As we've enabled multiplatform kernels on ARM, and greatly done away with
the contents under arch/arm/mach-*, there's still need for SoC-related
drivers to go somewhere.
Many of them go in through other driver trees, but we still have
drivers/soc to hold some of the "doesn't fit anywhere" lowlevel code
that might be shared between ARM and ARM64 (or just in general makes
sense to not have under the architecture directory).
This branch contains mostly such code:
- Drivers for qualcomm SoCs for SMEM, SMD and SMD-RPM, used to communicate
with power management blocks on these SoCs for use by clock, regulator and
bus frequency drivers.
- Allwinner Reduced Serial Bus driver, again used to communicate with PMICs.
- Drivers for ARM's SCPI (System Control Processor). Not to be confused with
PSCI (Power State Coordination Interface). SCPI is used to communicate with
the assistant embedded cores doing power management, and we have yet to see
how many of them will implement this for their hardware vs abstracting in
other ways (or not at all like in the past).
- To make confusion between SCPI and PSCI more likely, this release also
includes an update of PSCI to interface version 1.0.
- Rockchip support for power domains.
- A driver to talk to the firmware on Raspberry Pi.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWQC+cAAoJEIwa5zzehBx3jEUP/0GpxfDVanEUkudVLLe7J0RH
CNlRan107Cw6hXRUJo7elEsuCALjccXjc1CAH4+RnNpOAeBKW97n+WU7trTv+wUZ
sQX4SkBPKFBlgwGF2qhsi5q74gms/BrgtCa4kNb9joOYso039tlfIOPzK80DMkOm
TkyIJdUCgFJMjCQLhX6kGT0PDcrbIjb6aA2cF3FAVeaJA7uz8lNe/eHJr3oHxIEY
CvC651yJ2mIHQUU4BJx/AJo+wXg3dRUXNCAtBjwLRPEAzduYZXYm1ZTVIby/1q9r
dR2KDFEuibODXmXrDBzKNJwCu/TLJEwo/1oPaEIVfY91XLKfiWUhgVqa1o1I+d9U
XoGPibCW461qFahjQW87MfInALpCOA7/RbTNjFp+MVyipCYvkaYq7KFiYEldgFDx
z4Qx/J4hYc2TlDWrpNiUCZMfmhwi7y+Ib+tnenYTO1eyMuw0e9mfnVdjk5iU3Pvk
Ye4qPqpYclJruyHbYi164878+1lLaW2NCUgC3rkBO/GWPAzp7d9iLWoZ3PuyD5i5
PEjs668UcRdZYbI4rdrhGHL8Eq9Gnuc4Rthu7HxPOK+DG0XgP8r97PhM8aYGYVDO
+yikBtjWRsA9fPj3rMKA3UsQ61DAeR9LmZ0XPGjWFMCjCG0JlUoIMaA+Uu0i8fr8
95qxBVxbO7rhL39r1rhV
=dm+I
-----END PGP SIGNATURE-----
Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM SoC driver updates from Olof Johansson:
"As we've enabled multiplatform kernels on ARM, and greatly done away
with the contents under arch/arm/mach-*, there's still need for
SoC-related drivers to go somewhere.
Many of them go in through other driver trees, but we still have
drivers/soc to hold some of the "doesn't fit anywhere" lowlevel code
that might be shared between ARM and ARM64 (or just in general makes
sense to not have under the architecture directory).
This branch contains mostly such code:
- Drivers for qualcomm SoCs for SMEM, SMD and SMD-RPM, used to
communicate with power management blocks on these SoCs for use by
clock, regulator and bus frequency drivers.
- Allwinner Reduced Serial Bus driver, again used to communicate with
PMICs.
- Drivers for ARM's SCPI (System Control Processor). Not to be
confused with PSCI (Power State Coordination Interface). SCPI is
used to communicate with the assistant embedded cores doing power
management, and we have yet to see how many of them will implement
this for their hardware vs abstracting in other ways (or not at all
like in the past).
- To make confusion between SCPI and PSCI more likely, this release
also includes an update of PSCI to interface version 1.0.
- Rockchip support for power domains.
