct printing is
activated for the primary important messages when the system
experiences general types of major errors. These are:
- emergency reboot/shutdown
- cpu and rcu stalls
- hard and soft lockups
- hung tasks
- warn
- sysrq
Note that since kthread printing does not yet exist, no behavior
changes result from this commit. This is only implementing the
counter and marking the various places where preferred direct
printing is active.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org> # for RCU
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20220421212250.565456-13-john.ogness@linutronix.de
RCU's synchronous grace periods act quite differently when there is
only one online CPU, especially in the no-op case in kernels built with
CONFIG_PREEMPTION=n. This change in behavior can be important debugging
information, so this commit adds the number of online CPUs to the RCU
CPU stall warning messages.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
When the rcutree.use_softirq kernel boot parameter is set to zero, all
RCU_SOFTIRQ processing is carried out by the per-CPU rcuc kthreads.
If these kthreads are being starved, quiescent states will not be
reported, which in turn means that the grace period will not end, which
can in turn trigger RCU CPU stall warnings. This commit therefore dumps
stack traces of stalled CPUs' rcuc kthreads, which can help identify
what is preventing those kthreads from running.
Suggested-by: Ammar Faizi <ammarfaizi2@gnuweeb.org>
Reviewed-by: Ammar Faizi <ammarfaizi2@gnuweeb.org>
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
All of the uses of CONFIG_RCU_FAST_NO_HZ=y that I have seen involve
systems with RCU callbacks offloaded. In this situation, all that this
Kconfig option does is slow down idle entry/exit with an additional
allways-taken early exit. If this is the only use case, then this
Kconfig option nothing but an attractive nuisance that needs to go away.
This commit therefore removes the RCU_FAST_NO_HZ Kconfig option.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Give try_invoke_on_locked_down_task() a saner name and have it return
an int so that the caller might distinguish between different reasons
of failure.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Vasily Gorbik <gor@linux.ibm.com>
Tested-by: Vasily Gorbik <gor@linux.ibm.com> # on s390
Link: https://lkml.kernel.org/r/20210929152428.649944917@infradead.org
There are a few remaining locations in kernel/rcu that still use
"&per_cpu()". This commit replaces them with "per_cpu_ptr(&)", and does
not introduce any functional change.
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Liu Song <liu.song11@zte.com.cn>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit marks the accesses in tree_stall.h so as to both avoid
undesirable compiler optimizations and to keep KCSAN focused on the
accesses of the core algorithm.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Accesses to ->qsmask are normally protected by ->lock, but there is an
exception in the diagnostic code in rcu_check_boost_fail(). This commit
therefore applies data_race() to this access to avoid KCSAN complaining
about the C-language writes protected by ->lock.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Systems with low-bandwidth consoles can have very large printk()
latencies, and on such systems it makes no sense to have the next RCU CPU
stall warning message start output before the prior message completed.
This commit therefore sets the time of the next stall only after the
prints have completed. While printing, the time of the next stall
message is set to ULONG_MAX/2 jiffies into the future.
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
rcu_cpu_stall_reset() is one of the functions virtual CPUs
execute during VM resume in order to handle jiffies skew
that can trigger false positive stall warnings. Paul has
pointed out that this approach is problematic because
rcu_cpu_stall_reset() disables RCU grace period stall-detection
virtually forever, while in fact it can just restart the
stall-detection timeout.
Suggested-by: "Paul E. McKenney" <paulmck@kernel.org>
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The soft watchdog timer function checks if a virtual machine
was suspended and hence what looks like a lockup in fact
is a false positive.
This is what kvm_check_and_clear_guest_paused() does: it
tests guest PVCLOCK_GUEST_STOPPED (which is set by the host)
and if it's set then we need to touch all watchdogs and bail
out.
Watchdog timer function runs from IRQ, so PVCLOCK_GUEST_STOPPED
check works fine.
There is, however, one more watchdog that runs from IRQ, so
watchdog timer fn races with it, and that watchdog is not aware
of PVCLOCK_GUEST_STOPPED - RCU stall detector.
apic_timer_interrupt()
smp_apic_timer_interrupt()
hrtimer_interrupt()
__hrtimer_run_queues()
tick_sched_timer()
tick_sched_handle()
update_process_times()
rcu_sched_clock_irq()
This triggers RCU stalls on our devices during VM resume.
If tick_sched_handle()->rcu_sched_clock_irq() runs on a VCPU
before watchdog_timer_fn()->kvm_check_and_clear_guest_paused()
then there is nothing on this VCPU that touches watchdogs and
RCU reads stale gp stall timestamp and new jiffies value, which
makes it think that RCU has stalled.
