A few architectures support uncached kernel segments. In that case we get
an uncached mapping for a given physica address by using an offset in the
uncached segement. Implement support for this scheme in the generic
dma-direct code instead of duplicating it in arch hooks.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Pull time fixes from Ingo Molnar:
"A TIA adjtimex interface extension, and a POSIX compliance ABI fix for
timespec64 users"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ntp: Allow TAI-UTC offset to be set to zero
y2038: Make CONFIG_64BIT_TIME unconditional
No need to handle the freeing disable in arch code when we already have a
core hook (and a different name for the option) for it.
Link: http://lkml.kernel.org/r/20190213174621.29297-7-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Cc: Steven Price <steven.price@arm.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 mm updates from Ingo Molnar:
"The changes in here are:
- text_poke() fixes and an extensive set of executability lockdowns,
to (hopefully) eliminate the last residual circumstances under
which we are using W|X mappings even temporarily on x86 kernels.
This required a broad range of surgery in text patching facilities,
module loading, trampoline handling and other bits.
- tweak page fault messages to be more informative and more
structured.
- remove DISCONTIGMEM support on x86-32 and make SPARSEMEM the
default.
- reduce KASLR granularity on 5-level paging kernels from 512 GB to
1 GB.
- misc other changes and updates"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/mm: Initialize PGD cache during mm initialization
x86/alternatives: Add comment about module removal races
x86/kprobes: Use vmalloc special flag
x86/ftrace: Use vmalloc special flag
bpf: Use vmalloc special flag
modules: Use vmalloc special flag
mm/vmalloc: Add flag for freeing of special permsissions
mm/hibernation: Make hibernation handle unmapped pages
x86/mm/cpa: Add set_direct_map_*() functions
x86/alternatives: Remove the return value of text_poke_*()
x86/jump-label: Remove support for custom text poker
x86/modules: Avoid breaking W^X while loading modules
x86/kprobes: Set instruction page as executable
x86/ftrace: Set trampoline pages as executable
x86/kgdb: Avoid redundant comparison of patched code
x86/alternatives: Use temporary mm for text poking
x86/alternatives: Initialize temporary mm for patching
fork: Provide a function for copying init_mm
uprobes: Initialize uprobes earlier
x86/mm: Save debug registers when loading a temporary mm
...
Pull locking updates from Ingo Molnar:
"Here are the locking changes in this cycle:
- rwsem unification and simpler micro-optimizations to prepare for
more intrusive (and more lucrative) scalability improvements in
v5.3 (Waiman Long)
- Lockdep irq state tracking flag usage cleanups (Frederic
Weisbecker)
- static key improvements (Jakub Kicinski, Peter Zijlstra)
- misc updates, cleanups and smaller fixes"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits)
locking/lockdep: Remove unnecessary unlikely()
locking/static_key: Don't take sleeping locks in __static_key_slow_dec_deferred()
locking/static_key: Factor out the fast path of static_key_slow_dec()
locking/static_key: Add support for deferred static branches
locking/lockdep: Test all incompatible scenarios at once in check_irq_usage()
locking/lockdep: Avoid bogus Clang warning
locking/lockdep: Generate LOCKF_ bit composites
locking/lockdep: Use expanded masks on find_usage_*() functions
locking/lockdep: Map remaining magic numbers to lock usage mask names
locking/lockdep: Move valid_state() inside CONFIG_TRACE_IRQFLAGS && CONFIG_PROVE_LOCKING
locking/rwsem: Prevent unneeded warning during locking selftest
locking/rwsem: Optimize rwsem structure for uncontended lock acquisition
locking/rwsem: Enable lock event counting
locking/lock_events: Don't show pvqspinlock events on bare metal
locking/lock_events: Make lock_events available for all archs & other locks
locking/qspinlock_stat: Introduce generic lockevent_*() counting APIs
locking/rwsem: Enhance DEBUG_RWSEMS_WARN_ON() macro
locking/rwsem: Add debug check for __down_read*()
locking/rwsem: Micro-optimize rwsem_try_read_lock_unqueued()
locking/rwsem: Move rwsem internal function declarations to rwsem-xadd.h
...
Add two new functions set_direct_map_default_noflush() and
set_direct_map_invalid_noflush() for setting the direct map alias for the
page to its default valid permissions and to an invalid state that cannot
be cached in a TLB, respectively. These functions do not flush the TLB.
Note, __kernel_map_pages() does something similar but flushes the TLB and
doesn't reset the permission bits to default on all architectures.
Also add an ARCH config ARCH_HAS_SET_DIRECT_MAP for specifying whether
these have an actual implementation or a default empty one.
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-15-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As Stepan Golosunov points out, there is a small mistake in the
get_timespec64() function in the kernel. It was originally added under the
assumption that CONFIG_64BIT_TIME would get enabled on all 32-bit and
64-bit architectures, but when the conversion was done, it was only turned
on for 32-bit ones.
The effect is that the get_timespec64() function never clears the upper
half of the tv_nsec field for 32-bit tasks in compat mode. Clearing this is
required for POSIX compliant behavior of functions that pass a 'timespec'
structure with a 64-bit tv_sec and a 32-bit tv_nsec, plus uninitialized
padding.
The easiest fix for linux-5.1 is to just make the Kconfig symbol
unconditional, as it was originally intended. As a follow-up, the #ifdef
CONFIG_64BIT_TIME can be removed completely..
Note: for native 32-bit mode, no change is needed, this works as
designed and user space should never need to clear the upper 32
bits of the tv_nsec field, in or out of the kernel.
Fixes: 00bf25d693 ("y2038: use time32 syscall names on 32-bit")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Joseph Myers <joseph@codesourcery.com>
Cc: libc-alpha@sourceware.org
Cc: linux-api@vger.kernel.org
Cc: Deepa Dinamani <deepa.kernel@gmail.com>
Cc: Lukasz Majewski <lukma@denx.de>
Cc: Stepan Golosunov <stepan@golosunov.pp.ru>
Link: https://lore.kernel.org/lkml/20190422090710.bmxdhhankurhafxq@sghpc.golosunov.pp.ru/
Link: https://lkml.kernel.org/r/20190429131951.471701-1-arnd@arndb.de
Add lock event counting calls so that we can track the number of lock
events happening in the rwsem code.
With CONFIG_LOCK_EVENT_COUNTS on and booting a 4-socket 112-thread x86-64
system, the rwsem counts after system bootup were as follows:
rwsem_opt_fail=261
rwsem_opt_wlock=50636
rwsem_rlock=445
rwsem_rlock_fail=0
rwsem_rlock_fast=22
rwsem_rtrylock=810144
rwsem_sleep_reader=441
rwsem_sleep_writer=310
rwsem_wake_reader=355
rwsem_wake_writer=2335
rwsem_wlock=261
rwsem_wlock_fail=0
rwsem_wtrylock=20583
It can be seen that most of the lock acquisitions in the slowpath were
write-locks in the optimistic spinning code path with no sleeping at
all. For this system, over 97% of the locks are acquired via optimistic
spinning. It illustrates the importance of optimistic spinning in
improving the performance of rwsem.