- A driver to talk to the firmware on Raspberry Pi"
* tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (57 commits)
soc: qcom: smd-rpm: Correct size of outgoing message
bus: sunxi-rsb: Add driver for Allwinner Reduced Serial Bus
bus: sunxi-rsb: Add Allwinner Reduced Serial Bus (RSB) controller bindings
ARM: bcm2835: add mutual inclusion protection
drivers: psci: make PSCI 1.0 functions initialization version dependent
dt-bindings: Correct paths in Rockchip power domains binding document
soc: rockchip: power-domain: don't try to print the clock name in error case
soc: qcom/smem: add HWSPINLOCK dependency
clk: berlin: add cpuclk
ARM: berlin: dts: add CLKID_CPU for BG2Q
ARM: bcm2835: Add the Raspberry Pi firmware driver
soc: qcom: smem: Move RPM message ram out of smem DT node
soc: qcom: smd-rpm: Correct the active vs sleep state flagging
soc: qcom: smd: delete unneeded of_node_put
firmware: qcom-scm: build for correct architecture level
soc: qcom: smd: Correct SMEM items for upper channels
qcom-scm: add missing prototype for qcom_scm_is_available()
qcom-scm: fix endianess issue in __qcom_scm_is_call_available
soc: qcom: smd: Reject send of too big packets
soc: qcom: smd: Handle big endian CPUs
...
Passing a void ** almost always requires a cast at the call site.
Instead of littering the code with casts every time this function
is called, have qcom_smem_get() return a void pointer to the
location of the smem item. This frees the caller from having to
cast the pointer.
Cc: Bjorn Andersson <bjorn.andersson@sonymobile.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Reviewed-by: Bjorn Andersson <bjorn.andersson@sonymobile.com>
Signed-off-by: Andy Gross <agross@codeaurora.org>
Implement a id_table based driver maching mechanism for drivers that
binds to fixed channels and doesn't need any additional configuration,
e.g. IPCRTR and DIAG.
Signed-off-by: Bjorn Andersson <bjorn.andersson@sonymobile.com>
Signed-off-by: Andy Gross <agross@codeaurora.org>
Broadcom STB SoCs (brcmstb) require an early setup of their Bus
Interface Unit control register, this needs to happen before SMP is
brought up because it affects how the CPU complex will be interfaced to
the memory controller.
Add support code which properly initializes the BIU registers based on
whether "brcm,write-pairing" is present in Device Tree, and take care of
saving and restoring credit register settings during system-wide
suspend/resume operations.
Acked-by: Gregory Fong <gregory.0xf0@gmail.com>
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Some releases this branch is nearly empty, others we have more stuff. It
tends to gather drivers that need SoC modification or dependencies such
that they have to (also) go in through our tree.
For this release, we have merged in part of the reset controller tree
(with handshake that the parts we have merged in will remain stable),
as well as dependencies on a few clock branches.
In general, new items here are:
- Qualcomm driver for SMM/SMD, which is how they communicate with the
coprocessors on (some) of their platforms
- Memory controller work for ARM's PL172 memory controller
- Reset drivers for various platforms
- PMU power domain support for Marvell platforms
- Tegra support for T132/T210 SoCs: PMC, fuse, memory controller per-SoC support
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJV5Ou9AAoJEIwa5zzehBx3/k4P/jA5CVNiDvIs0GoTR3uGOuec
MYd19oKf76reV1oL5bBSpg9uryJd3fPzK0JC/qU3pYfsCVFp2TWZD7liNpitqHyt
2xL02gzJQgjHzL3QrxTQrOFJDO6P8Vm2k/5pI0KX1beoulHvI+iHejNryXGjSKSx
9vbs1GPXU9IV831YOHSaMmHz727J65bbZE8Up113ctT+WbEIc1g/ihKzUgi/8xXW
RniMxGsX8HynE3VH+UBDMbY6XkOmzZa1Wabgll735MXwIUFG1+TsvHNuGehXUski
ySwqk67en25i0F/Q7oobLSZwCPbA6Ylxk9aOfr0AnAqOEKwgKWS+K7HkEiNMz7yh
nt22b5SVkQ80sTCbNEkdJajOZ8oRalUae19CGxvMfVh77LmQ2sRI9iJrwXcxkt8W
ASs6uDDAUNC5pIWfjeJE50vsDr//Hed/WtsIjenYOtb+RI1kru5iTTgp4oLPBiy5
OeHxOfiL7gPvyZQbuPgMKAGdoGBsa/7wTM7KWJCMP6mPGHpShO8XUUsuljqKHm4w
nBV7eZRMiIuWkjRKw4bjp7R0NVKR5sOfAkZhjCsXB0aqA/NU2zyNbViWcGCh6yj8
3beZ93SdEdrKX6N8pPiAhGTMFA6eev8YeUHO7kM4IhC91ILjHlPpCs1pYk3pwEkO
ABC7GyMY6Olg1pZJweEa
=B6jn
-----END PGP SIGNATURE-----
Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM SoC driver updates from Olof Johansson:
"Some releases this branch is nearly empty, others we have more stuff.