Make RCU stall watchdog aware of PVCLOCK_GUEST_STOPPED and
don't report RCU stalls when we resume the VM.
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
If rcu_print_task_stall() is invoked on an rcu_node structure that does
not contain any tasks blocking the current grace period, it takes an
early exit that fails to release that rcu_node structure's lock. This
results in a self-deadlock, which is detected by lockdep.
To reproduce this bug:
tools/testing/selftests/rcutorture/bin/kvm.sh --allcpus --duration 3 --trust-make --configs "TREE03" --kconfig "CONFIG_PROVE_LOCKING=y" --bootargs "rcutorture.stall_cpu=30 rcutorture.stall_cpu_block=1 rcutorture.fwd_progress=0 rcutorture.test_boost=0"
This will also result in other complaints, including RCU's scheduler
hook complaining about blocking rather than preemption and an rcutorture
writer stall.
Only a partial RCU CPU stall warning message will be printed because of
the self-deadlock.
This commit therefore releases the lock on the rcu_print_task_stall()
function's early exit path.
Fixes: c583bcb8f5 ("rcu: Don't invoke try_invoke_on_locked_down_task() with irqs disabled")
Tested-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Yanfei Xu <yanfei.xu@windriver.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The for loop in rcu_print_task_stall() always omits ts[0], which points
to the first task blocking the stalled grace period. This in turn fails
to count this first task, which means that ndetected will be equal to
zero when all CPUs have passed through their quiescent states and only
one task is blocking the stalled grace period. This zero value for
ndetected will in turn result in an incorrect "All QSes seen" message:
rcu: INFO: rcu_preempt detected stalls on CPUs/tasks:
rcu: Tasks blocked on level-1 rcu_node (CPUs 12-23):
(detected by 15, t=6504 jiffies, g=164777, q=9011209)
rcu: All QSes seen, last rcu_preempt kthread activity 1 (4295252379-4295252378), jiffies_till_next_fqs=1, root ->qsmask 0x2
BUG: sleeping function called from invalid context at include/linux/uaccess.h:156
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 70613, name: msgstress04
INFO: lockdep is turned off.
Preemption disabled at:
[<ffff8000104031a4>] create_object.isra.0+0x204/0x4b0
CPU: 15 PID: 70613 Comm: msgstress04 Kdump: loaded Not tainted
5.12.2-yoctodev-standard #1
Hardware name: Marvell OcteonTX CN96XX board (DT)
Call trace:
dump_backtrace+0x0/0x2cc
show_stack+0x24/0x30
dump_stack+0x110/0x188
___might_sleep+0x214/0x2d0
__might_sleep+0x7c/0xe0
This commit therefore fixes the loop to include ts[0].
Fixes: c583bcb8f5 ("rcu: Don't invoke try_invoke_on_locked_down_task() with irqs disabled")
Tested-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Yanfei Xu <yanfei.xu@windriver.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit changes from "%lx" to "%x" and from "0x1ffffL" to "0x1ffff"
to match the change in type between the old field ->state (unsigned long)
and the new field ->__state (unsigned int).
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Pull RCU updates from Paul McKenney:
- Bitmap parsing support for "all" as an alias for all bits
- Documentation updates
- Miscellaneous fixes, including some that overlap into mm and lockdep
- kvfree_rcu() updates
- mem_dump_obj() updates, with acks from one of the slab-allocator
maintainers
- RCU NOCB CPU updates, including limited deoffloading
- SRCU updates
- Tasks-RCU updates
- Torture-test updates
* 'core-rcu-2021.07.04' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (78 commits)
tasks-rcu: Make show_rcu_tasks_gp_kthreads() be static inline
rcu-tasks: Make ksoftirqd provide RCU Tasks quiescent states
rcu: Add missing __releases() annotation
rcu: Remove obsolete rcu_read_unlock() deadlock commentary
rcu: Improve comments describing RCU read-side critical sections
rcu: Create an unrcu_pointer() to remove __rcu from a pointer
srcu: Early test SRCU polling start
rcu: Fix various typos in comments
rcu/nocb: Unify timers
rcu/nocb: Prepare for fine-grained deferred wakeup
rcu/nocb: Only cancel nocb timer if not polling
rcu/nocb: Delete bypass_timer upon nocb_gp wakeup
rcu/nocb: Cancel nocb_timer upon nocb_gp wakeup
rcu/nocb: Allow de-offloading rdp leader
rcu/nocb: Directly call __wake_nocb_gp() from bypass timer
rcu: Don't penalize priority boosting when there is nothing to boost
rcu: Point to documentation of ordering guarantees
rcu: Make rcu_gp_cleanup() be noinline for tracing
rcu: Restrict RCU_STRICT_GRACE_PERIOD to at most four CPUs
rcu: Make show_rcu_gp_kthreads() dump rcu_node structures blocking GP
...