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/20190404174320.22416-11-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The QUEUED_LOCK_STAT option to report queued spinlocks event counts
was previously allowed only on x86 architecture. To make the locking
event counting code more useful, it is now renamed to a more generic
LOCK_EVENT_COUNTS config option. This new option will be available to
all the architectures that use qspinlock at the moment.
Other locking code can now start to use the generic locking event
counting code by including lock_events.h and put the new locking event
names into the lock_events_list.h header file.
My experience with lock event counting is that it gives valuable insight
on how the locking code works and what can be done to make it better. I
would like to extend this benefit to other locking code like mutex and
rwsem in the near future.
The PV qspinlock specific code will stay in qspinlock_stat.h. The
locking event counters will now reside in the <debugfs>/lock_event_counts
directory.
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/20190404174320.22416-9-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add the Kconfig option HAVE_MMU_GATHER_NO_GATHER to the generic
mmu_gather code. If the option is set the mmu_gather will not
track individual pages for delayed page free anymore. A platform
that enables the option needs to provide its own implementation
of the __tlb_remove_page_size() function to free pages.
No change in behavior intended.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: aneesh.kumar@linux.vnet.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: linux@armlinux.org.uk
Cc: npiggin@gmail.com
Link: http://lkml.kernel.org/r/20180918125151.31744-2-schwidefsky@de.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make issuing a TLB invalidate for page-table pages the normal case.
The reason is twofold:
- too many invalidates is safer than too few,
- most architectures use the linux page-tables natively
and would thus require this.
Make it an opt-out, instead of an opt-in.
No change in behavior intended.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move the mmu_gather::page_size things into the generic code instead of
PowerPC specific bits.
No change in behavior intended.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Here is the big char/misc driver patch pull request for 5.1-rc1.
The largest thing by far is the new habanalabs driver for their AI
accelerator chip. For now it is in the drivers/misc directory but will
probably move to a new directory soon along with other drivers of this
type.
Other than that, just the usual set of individual driver updates and
fixes. There's an "odd" merge in here from the DRM tree that they asked
me to do as the MEI driver is starting to interact with the i915 driver,
and it needed some coordination. All of those patches have been
properly acked by the relevant subsystem maintainers.
All of these have been in linux-next with no reported issues, most for
quite some time.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXH+dPQ8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ym1fACgvpZAxjNzoRQJ6f06tc8ujtPk9rUAnR+tCtrZ
9e3l7H76oe33o96Qjhor
=8A2k
-----END PGP SIGNATURE-----
Merge tag 'char-misc-5.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver updates from Greg KH:
"Here is the big char/misc driver patch pull request for 5.1-rc1.
The largest thing by far is the new habanalabs driver for their AI
accelerator chip. For now it is in the drivers/misc directory but will
probably move to a new directory soon along with other drivers of this
type.
Other than that, just the usual set of individual driver updates and
fixes. There's an "odd" merge in here from the DRM tree that they
asked me to do as the MEI driver is starting to interact with the i915
driver, and it needed some coordination. All of those patches have
been properly acked by the relevant subsystem maintainers.
All of these have been in linux-next with no reported issues, most for
quite some time"
* tag 'char-misc-5.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (219 commits)
habanalabs: adjust Kconfig to fix build errors
habanalabs: use %px instead of %p in error print
habanalabs: use do_div for 64-bit divisions
intel_th: gth: Fix an off-by-one in output unassigning
habanalabs: fix little-endian<->cpu conversion warnings
habanalabs: use NULL to initialize array of pointers
habanalabs: fix little-endian<->cpu conversion warnings
habanalabs: soft-reset device if context-switch fails
habanalabs: print pointer using %p
habanalabs: fix memory leak with CBs with unaligned size
habanalabs: return correct error code on MMU mapping failure
habanalabs: add comments in uapi/misc/habanalabs.h
habanalabs: extend QMAN0 job timeout
habanalabs: set DMA0 completion to SOB 1007
habanalabs: fix validation of WREG32 to DMA completion
habanalabs: fix mmu cache registers init
habanalabs: disable CPU access on timeouts
habanalabs: add MMU DRAM default page mapping
habanalabs: Dissociate RAZWI info from event types
misc/habanalabs: adjust Kconfig to fix build errors
...
Pull EFI updates from Ingo Molnar:
"The main EFI changes in this cycle were:
- Use 32-bit alignment for efi_guid_t
- Allow the SetVirtualAddressMap() call to be omitted
- Implement earlycon=efifb based on existing earlyprintk code
- Various minor fixes and code cleanups from Sai, Ard and me"
* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
efi: Fix build error due to enum collision between efi.h and ima.h
efi/x86: Convert x86 EFI earlyprintk into generic earlycon implementation
x86: Make ARCH_USE_MEMREMAP_PROT a generic Kconfig symbol
efi/arm/arm64: Allow SetVirtualAddressMap() to be omitted
efi: Replace GPL license boilerplate with SPDX headers
efi/fdt: Apply more cleanups
efi: Use 32-bit alignment for efi_guid_t
efi/memattr: Don't bail on zero VA if it equals the region's PA
x86/efi: Mark can_free_region() as an __init function
All new 32-bit architectures should have 64-bit userspace off_t type, but
existing architectures has 32-bit ones.
To enforce the rule, new config option is added to arch/Kconfig that defaults
ARCH_32BIT_OFF_T to be disabled for new 32-bit architectures. All existing
32-bit architectures enable it explicitly.
New option affects force_o_largefile() behaviour. Namely, if userspace
off_t is 64-bits long, we have no reason to reject user to open big files.
Note that even if architectures has only 64-bit off_t in the kernel
(arc, c6x, h8300, hexagon, nios2, openrisc, and unicore32),
a libc may use 32-bit off_t, and therefore want to limit the file size
to 4GB unless specified differently in the open flags.
Signed-off-by: Yury Norov <ynorov@caviumnetworks.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Yury Norov <ynorov@marvell.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
This is the big flip, where all 32-bit architectures set COMPAT_32BIT_TIME
and use the _time32 system calls from the former compat layer instead
of the system calls that take __kernel_timespec and similar arguments.
The temporary redirects for __kernel_timespec, __kernel_itimerspec
and __kernel_timex can get removed with this.
It would be easy to split this commit by architecture, but with the new
generated system call tables, it's easy enough to do it all at once,
which makes it a little easier to check that the changes are the same
in each table.
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Turn ARCH_USE_MEMREMAP_PROT into a generic Kconfig symbol, and fix the
dependency expression to reflect that AMD_MEM_ENCRYPT depends on it,
instead of the other way around. This will permit ARCH_USE_MEMREMAP_PROT
to be selected by other architectures.