It tends to gather drivers that need SoC modification or dependencies
such that they have to (also) go in through our tree.
For this release, we have merged in part of the reset controller tree
(with handshake that the parts we have merged in will remain stable),
as well as dependencies on a few clock branches.
In general, new items here are:
- Qualcomm driver for SMM/SMD, which is how they communicate with the
coprocessors on (some) of their platforms
- memory controller work for ARM's PL172 memory controller
- reset drivers for various platforms
- PMU power domain support for Marvell platforms
- Tegra support for T132/T210 SoCs: PMC, fuse, memory controller
per-SoC support"
* tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (49 commits)
ARM: tegra: cpuidle: implement cpuidle_state.enter_freeze()
ARM: tegra: Disable cpuidle if PSCI is available
soc/tegra: pmc: Use existing pclk reference
soc/tegra: pmc: Remove unnecessary return statement
soc: tegra: Remove redundant $(CONFIG_ARCH_TEGRA) in Makefile
memory: tegra: Add Tegra210 support
memory: tegra: Add support for a variable-size client ID bitfield
clk: shmobile: rz: Add CPG/MSTP Clock Domain support
clk: shmobile: rcar-gen2: Add CPG/MSTP Clock Domain support
clk: shmobile: r8a7779: Add CPG/MSTP Clock Domain support
clk: shmobile: r8a7778: Add CPG/MSTP Clock Domain support
clk: shmobile: Add CPG/MSTP Clock Domain support
ARM: dove: create a proper PMU driver for power domains, PMU IRQs and resets
reset: reset-zynq: Adding support for Xilinx Zynq reset controller.
docs: dts: Added documentation for Xilinx Zynq Reset Controller bindings.
MIPS: ath79: Add the reset controller to the AR9132 dtsi
reset: Add a driver for the reset controller on the AR71XX/AR9XXX
devicetree: Add bindings for the ATH79 reset controller
reset: socfpga: Update reset-socfpga to read the altr,modrst-offset property
doc: dt: add documentation for lpc1850-rgu reset driver
...
The PMU device contains an interrupt controller, power control and
resets. The interrupt controller is a little sub-standard in that
there is no race free way to clear down pending interrupts, so we try
to avoid problems by reducing the window as much as possible, and
clearing as infrequently as possible.
The interrupt support is implemented using an IRQ domain, and the
parent interrupt referenced in the standard DT way.
The power domains and reset support is closely related - there is a
defined sequence for powering down a domain which is tightly coupled
with asserting the reset. Hence, it makes sense to group these two
together, and in order to avoid any locking contention disrupting this
sequence, we avoid the use of syscon or regmap.
This patch adds the core PMU driver: power domains must be defined in
the DT file in order to make use of them. The reset controller can
be referenced in the standard way for reset controllers.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: Gregory CLEMENT <gregory.clement@free-electrons.com>
Driver for the Resource Power Manager (RPM) found in Qualcomm 8974 based
devices.
The driver exposes resources that child drivers can operate on; to
implementing regulator, clock and bus frequency drivers.
Signed-off-by: Bjorn Andersson <bjorn.andersson@sonymobile.com>
Signed-off-by: Andy Gross <agross@codeaurora.org>
This adds the Qualcomm Shared Memory Driver (SMD) providing
communication channels to remote processors, ontop of SMEM.