Change the type and name of task_struct::state. Drop the volatile and
shrink it to an 'unsigned int'. Rename it in order to find all uses
such that we can use READ_ONCE/WRITE_ONCE as appropriate.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Daniel Thompson <daniel.thompson@linaro.org>
Link: https://lore.kernel.org/r/20210611082838.550736351@infradead.org
Sparse reports a warning at rcu_print_task_stall():
"warning: context imbalance in rcu_print_task_stall - unexpected unlock"
The root cause is a missing annotation on rcu_print_task_stall().
This commit therefore adds the missing __releases(rnp->lock) annotation.
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
RCU priority boosting cannot do anything unless there is at least one
task blocking the current RCU grace period that was preempted within
the RCU read-side critical section that it still resides in. However,
the current rcu_torture_boost_failed() code will count this as an RCU
priority-boosting failure if there were no CPUs blocking the current
grace period. This situation can happen (for example) if the last CPU
blocking the current grace period was subjected to vCPU preemption,
which is always a risk for rcutorture guest OSes.
This commit therefore causes rcu_torture_boost_failed() to refrain from
reporting failure unless there is at least one task blocking the current
RCU grace period that was preempted within the RCU read-side critical
section that it still resides in.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Currently, show_rcu_gp_kthreads() only dumps rcu_node structures that
have outdated ideas of the current grace-period number. This commit
also dumps those that are in any way blocking the current grace period.
This helps diagnose RCU priority boosting failures.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds each rcu_node structure's ->qsmask and "bBEG" output
indicating whether: (1) There is a boost kthread, (2) A reader needs
to be (or is in the process of being) boosted, (3) A reader is blocking
an expedited grace period, and (4) A reader is blocking a normal grace
period. This helps diagnose RCU priority boosting failures.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds ->gp_max to show_rcu_gp_kthreads() output in order to
better diagnose RCU priority boosting failures.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds ->rt_priority and ->gp_start to show_rcu_gp_kthreads()
output in order to better diagnose RCU priority boosting failures.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
It will frequently be the case that rcu_torture_boost() will get a
->start_gp_poll() cookie that needs almost all of the current grace period
plus an additional grace period to elapse before ->poll_gp_state() will
return true. It is quite possible that the current grace period will have
(say) two seconds of stall by a CPU failing to pass through a quiescent
state, followed by 300 milliseconds of delay due to a preempted reader.
The next grace period might suffer only one second of stall by a CPU,
followed by another 300 milliseconds of delay due to a preempted reader.
This is an example of RCU priority boosting doing its job, but the full
elapsed time of 3.6 seconds exceeds the 3.5-second limit. In addition,
there is no CPU stall in force at the 3.5-second mark, so this would
nevertheless currently be counted as an RCU priority boosting failure.
This commit therefore avoids this sort of false positive by resetting
the gp_state_time timestamp any time that the current grace period is
being blocked by a CPU. This results in extremely frequent calls to
the ->check_boost_failed() function, so this commit provides a lockless
fastpath that is selected by supplying a NULL CPU-number pointer.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Currently, rcu_torture_boost() runs CPU-bound at real-time priority
to force RCU priority inversions. It then checks that grace periods
progress during this CPU-bound time. If grace periods fail to progress,
it reports and RCU priority boosting failure.
However, it is possible (and sometimes does happen) that the grace period
fails to progress due to a CPU failing to pass through a quiescent state
for an extended time period (3.5 seconds by default). This can happen
due to vCPU preemption, long-running interrupts, and much else besides.
There is nothing that RCU priority boosting can do about these situations,
and so they should not be counted as RCU priority boosting failures.
This commit therefore checks for CPUs (as opposed to preempted tasks)
holding up a grace period, and flags the resulting RCU priority boosting
failures, but does not splat nor count them as errors. It does rate-limit
them to avoid flooding the console log.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds a trace event which allows tracing the beginnings of RCU
CPU stall warnings on systems where sysctl_panic_on_rcu_stall is disabled.
The first parameter is the name of RCU flavor like other trace events.
The second parameter indicates whether this is a stall of an expedited
grace period, a self-detected stall of a normal grace period, or a stall
of a normal grace period detected by some CPU other than the one that
is stalled.