Note that the encryption related early memremap routines in
arch/x86/mm/ioremap.c cannot be built for 32-bit x86 without triggering
the following warning:
arch/x86//mm/ioremap.c: In function 'early_memremap_encrypted':
>> arch/x86/include/asm/pgtable_types.h:193:27: warning: conversion from
'long long unsigned int' to 'long unsigned int' changes
value from '9223372036854776163' to '355' [-Woverflow]
#define __PAGE_KERNEL_ENC (__PAGE_KERNEL | _PAGE_ENC)
^~~~~~~~~~~~~~~~~~~~~~~~~~~
arch/x86//mm/ioremap.c:713:46: note: in expansion of macro '__PAGE_KERNEL_ENC'
return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
which essentially means they are 64-bit only anyway. However, we cannot
make them dependent on CONFIG_ARCH_HAS_MEM_ENCRYPT, since that is always
defined, even for i386 (and changing that results in a slew of build errors)
So instead, build those routines only if CONFIG_AMD_MEM_ENCRYPT is
defined.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Alexander Graf <agraf@suse.de>
Cc: Bjorn Andersson <bjorn.andersson@linaro.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Jeffrey Hugo <jhugo@codeaurora.org>
Cc: Lee Jones <lee.jones@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Jones <pjones@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20190202094119.13230-9-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Atari RTC NVRAM uses a checksum so implement the remaining arch_nvram_ops
methods for the set_checksum and initialize ioctls. Enable
CONFIG_HAVE_ARCH_NVRAM_OPS.
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Finn Thain <fthain@telegraphics.com.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Currently, CONFIG_JUMP_LABEL just means "I _want_ to use jump label".
The jump label is controlled by HAVE_JUMP_LABEL, which is defined
like this:
#if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL)
# define HAVE_JUMP_LABEL
#endif
We can improve this by testing 'asm goto' support in Kconfig, then
make JUMP_LABEL depend on CC_HAS_ASM_GOTO.
Ugly #ifdef HAVE_JUMP_LABEL will go away, and CONFIG_JUMP_LABEL will
match to the real kernel capability.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Android needs to mremap large regions of memory during memory management
related operations. The mremap system call can be really slow if THP is
not enabled. The bottleneck is move_page_tables, which is copying each
pte at a time, and can be really slow across a large map. Turning on
THP may not be a viable option, and is not for us. This patch speeds up
the performance for non-THP system by copying at the PMD level when
possible.
The speedup is an order of magnitude on x86 (~20x). On a 1GB mremap,
the mremap completion times drops from 3.4-3.6 milliseconds to 144-160
microseconds.
Before:
Total mremap time for 1GB data: 3521942 nanoseconds.
Total mremap time for 1GB data: 3449229 nanoseconds.
Total mremap time for 1GB data: 3488230 nanoseconds.
After:
Total mremap time for 1GB data: 150279 nanoseconds.
Total mremap time for 1GB data: 144665 nanoseconds.
Total mremap time for 1GB data: 158708 nanoseconds.
If THP is enabled the optimization is mostly skipped except in certain
situations.
[joel@joelfernandes.org: fix 'move_normal_pmd' unused function warning]
Link: http://lkml.kernel.org/r/20181108224457.GB209347@google.com
Link: http://lkml.kernel.org/r/20181108181201.88826-3-joelaf@google.com
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Julia Lawall <Julia.Lawall@lip6.fr>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Introduces the stackleak gcc plugin ported from grsecurity by Alexander
Popov, with x86 and arm64 support.
-----BEGIN PGP SIGNATURE-----
Comment: Kees Cook <kees@outflux.net>
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAlvQvn4WHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJpSfD/sErFreuPT1beSw994Lr9Zx4k9v
ERsuXxWBENaJOJXbOOHMfVEcEeG/1uhPSp7hlw/dpHfh0anATTrcYqm8RNKbfK+k
o06+JK14OJfpm5Ghq/7OizhdNLCMT8wMU3XZtWfy65VSJGjEFx8Y48vMeQtpWtUK
ylSzi9JV6j2iUBF9oibtiT53+yqsqAtX80X1G7HRCgv9kxuKMhZr+Q5oGV6+ViyQ
Azj8mNn06iRnhHKd17WxDJr0GjSibzz4weS/9XgP3t3EcNWJo1EgBlD2KV3tOfP5
nzmqfqTqrcjxs/tyjdh6vVCSlYucNtyCQGn63qyShQYSg6mZwclR2fY8YSTw6PWw
GfYWFOWru9z+qyQmwFkQ9bSQS2R+JIT0oBCj9VmtF9XmPCy7K2neJsQclzSPBiCW
wPgXVQS4IA4684O5CmDOVMwmDpGvhdBNUR6cqSzGLxQOHY1csyXubMNUsqU3g9xk
Ob4pEy/xrrIw4WpwHcLHSEW5gV1/OLhsT0fGRJJiC947L3cN5s9EZp7FLbIS0zlk
qzaXUcLmn6AgcfkYwg5cI3RMLaN2V0eDCMVTWZJ1wbrmUV9chAaOnTPTjNqLOTht
v3b1TTxXG4iCpMmOFf59F8pqgAwbBDlfyNSbySZ/Pq5QH69udz3Z9pIUlYQnSJHk
u6q++2ReDpJXF81rBw==
=Ks6B
-----END PGP SIGNATURE-----
Merge tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull stackleak gcc plugin from Kees Cook:
"Please pull this new GCC plugin, stackleak, for v4.20-rc1. This plugin
was ported from grsecurity by Alexander Popov. It provides efficient
stack content poisoning at syscall exit. This creates a defense
against at least two classes of flaws:
- Uninitialized stack usage. (We continue to work on improving the
compiler to do this in other ways: e.g. unconditional zero init was
proposed to GCC and Clang, and more plugin work has started too).
- Stack content exposure. By greatly reducing the lifetime of valid
stack contents, exposures via either direct read bugs or unknown
cache side-channels become much more difficult to exploit. This
complements the existing buddy and heap poisoning options, but
provides the coverage for stacks.
The x86 hooks are included in this series (which have been reviewed by
Ingo, Dave Hansen, and Thomas Gleixner). The arm64 hooks have already
been merged through the arm64 tree (written by Laura Abbott and
reviewed by Mark Rutland and Will Deacon).
With VLAs having been removed this release, there is no need for
alloca() protection, so it has been removed from the plugin"
* tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
arm64: Drop unneeded stackleak_check_alloca()
stackleak: Allow runtime disabling of kernel stack erasing
doc: self-protection: Add information about STACKLEAK feature
fs/proc: Show STACKLEAK metrics in the /proc file system
lkdtm: Add a test for STACKLEAK
gcc-plugins: Add STACKLEAK plugin for tracking the kernel stack
x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscalls
Back in January I posted patches to create function based events. These were
the events that you suggested I make to allow developers to easily create
events in code where no trace event exists. After posting those changes for
review, it was suggested that we implement this instead with kprobes.
The problem with kprobes is that the interface is too complex and needs to
be simplified. Masami Hiramatsu posted patches in March and I've been
playing with them a bit. There's been a bit of clean up in the kprobe code
that was inspired by the function based event patches, and a couple of
enhancements to the kprobe event interface.