Signed-off-by: Bjorn Andersson <bjorn.andersson@sonymobile.com>
Signed-off-by: Andy Gross <agross@codeaurora.org>
The Shared Memory Manager driver implements an interface for allocating
and accessing items in the memory area shared among all of the
processors in a Qualcomm platform.
Signed-off-by: Bjorn Andersson <bjorn.andersson@sonymobile.com>
Acked-by: Andy Gross <agross@codeaurora.org>
Signed-off-by: Andy Gross <agross@codeaurora.org>
This adds support for some miscellaneous bits of the infracfg controller.
The mtk_infracfg_set/clear_bus_protection functions are necessary for
the scpsys power domain driver to handle the bus protection bits which
are contained in the infacfg register space.
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
Reviewed-by: Daniel Kurtz <djkurtz@chromium.org>
Signed-off-by: Matthias Brugger <matthias.bgg@gmail.com>
The Allwinner SoCs have a handful of SRAM that can be either mapped to be
accessible by devices or the CPU.
That mapping is controlled by an SRAM controller, and that mapping might
not be set by the bootloader, for example if the device wasn't used at all,
or if we're using solutions like the U-Boot's Falcon Boot.
We could also imagine changing this at runtime for example to change the
mapping of these SRAMs to use them for suspend/resume or runtime memory
rate change, if that ever happens.
These use cases require some API in the kernel to control that mapping,
exported through a drivers/soc driver.
This driver also implement a debugfs file that shows the SRAM found in the
system, the current mapping and the SRAM that have been claimed by some
drivers in the kernel.
Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Hans de Goede <hdegoede@redhat.com>
Tested-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Fixes below build break by not switching to stubs when the driver is a module:
drivers/soc/ti/knav_dma.c:418:7: error: redefinition of 'knav_dma_open_channel'
void *knav_dma_open_channel(struct device *dev, const char *name,
^
In file included from drivers/soc/ti/knav_dma.c:26:0:
include/linux/soc/ti/knav_dma.h:165:21: note: previous definition of 'knav_dma_open_channel' was here
static inline void *knav_dma_open_channel(struct device *dev, const char *name,
^
Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Olof Johansson <olof@lixom.net>
The Keystone Navigator DMA driver sets up the dma channels and flows for
the QMSS(Queue Manager SubSystem) who triggers the actual data movements
across clients using destination queues. Every client modules like
NETCP(Network Coprocessor), SRIO(Serial Rapid IO) and CRYPTO
Engines has its own instance of packet dma hardware. QMSS has also
an internal packet DMA module which is used as an infrastructure
DMA with zero copy.
Initially this driver was proposed as DMA engine driver but since the
hardware is not typical DMA engine and hence doesn't comply with typical
DMA engine driver needs, that approach was naked. Link to that
discussion -
https://lkml.org/lkml/2014/3/18/340
As aligned, now we pair the Navigator DMA with its companion Navigator
QMSS subsystem driver.
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Kumar Gala <galak@codeaurora.org>
Cc: Olof Johansson <olof@lixom.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sandeep Nair <sandeep_n@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
The QMSS (Queue Manager Sub System) found on Keystone SOCs is one of
the main hardware sub system which forms the backbone of the Keystone
Multi-core Navigator. QMSS consist of queue managers, packed-data structure
processors(PDSP), linking RAM, descriptor pools and infrastructure
Packet DMA.
The Queue Manager is a hardware module that is responsible for accelerating
management of the packet queues. Packets are queued/de-queued by writing or
reading descriptor address to a particular memory mapped location. The PDSPs
perform QMSS related functions like accumulation, QoS, or event management.
Linking RAM registers are used to link the descriptors which are stored in
descriptor RAM. Descriptor RAM is configurable as internal or external memory.
The QMSS driver manages the PDSP setups, linking RAM regions,
queue pool management (allocation, push, pop and notify) and descriptor
pool management. The specifics on the device tree bindings for
QMSS can be found in:
Documentation/devicetree/bindings/soc/keystone-navigator-qmss.txt
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Kumar Gala <galak@codeaurora.org>
Cc: Olof Johansson <olof@lixom.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sandeep Nair <sandeep_n@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>