RCU CPU stall warnings are often caused by external-to-RCU issues,
for example, in interrupt handling or task scheduling. Therefore,
this event uses TRACE_EVENT, not TRACE_EVENT_RCU, to avoid requiring
those interested in tracing RCU CPU stalls to rebuild their kernels
with CONFIG_RCU_TRACE=y.
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Sangmoon Kim <sangmoon.kim@samsung.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
For a new grace period request, the RCU GP kthread transitions through
following states:
a. [RCU_GP_WAIT_GPS] -> [RCU_GP_DONE_GPS]
The RCU_GP_WAIT_GPS state is where the GP kthread waits for a request
for a new GP. Once it receives a request (for example, when a new RCU
callback is queued), the GP kthread transitions to RCU_GP_DONE_GPS.
b. [RCU_GP_DONE_GPS] -> [RCU_GP_ONOFF]
Grace period initialization starts in rcu_gp_init(), which records the
start of new GP in rcu_state.gp_seq and transitions to RCU_GP_ONOFF.
c. [RCU_GP_ONOFF] -> [RCU_GP_INIT]
The purpose of the RCU_GP_ONOFF state is to apply the online/offline
information that was buffered for any CPUs that recently came online or
went offline. This state is maintained in per-leaf rcu_node bitmasks,
with the buffered state in ->qsmaskinitnext and the state for the upcoming
GP in ->qsmaskinit. At the end of this RCU_GP_ONOFF state, each bit in
->qsmaskinit will correspond to a CPU that must pass through a quiescent
state before the upcoming grace period is allowed to complete.
However, a leaf rcu_node structure with an all-zeroes ->qsmaskinit
cannot necessarily be ignored. In preemptible RCU, there might well be
tasks still in RCU read-side critical sections that were first preempted
while running on one of the CPUs managed by this structure. Such tasks
will be queued on this structure's ->blkd_tasks list. Only after this
list fully drains can this leaf rcu_node structure be ignored, and even
then only if none of its CPUs have come back online in the meantime.
Once that happens, the ->qsmaskinit masks further up the tree will be
updated to exclude this leaf rcu_node structure.
Once the ->qsmaskinitnext and ->qsmaskinit fields have been updated
as needed, the GP kthread transitions to RCU_GP_INIT.
d. [RCU_GP_INIT] -> [RCU_GP_WAIT_FQS]
The purpose of the RCU_GP_INIT state is to copy each ->qsmaskinit to
the ->qsmask field within each rcu_node structure. This copying is done
breadth-first from the root to the leaves. Why not just copy directly
from ->qsmaskinitnext to ->qsmask? Because the ->qsmaskinitnext masks
can change in the meantime as additional CPUs come online or go offline.
Such changes would result in inconsistencies in the ->qsmask fields up and
down the tree, which could in turn result in too-short grace periods or
grace-period hangs. These issues are avoided by snapshotting the leaf
rcu_node structures' ->qsmaskinitnext fields into their ->qsmaskinit
counterparts, generating a consistent set of ->qsmaskinit fields
throughout the tree, and only then copying these consistent ->qsmaskinit
fields to their ->qsmask counterparts.
Once this initialization step is complete, the GP kthread transitions
to RCU_GP_WAIT_FQS, where it waits to do a force-quiescent-state scan
on the one hand or for the end of the grace period on the other.
e. [RCU_GP_WAIT_FQS] -> [RCU_GP_DOING_FQS]
The RCU_GP_WAIT_FQS state waits for one of three things: (1) An
explicit request to do a force-quiescent-state scan, (2) The end of
the grace period, or (3) A short interval of time, after which it
will do a force-quiescent-state (FQS) scan. The explicit request can
come from rcutorture or from any CPU that has too many RCU callbacks
queued (see the qhimark kernel parameter and the RCU_GP_FLAG_OVLD
flag). The aforementioned "short period of time" is specified by the
jiffies_till_first_fqs boot parameter for a given grace period's first
FQS scan and by the jiffies_till_next_fqs for later FQS scans.
Either way, once the wait is over, the GP kthread transitions to
RCU_GP_DOING_FQS.
f. [RCU_GP_DOING_FQS] -> [RCU_GP_CLEANUP]
The RCU_GP_DOING_FQS state performs an FQS scan. Each such scan carries
out two functions for any CPU whose bit is still set in its leaf rcu_node
structure's ->qsmask field, that is, for any CPU that has not yet reported
a quiescent state for the current grace period:
i. Report quiescent states on behalf of CPUs that have been observed
to be idle (from an RCU perspective) since the beginning of the
grace period.
ii. If the current grace period is too old, take various actions to
encourage holdout CPUs to pass through quiescent states, including
enlisting the aid of any calls to cond_resched() and might_sleep(),
and even including IPIing the holdout CPUs.