- If the arch supports it (we added support for x86), you can place a
kprobe event at the start of a function and use $arg1, $arg2, etc
to reference the arguments of a function. (Before you needed to know
what register or where on the stack the argument was).
- The second is a way to see array of events. For example, if you reference
a mac address, you can add:
echo 'p:mac ip_rcv perm_addr=+574($arg2):x8[6]' > kprobe_events
And this will produce:
mac: (ip_rcv+0x0/0x140) perm_addr={0x52,0x54,0x0,0xc0,0x76,0xec}
Other changes include
- Exporting trace_dump_stack to modules
- Have the stack tracer trace the entire stack (stop trying to remove
tracing itself, as we keep removing too much).
- Added support for SDT in uprobes
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCW9hdjxQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qmtbAP9GS/o2WSvsYLSIw4+mF94eCL06lUxp
rRrktkEofm/PagEAl2JNmvHrAJN+LIrajqXTbwlZ7Ckk1rZhCW41Am7qnQs=
=sTUM
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.20' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"The biggest change here is the updates to kprobes
Back in January I posted patches to create function based events.
These were the events that you suggested I make to allow developers to
easily create events in code where no trace event exists. After
posting those changes for review, it was suggested that we implement
this instead with kprobes.
The problem with kprobes is that the interface is too complex and
needs to be simplified. Masami Hiramatsu posted patches in March and
I've been playing with them a bit. There's been a bit of clean up in
the kprobe code that was inspired by the function based event patches,
and a couple of enhancements to the kprobe event interface.
- If the arch supports it (we added support for x86), you can place a
kprobe event at the start of a function and use $arg1, $arg2, etc
to reference the arguments of a function. (Before you needed to
know what register or where on the stack the argument was).
- The second is a way to see array of events. For example, if you
reference a mac address, you can add:
echo 'p:mac ip_rcv perm_addr=+574($arg2):x8[6]' > kprobe_events
And this will produce:
mac: (ip_rcv+0x0/0x140) perm_addr={0x52,0x54,0x0,0xc0,0x76,0xec}
Other changes include
- Exporting trace_dump_stack to modules
- Have the stack tracer trace the entire stack (stop trying to remove
tracing itself, as we keep removing too much).
- Added support for SDT in uprobes"
[ SDT - "Statically Defined Tracing" are userspace markers for tracing.
Let's not use random TLA's in explanations unless they are fairly
well-established as generic (at least for kernel people) - Linus ]
* tag 'trace-v4.20' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (24 commits)
tracing: Have stack tracer trace full stack
tracing: Export trace_dump_stack to modules
tracing: probeevent: Fix uninitialized used of offset in parse args
tracing/kprobes: Allow kprobe-events to record module symbol
tracing/kprobes: Check the probe on unloaded module correctly
tracing/uprobes: Fix to return -EFAULT if copy_from_user failed
tracing: probeevent: Add $argN for accessing function args
x86: ptrace: Add function argument access API
tracing: probeevent: Add array type support
tracing: probeevent: Add symbol type
tracing: probeevent: Unify fetch_insn processing common part
tracing: probeevent: Append traceprobe_ for exported function
tracing: probeevent: Return consumed bytes of dynamic area
tracing: probeevent: Unify fetch type tables
tracing: probeevent: Introduce new argument fetching code
tracing: probeevent: Remove NOKPROBE_SYMBOL from print functions
tracing: probeevent: Cleanup argument field definition
tracing: probeevent: Cleanup print argument functions
trace_uprobe: support reference counter in fd-based uprobe
perf probe: Support SDT markers having reference counter (semaphore)
...
Add regs_get_argument() which returns N th argument of the
function call.
Note that this chooses most probably assignment, in some case
it can be incorrect (e.g. passing data structure or floating
point etc.)
This is expected to be called from kprobes or ftrace with regs
where the top of stack is the return address.
Link: http://lkml.kernel.org/r/152465885737.26224.2822487520472783854.stgit@devbox
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
To reduce the size taken up by absolute references in jump label
entries themselves and the associated relocation records in the
.init segment, add support for emitting them as relative references
instead.
Note that this requires some extra care in the sorting routine, given
that the offsets change when entries are moved around in the jump_entry
table.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-s390@vger.kernel.org
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Jessica Yu <jeyu@kernel.org>
Link: https://lkml.kernel.org/r/20180919065144.25010-3-ard.biesheuvel@linaro.org
The STACKLEAK feature (initially developed by PaX Team) has the following
benefits:
1. Reduces the information that can be revealed through kernel stack leak
bugs. The idea of erasing the thread stack at the end of syscalls is
similar to CONFIG_PAGE_POISONING and memzero_explicit() in kernel
crypto, which all comply with FDP_RIP.2 (Full Residual Information
Protection) of the Common Criteria standard.
2. Blocks some uninitialized stack variable attacks (e.g. CVE-2017-17712,
CVE-2010-2963). That kind of bugs should be killed by improving C
compilers in future, which might take a long time.
This commit introduces the code filling the used part of the kernel
stack with a poison value before returning to userspace. Full
STACKLEAK feature also contains the gcc plugin which comes in a
separate commit.
The STACKLEAK feature is ported from grsecurity/PaX. More information at:
https://grsecurity.net/https://pax.grsecurity.net/
This code is modified from Brad Spengler/PaX Team's code in the last
public patch of grsecurity/PaX based on our understanding of the code.
Changes or omissions from the original code are ours and don't reflect
the original grsecurity/PaX code.
Performance impact:
Hardware: Intel Core i7-4770, 16 GB RAM
Test #1: building the Linux kernel on a single core
0.91% slowdown
Test #2: hackbench -s 4096 -l 2000 -g 15 -f 25 -P
4.2% slowdown
So the STACKLEAK description in Kconfig includes: "The tradeoff is the
performance impact: on a single CPU system kernel compilation sees a 1%
slowdown, other systems and workloads may vary and you are advised to
test this feature on your expected workload before deploying it".
Signed-off-by: Alexander Popov <alex.popov@linux.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Merge fixes for missing TLB shootdowns.
This fixes a couple of cases that involved us possibly freeing page
table structures before the required TLB shootdown had been done.
There are a few cleanup patches to make the code easier to follow, and
to avoid some of the more problematic cases entirely when not necessary.
To make this easier for backports, it undoes the recent lazy TLB
patches, because the cleanups and fixes are more important, and Rik is
ok with re-doing them later when things have calmed down.
The missing TLB flush was only delayed, and the wrong ordering only
happened under memory pressure (and in theory under a couple of other
fairly theoretical situations), so this may have been all very unlikely
to have hit people in practice.
But getting the TLB shootdown wrong is _so_ hard to debug and see that I
consider this a crticial fix.
Many thanks to Jann Horn for having debugged this.
* tlb-fixes:
x86/mm: Only use tlb_remove_table() for paravirt
mm: mmu_notifier fix for tlb_end_vma
mm/tlb, x86/mm: Support invalidating TLB caches for RCU_TABLE_FREE
mm/tlb: Remove tlb_remove_table() non-concurrent condition
mm: move tlb_table_flush to tlb_flush_mmu_free
x86/mm/tlb: Revert the recent lazy TLB patches
- Fix microMIPS build failures by adding a .insn directive to the
barrier_before_unreachable() asm statement in order to convince the
toolchain that the asm statement is a valid branch target rather
than a bogus attempt to switch ISA.