These checks are skipped for any leaf rcu_node structure with a all-zero
->qsmask field, however such structures are subject to RCU priority
boosting if there are tasks on a given structure blocking the current
grace period. The end of the grace period is detected when the root
rcu_node structure's ->qsmask is zero and when there are no longer any
preempted tasks blocking the current grace period. (No, this last check
is not redundant. To see this, consider an rcu_node tree having exactly
one structure that serves as both root and leaf.)
Once the end of the grace period is detected, the GP kthread transitions
to RCU_GP_CLEANUP.
g. [RCU_GP_CLEANUP] -> [RCU_GP_CLEANED]
The RCU_GP_CLEANUP state marks the end of grace period by updating the
rcu_state structure's ->gp_seq field and also all rcu_node structures'
->gp_seq field. As before, the rcu_node tree is traversed in breadth
first order. Once this update is complete, the GP kthread transitions
to the RCU_GP_CLEANED state.
i. [RCU_GP_CLEANED] -> [RCU_GP_INIT]
Once in the RCU_GP_CLEANED state, the GP kthread immediately transitions
into the RCU_GP_INIT state.
j. The role of timers.
If there is at least one idle CPU, and if timers are not firing, the
transition from RCU_GP_DOING_FQS to RCU_GP_CLEANUP will never happen.
Timers can fail to fire for a number of reasons, including issues in
timer configuration, issues in the timer framework, and failure to handle
softirqs (for example, when there is a storm of interrupts). Whatever the
reason, if the timers fail to fire, the GP kthread will never be awakened,
resulting in RCU CPU stall warnings and eventually in OOM.
However, an RCU CPU stall warning has a large number of potential causes,
as documented in Documentation/RCU/stallwarn.rst. This commit therefore
adds analysis to the RCU CPU stall-warning code to emit an additional
message if the cause of the stall is likely to be timer failure.
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds a number of lockdep_assert_irqs_disabled() calls
to rcu_sched_clock_irq() and a number of the functions that it calls.
The point of this is to help track down a situation where lockdep appears
to be insisting that interrupts are enabled within these functions, which
should only ever be invoked from the scheduling-clock interrupt handler.
Link: https://lore.kernel.org/lkml/20201111133813.GA81547@elver.google.com/
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Currently, RCU CPU stall warning messages will NMI whatever CPU looks
like it is blocking either the current grace period or the grace-period
kthread. This can produce confusing output if the target CPU is offline.
This commit therefore checks for offline CPUs.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
When the RCU CPU stall-warning code detects that the RCU grace-period
kthread is being starved, it dumps that kthread's stack. This can
sometimes be useful, but it is also useful to know what is running on the
CPU that this kthread is attempting to run on. This commit therefore
adds a stack trace of this CPU in order to help track down whatever it
is that might be preventing RCU's grace-period kthread from running.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Some stalls are transient, so that system fully recovers. This commit
therefore allows users to configure the number of stalls that must happen
in order to trigger kernel panic.
Signed-off-by: chao <chao@eero.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The try_invoke_on_locked_down_task() function requires that
interrupts be enabled, but it is called with interrupts disabled from
rcu_print_task_stall(), resulting in an "IRQs not enabled as expected"
diagnostic. This commit therefore updates rcu_print_task_stall()
to accumulate a list of the first few tasks while holding the current
leaf rcu_node structure's ->lock, then releases that lock and only then
uses try_invoke_on_locked_down_task() to attempt to obtain per-task
detailed information. Of course, as soon as ->lock is released, the
task might exit, so the get_task_struct() function is used to prevent
the task structure from going away in the meantime.
Link: https://lore.kernel.org/lkml/000000000000903d5805ab908fc4@google.com/
Fixes: 5bef8da66a ("rcu: Add per-task state to RCU CPU stall warnings")
Reported-by: syzbot+cb3b69ae80afd6535b0e@syzkaller.appspotmail.com
Reported-by: syzbot+f04854e1c5c9e913cc27@syzkaller.appspotmail.com
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Given that sysfs can change the value of rcu_cpu_stall_ftrace_dump at any
time, this commit adds a READ_ONCE() to the accesses to that variable.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Given that sysfs can change the value of rcu_kick_kthreads at any time,
this commit adds a READ_ONCE() to the sole access to that variable.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>