- Clean up our declarations of TLB functions that we overwrite with
generated code in order to prevent the compiler making assumptions
about alignment that cause microMIPS kernels built with GCC 7 &
above to die early during boot.
- Fix up a regression for MIPS32 kernels which slipped into the main
MIPS pull for 4.19, causing CONFIG_32BIT=y kernels to contain
inappropriate MIPS64 instructions.
- Extend our existing workaround for MIPSr6 builds that end up using
the __multi3 intrinsic to GCC 7 & below, rather than just GCC 7.
-----BEGIN PGP SIGNATURE-----
iIsEABYIADMWIQRgLjeFAZEXQzy86/s+p5+stXUA3QUCW37wVhUccGF1bC5idXJ0
b25AbWlwcy5jb20ACgkQPqefrLV1AN18iAD/ZO02rgkTgMG7NvZMtbOwflxe1aVz
YpAQzcOSz+CBxgUA/30ZwZm37hgMi3YWOJMSfmbuWKsYi+/vkcjwlfai7UUF
=oJFy
-----END PGP SIGNATURE-----
Merge tag 'mips_4.19_2' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
Pull MIPS fixes from Paul Burton:
- Fix microMIPS build failures by adding a .insn directive to the
barrier_before_unreachable() asm statement in order to convince the
toolchain that the asm statement is a valid branch target rather
than a bogus attempt to switch ISA.
- Clean up our declarations of TLB functions that we overwrite with
generated code in order to prevent the compiler making assumptions
about alignment that cause microMIPS kernels built with GCC 7 &
above to die early during boot.
- Fix up a regression for MIPS32 kernels which slipped into the main
MIPS pull for 4.19, causing CONFIG_32BIT=y kernels to contain
inappropriate MIPS64 instructions.
- Extend our existing workaround for MIPSr6 builds that end up using
the __multi3 intrinsic to GCC 7 & below, rather than just GCC 7.
* tag 'mips_4.19_2' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux:
MIPS: lib: Provide MIPS64r6 __multi3() for GCC < 7
MIPS: Workaround GCC __builtin_unreachable reordering bug
compiler.h: Allow arch-specific asm/compiler.h
MIPS: Avoid move psuedo-instruction whilst using MIPS_ISA_LEVEL
MIPS: Consistently declare TLB functions
MIPS: Export tlbmiss_handler_setup_pgd near its definition
Jann reported that x86 was missing required TLB invalidates when he
hit the !*batch slow path in tlb_remove_table().
This is indeed the case; RCU_TABLE_FREE does not provide TLB (cache)
invalidates, the PowerPC-hash where this code originated and the
Sparc-hash where this was subsequently used did not need that. ARM
which later used this put an explicit TLB invalidate in their
__p*_free_tlb() functions, and PowerPC-radix followed that example.
But when we hooked up x86 we failed to consider this. Fix this by
(optionally) hooking tlb_remove_table() into the TLB invalidate code.
NOTE: s390 was also needing something like this and might now
be able to use the generic code again.
[ Modified to be on top of Nick's cleanups, which simplified this patch
now that tlb_flush_mmu_tlbonly() really only flushes the TLB - Linus ]
Fixes: 9e52fc2b50 ("x86/mm: Enable RCU based page table freeing (CONFIG_HAVE_RCU_TABLE_FREE=y)")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "add support for relative references in special sections", v10.
This adds support for emitting special sections such as initcall arrays,
PCI fixups and tracepoints as relative references rather than absolute
references. This reduces the size by 50% on 64-bit architectures, but
more importantly, it removes the need for carrying relocation metadata for
these sections in relocatable kernels (e.g., for KASLR) that needs to be
fixed up at boot time. On arm64, this reduces the vmlinux footprint of
such a reference by 8x (8 byte absolute reference + 24 byte RELA entry vs
4 byte relative reference)
Patch #3 was sent out before as a single patch. This series supersedes
the previous submission. This version makes relative ksymtab entries
dependent on the new Kconfig symbol HAVE_ARCH_PREL32_RELOCATIONS rather
than trying to infer from kbuild test robot replies for which
architectures it should be blacklisted.
Patch #1 introduces the new Kconfig symbol HAVE_ARCH_PREL32_RELOCATIONS,
and sets it for the main architectures that are expected to benefit the
most from this feature, i.e., 64-bit architectures or ones that use
runtime relocations.
Patch #2 add support for #define'ing __DISABLE_EXPORTS to get rid of
ksymtab/kcrctab sections in decompressor and EFI stub objects when
rebuilding existing C files to run in a different context.
Patches #4 - #6 implement relative references for initcalls, PCI fixups
and tracepoints, respectively, all of which produce sections with order
~1000 entries on an arm64 defconfig kernel with tracing enabled. This
means we save about 28 KB of vmlinux space for each of these patches.
[From the v7 series blurb, which included the jump_label patches as well]:
For the arm64 kernel, all patches combined reduce the memory footprint
of vmlinux by about 1.3 MB (using a config copied from Ubuntu that has
KASLR enabled), of which ~1 MB is the size reduction of the RELA section
in .init, and the remaining 300 KB is reduction of .text/.data.
This patch (of 6):
Before updating certain subsystems to use place relative 32-bit
relocations in special sections, to save space and reduce the number of
absolute relocations that need to be processed at runtime by relocatable
kernels, introduce the Kconfig symbol and define it for some architectures
that should be able to support and benefit from it.
Link: http://lkml.kernel.org/r/20180704083651.24360-2-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: James Morris <jmorris@namei.org>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>,
Cc: James Morris <james.morris@microsoft.com>
Cc: Jessica Yu <jeyu@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have a need to override the definition of
barrier_before_unreachable() for MIPS, which means we either need to add
architecture-specific code into linux/compiler-gcc.h or we need to allow
the architecture to provide a header that can define the macro before
the generic definition. The latter seems like the better approach.
A straightforward approach to the per-arch header is to make use of
asm-generic to provide a default empty header & adjust architectures
which don't need anything specific to make use of that by adding the
header to generic-y. Unfortunately this doesn't work so well due to
commit 28128c61e0 ("kconfig.h: Include compiler types to avoid missed
struct attributes") which caused linux/compiler_types.h to be included
in the compilation of every C file via the -include linux/kconfig.h flag
in c_flags.
Because the -include flag is present for all C files we compile, we need
the architecture-provided header to be present before any C files are
compiled. If any C files can be compiled prior to the asm-generic header
wrappers being generated then we hit a build failure due to missing
header. Such cases do exist - one pointed out by the kbuild test robot
is the compilation of arch/ia64/kernel/nr-irqs.c, which occurs as part
of the archprepare target [1].
This leaves us with a few options:
1) Use generic-y & fix any build failures we find by enforcing
ordering such that the asm-generic target occurs before any C
compilation, such that linux/compiler_types.h can always include
the generated asm-generic wrapper which in turn includes the empty
asm-generic header. This would rely on us finding all the
problematic cases - I don't know for sure that the ia64 issue is
the only one.
2) Add an actual empty header to each architecture, so that we don't
need the generated asm-generic wrapper. This seems messy.
3) Give up & add #ifdef CONFIG_MIPS or similar to
linux/compiler_types.h. This seems messy too.
4) Include the arch header only when it's actually needed, removing
the need for the asm-generic wrapper for all other architectures.
This patch allows us to use approach 4, by including an asm/compiler.h
header from linux/compiler_types.h after the inclusion of the
compiler-specific linux/compiler-*.h header(s). We do this
conditionally, only when CONFIG_HAVE_ARCH_COMPILER_H is selected, in
order to avoid the need for asm-generic wrappers & the associated build
ordering issue described above. The asm/compiler.h header is included
after the generic linux/compiler-*.h header(s) for consistency with the
way linux/compiler-intel.h & linux/compiler-clang.h are included after
the linux/compiler-gcc.h header that they override.
[1] https://lists.01.org/pipermail/kbuild-all/2018-August/051175.html
Signed-off-by: Paul Burton <paul.burton@mips.com>
Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Patchwork: https://patchwork.linux-mips.org/patch/20269/
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: James Hogan <jhogan@kernel.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-arch@vger.kernel.org
Cc: linux-kbuild@vger.kernel.org
Cc: linux-mips@linux-mips.org
Move the source statements of arch-independent Kconfig files instead of
duplicating the includes in every arch/$(SRCARCH)/Kconfig.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJbdFsfAAoJED2LAQed4NsGxHsP/1tmA57OOOj8oGxO2OXhXVbr
Q0MZqCoV4bqMvK/hgCQdl9f+tp0m+j12x4xDLdVf4OqnTXMbqvPDu3uQVKvaj/k1
gHhsFA1tFgSbuJ8InltUsrPEQqbceeJsj50xHVAKijqI6LYeRPPSU7aE9obn+OzH
n2nd5sLKvMI/dqdJvW6i5KPydqTH3r3iA7D+ne/XQj0s0EMXvXUPmDT1+ijTnM4a
yfm6W5p7L/c3Ugf1Pz5PfnPl4BxBwZMfW5ie/UO8j5C6Rl0iPaOGuuHurocaaJb3
MefR/7NEAR3G8MhJyL2+70jbbwhjpqR2b5ooz1vpuulPHxjeU45BY60XIBWq1afR
ewsc12MMCYB695ieYWoHdaWgxD/jhffyRuajfpkXKIZEMgDxS03sMhdULXENVMx1
M0ZQ01g/NLWt9ti9DY3eTKB3ymOhnBa1sa77nGGUHkITq4DQKwPX1J9FP/HT6RNt
uOvzeH5kGzc7tqOlZAO0kHbwhQG1uqGcd78IYd4lgf/XfkSgDERTWjnJmnQbwr9m
3PFuST2u8eyO+8Lh1MK76TXOEkXsHMdFugPmb6SlgtMEPKGVLDPlsj52o/LFtgzl
eygfMiBFr2+ttkZ6IpNcpmQ4IztmDpz6XoMk3PqDAfUTUSYpCnq1gAEuff/eisCM
Odva1ZZaeQ7WpxhsP8rr
=gsQJ
-----END PGP SIGNATURE-----
Merge tag 'kconfig-v4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kconfig consolidation from Masahiro Yamada:
"Consolidation of Kconfig files by Christoph Hellwig.
Move the source statements of arch-independent Kconfig files instead
of duplicating the includes in every arch/$(SRCARCH)/Kconfig"
* tag 'kconfig-v4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild:
kconfig: add a Memory Management options" menu
kconfig: move the "Executable file formats" menu to fs/Kconfig.binfmt
kconfig: use a menu in arch/Kconfig to reduce clutter
kconfig: include kernel/Kconfig.preempt from init/Kconfig
Kconfig: consolidate the "Kernel hacking" menu
kconfig: include common Kconfig files from top-level Kconfig
kconfig: remove duplicate SWAP symbol defintions
um: create a proper drivers Kconfig
um: cleanup Kconfig files
um: stop abusing KBUILD_KCONFIG
Put everything in arch/Kconfig into a General options menu
so that they don't clutter up the main/major/primary list of
menu options.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Almost all architectures include it. Add a ARCH_NO_PREEMPT symbol to
disable preempt support for alpha, hexagon, non-coldfire m68k and
user mode Linux.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Instead of duplicating the source statements in every architecture just
do it once in the toplevel Kconfig file.
Note that with this the inclusion of arch/$(SRCARCH/Kconfig moves out of
the top-level Kconfig into arch/Kconfig so that don't violate ordering
constraits while keeping a sensible menu structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Provide a command line and a sysfs knob to control SMT.
The command line options are:
'nosmt': Enumerate secondary threads, but do not online them
'nosmt=force': Ignore secondary threads completely during enumeration
via MP table and ACPI/MADT.
The sysfs control file has the following states (read/write):
'on': SMT is enabled. Secondary threads can be freely onlined
'off': SMT is disabled. Secondary threads, even if enumerated
cannot be onlined
'forceoff': SMT is permanentely disabled. Writes to the control
file are rejected.
'notsupported': SMT is not supported by the CPU
The command line option 'nosmt' sets the sysfs control to 'off'. This
can be changed to 'on' to reenable SMT during runtime.
The command line option 'nosmt=force' sets the sysfs control to
'forceoff'. This cannot be changed during runtime.
When SMT is 'on' and the control file is changed to 'off' then all online
secondary threads are offlined and attempts to online a secondary thread
later on are rejected.
When SMT is 'off' and the control file is changed to 'on' then secondary
threads can be onlined again. The 'off' -> 'on' transition does not
automatically online the secondary threads.
When the control file is set to 'forceoff', the behaviour is the same as
setting it to 'off', but the operation is irreversible and later writes to
the control file are rejected.
When the control status is 'notsupported' then writes to the control file
are rejected.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
As we move stuff around, some doc references are broken. Fix some of
them via this script:
./scripts/documentation-file-ref-check --fix
Manually checked if the produced result is valid, removing a few
false-positives.
Acked-by: Takashi Iwai <tiwai@suse.de>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Stephen Boyd <sboyd@kernel.org>
Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com>
Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Reviewed-by: Coly Li <colyli@suse.de>
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Jonathan Corbet <corbet@lwn.net>
HAVE_CC_STACKPROTECTOR should be selected by architectures with stack
canary implementation. It is not about the compiler support.
For the consistency with commit 050e9baa9d ("Kbuild: rename
CC_STACKPROTECTOR[_STRONG] config variables"), remove 'CC_' from the
config symbol.
I moved the 'select' lines to keep the alphabetical sorting.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The changes to automatically test for working stack protector compiler
support in the Kconfig files removed the special STACKPROTECTOR_AUTO
option that picked the strongest stack protector that the compiler
supported.
That was all a nice cleanup - it makes no sense to have the AUTO case
now that the Kconfig phase can just determine the compiler support
directly.
HOWEVER.
It also meant that doing "make oldconfig" would now _disable_ the strong
stackprotector if you had AUTO enabled, because in a legacy config file,
the sane stack protector configuration would look like
CONFIG_HAVE_CC_STACKPROTECTOR=y
# CONFIG_CC_STACKPROTECTOR_NONE is not set
# CONFIG_CC_STACKPROTECTOR_REGULAR is not set
# CONFIG_CC_STACKPROTECTOR_STRONG is not set
CONFIG_CC_STACKPROTECTOR_AUTO=y
and when you ran this through "make oldconfig" with the Kbuild changes,
it would ask you about the regular CONFIG_CC_STACKPROTECTOR (that had
been renamed from CONFIG_CC_STACKPROTECTOR_REGULAR to just
CONFIG_CC_STACKPROTECTOR), but it would think that the STRONG version
used to be disabled (because it was really enabled by AUTO), and would
disable it in the new config, resulting in:
CONFIG_HAVE_CC_STACKPROTECTOR=y
CONFIG_CC_HAS_STACKPROTECTOR_NONE=y
CONFIG_CC_STACKPROTECTOR=y
# CONFIG_CC_STACKPROTECTOR_STRONG is not set
CONFIG_CC_HAS_SANE_STACKPROTECTOR=y
That's dangerously subtle - people could suddenly find themselves with
the weaker stack protector setup without even realizing.
The solution here is to just rename not just the old RECULAR stack
protector option, but also the strong one. This does that by just
removing the CC_ prefix entirely for the user choices, because it really
is not about the compiler support (the compiler support now instead
automatially impacts _visibility_ of the options to users).
This results in "make oldconfig" actually asking the user for their
choice, so that we don't have any silent subtle security model changes.
The end result would generally look like this:
CONFIG_HAVE_CC_STACKPROTECTOR=y
CONFIG_CC_HAS_STACKPROTECTOR_NONE=y
CONFIG_STACKPROTECTOR=y
CONFIG_STACKPROTECTOR_STRONG=y
CONFIG_CC_HAS_SANE_STACKPROTECTOR=y
where the "CC_" versions really are about internal compiler
infrastructure, not the user selections.
Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- fix some bugs introduced by the recent Kconfig syntax extension
- add some symbols about compiler information in Kconfig, such as
CC_IS_GCC, CC_IS_CLANG, GCC_VERSION, etc.
- test compiler capability for the stack protector in Kconfig, and
clean-up Makefile
- test compiler capability for GCC-plugins in Kconfig, and clean-up
Makefile
- allow to enable GCC-plugins for COMPILE_TEST
- test compiler capability for KCOV in Kconfig and correct dependency
- remove auto-detect mode of the GCOV format, which is now more nicely
handled in Kconfig
- test compiler capability for mprofile-kernel on PowerPC, and
clean-up Makefile
- misc cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJbISvEAAoJED2LAQed4NsGEsoQAKBHMqUM9yQo0LdVMnDMCLQI
Xsjyqzr0ySp6YiuF+cobwDs49sggt7/8EX+OnrP/sLlAhY0QrNGI1ulhwpFx1Ewa
xFxz5kF/1jDwC+AjngXcK5Dr9nGSSMfT3wQhLGKjMkKSypbz2QyTrfMOfHGYSzU1
gD8RMWYXxKoJFmIaqmpLz7PDfWKPzhSOZo7BflPjAGXdlpfSV9cQvu+TkJ12qvSp
KZ2uHUgLz95NnltSuGtN71X8so7w4eTYAvkJ5bOeOpYsZSVYRq4Exvwe0Y0dbwie
WDpcRC5KrQOlIFxRUUSGn5cDsaW9yYJJAwMG6Dr8qJ66QlgY5GqOKXxXX+ARa7WU
7GkeAZ11n5dArjjdSjfClh8CwDiZNpJmAUbahm+feQfUfq9nbs+0JX6bOG5ZE+nt
3iE0ZoSGDjxD5Pjy4u+NtQM0JCpieuz3JNxqVbAVm0Ua5q8niwSEneixyrNmjkBF
1tV+qsMYus7AFwdGuDRXzBhVY7hd931H34czA3FUZZqwcClFVoJiygI++s62mVXx
w9kYi8Ades/W6dt7c7XGjmqYTDgnTolLaYY5vggpEeLOzc1QPW6iKt9tpREi6Zzm
n+y586YsIo0vjTMfRcfmGZUPG3CJeqL2UDslYmG8PgMQ6/eaAHBDXECLrAkGGPlG
aIPZcMam5BQxhmSJc19c
=VABv
-----END PGP SIGNATURE-----
Merge tag 'kbuild-v4.18-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull more Kbuild updates from Masahiro Yamada:
- fix some bugs introduced by the recent Kconfig syntax extension
- add some symbols about compiler information in Kconfig, such as
CC_IS_GCC, CC_IS_CLANG, GCC_VERSION, etc.
- test compiler capability for the stack protector in Kconfig, and
clean-up Makefile
- test compiler capability for GCC-plugins in Kconfig, and clean-up
Makefile
- allow to enable GCC-plugins for COMPILE_TEST
- test compiler capability for KCOV in Kconfig and correct dependency
- remove auto-detect mode of the GCOV format, which is now more nicely
handled in Kconfig
- test compiler capability for mprofile-kernel on PowerPC, and clean-up
Makefile
- misc cleanups
* tag 'kbuild-v4.18-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild:
linux/linkage.h: replace VMLINUX_SYMBOL_STR() with __stringify()
kconfig: fix localmodconfig
sh: remove no-op macro VMLINUX_SYMBOL()
powerpc/kbuild: move -mprofile-kernel check to Kconfig
Documentation: kconfig: add recommended way to describe compiler support
gcc-plugins: disable GCC_PLUGIN_STRUCTLEAK_BYREF_ALL for COMPILE_TEST
gcc-plugins: allow to enable GCC_PLUGINS for COMPILE_TEST
gcc-plugins: test plugin support in Kconfig and clean up Makefile
gcc-plugins: move GCC version check for PowerPC to Kconfig
kcov: test compiler capability in Kconfig and correct dependency
gcov: remove CONFIG_GCOV_FORMAT_AUTODETECT
arm64: move GCC version check for ARCH_SUPPORTS_INT128 to Kconfig
kconfig: add CC_IS_CLANG and CLANG_VERSION
kconfig: add CC_IS_GCC and GCC_VERSION
stack-protector: test compiler capability in Kconfig and drop AUTO mode
kbuild: fix endless syncconfig in case arch Makefile sets CROSS_COMPILE
We have enabled GCC_PLUGINS for COMPILE_TEST, but allmodconfig now
produces new warnings.
CC [M] drivers/net/wireless/broadcom/brcm80211/brcmsmac/phy/phy_n.o
drivers/net/wireless/broadcom/brcm80211/brcmsmac/phy/phy_n.c: In function ‘wlc_phy_workarounds_nphy_rev7’:
drivers/net/wireless/broadcom/brcm80211/brcmsmac/phy/phy_n.c:16563:1: warning: the frame size of 3128 bytes is larger than 2048 bytes [-Wframe-larger-than=]
}
^
drivers/net/wireless/broadcom/brcm80211/brcmsmac/phy/phy_n.c: In function ‘wlc_phy_workarounds_nphy_rev3’:
drivers/net/wireless/broadcom/brcm80211/brcmsmac/phy/phy_n.c:16905:1: warning: the frame size of 2800 bytes is larger than 2048 bytes [-Wframe-larger-than=]
}
^
drivers/net/wireless/broadcom/brcm80211/brcmsmac/phy/phy_n.c: In function ‘wlc_phy_cal_txiqlo_nphy’:
drivers/net/wireless/broadcom/brcm80211/brcmsmac/phy/phy_n.c:26033:1: warning: the frame size of 2488 bytes is larger than 2048 bytes [-Wframe-larger-than=]
}
^
It looks like GCC_PLUGIN_STRUCTLEAK_BYREF_ALL is causing this.
Add "depends on !COMPILE_TEST" to not dirturb the compile test.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Now that the compiler's plugin support is checked in Kconfig,
all{yes,mod}config will not be bothered.
Remove 'depends on !COMPILE_TEST' for GCC_PLUGINS.
'depends on !COMPILE_TEST' for the following three are still kept:
GCC_PLUGIN_CYC_COMPLEXITY
GCC_PLUGIN_STRUCTLEAK_VERBOSE
GCC_PLUGIN_RANDSTRUCT_PERFORMANCE
Kees suggested to do so because the first two are too noisy, and the
last one would reduce the compile test coverage. I commented the
reasons in arch/Kconfig.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Kees Cook <keescook@chromium.org>
Run scripts/gcc-plugin.sh from Kconfig so that users can enable
GCC_PLUGINS only when the compiler supports building plugins.
Kconfig defines a new symbol, PLUGIN_HOSTCC. This will contain
the compiler (g++ or gcc) used for building plugins, or empty
if the plugin can not be supported at all.
This allows us to remove all ugly testing in Makefile.gcc-plugins.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Kees Cook <keescook@chromium.org>
Pull restartable sequence support from Thomas Gleixner:
"The restartable sequences syscall (finally):
After a lot of back and forth discussion and massive delays caused by
the speculative distraction of maintainers, the core set of
restartable sequences has finally reached a consensus.
It comes with the basic non disputed core implementation along with
support for arm, powerpc and x86 and a full set of selftests
It was exposed to linux-next earlier this week, so it does not fully
comply with the merge window requirements, but there is really no
point to drag it out for yet another cycle"
* 'core-rseq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
rseq/selftests: Provide Makefile, scripts, gitignore
rseq/selftests: Provide parametrized tests
rseq/selftests: Provide basic percpu ops test
rseq/selftests: Provide basic test
rseq/selftests: Provide rseq library
selftests/lib.mk: Introduce OVERRIDE_TARGETS
powerpc: Wire up restartable sequences system call
powerpc: Add syscall detection for restartable sequences
powerpc: Add support for restartable sequences
x86: Wire up restartable sequence system call
x86: Add support for restartable sequences
arm: Wire up restartable sequences system call
arm: Add syscall detection for restartable sequences
arm: Add restartable sequences support
rseq: Introduce restartable sequences system call
uapi/headers: Provide types_32_64.h
Move the test for -fstack-protector(-strong) option to Kconfig.
If the compiler does not support the option, the corresponding menu
is automatically hidden. If STRONG is not supported, it will fall
back to REGULAR. If REGULAR is not supported, it will be disabled.
This means, AUTO is implicitly handled by the dependency solver of
Kconfig, hence removed.
I also turned the 'choice' into only two boolean symbols. The use of
'choice' is not a good idea here, because all of all{yes,mod,no}config
would choose the first visible value, while we want allnoconfig to
disable as many features as possible.
X86 has additional shell scripts in case the compiler supports those
options, but generates broken code. I added CC_HAS_SANE_STACKPROTECTOR
to test this. I had to add -m32 to gcc-x86_32-has-stack-protector.sh
to make it work correctly.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Kees Cook <keescook@chromium.org>
- improve fixdep to coalesce consecutive slashes in dep-files
- fix some issues of the maintainer string generation in deb-pkg script
- remove unused CONFIG_HAVE_UNDERSCORE_SYMBOL_PREFIX and clean-up
several tools and linker scripts
- clean-up modpost
- allow to enable the dead code/data elimination for PowerPC in EXPERT mode
- improve two coccinelle scripts for better performance
- pass endianness and machine size flags to sparse for all architecture
- misc fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJbF/yvAAoJED2LAQed4NsGEPgP/2qBg7w4raGvQtblqGY1qo6j
3xGKYUKdg3GhIRf1zB9lPwkAmQcyLKzKlet/gYoTUTLKbfRUX8wDzJf/3TV0kpLW
QQ2HM1/jsqrD1HSO21OPJ1rzMSNn1NcOSLWSeOLWUBorHkkvAHlenJcJSOo6szJr
tTgEN78T/9id/artkFqdG+1Q3JhnI5FfH3u0lE20Eqxk5AAxrUKArHYsgRjgOg9o
8DlHDTRsnTiUd4TtmC+VYSZK1BHz1ORlANaRiL69T+BGFZGNCvRSV09QkaD+ObxT
dB4TTJne32Qg6g5qYX0bzLqfRdfJ8tpmJGQkycf3OT1rLgmDbWFaaOEDQTAe3mSw
nT6ZbpQB1OoTgMD2An9ApWfUQRfsMnujm/pRP+BkRdKKkMJvXJCH7PvFw8rjqTt3
PjK6DGbpG6H0G+DePtthMHrz/TU6wi5MFf7kQxl0AtFmpa3R0q67VhdM04BEYNCq
Dbs1YaXWKKi101k14oSQ0kmRasZ9Jz5tvyfZ7wvy1LpGONXxtEbc6JQyBJ6tmf4f
fCAxvHLSb/TQSmJhk9Rch7uPYT9B9hC16dseMrF9Pab8yR346fz70L1UdFE10j3q
iKFbYkueq8uJCJDxNktsgHzbOF6Le5vaWauOafRN26K7p7+CRpVOy0O2bknX3yDa
hKOGzCfQjT8sfdMmtyIH
=2LYT
-----END PGP SIGNATURE-----
Merge tag 'kbuild-v4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild updates from Masahiro Yamada:
- improve fixdep to coalesce consecutive slashes in dep-files
- fix some issues of the maintainer string generation in deb-pkg script
- remove unused CONFIG_HAVE_UNDERSCORE_SYMBOL_PREFIX and clean-up
several tools and linker scripts
- clean-up modpost
- allow to enable the dead code/data elimination for PowerPC in EXPERT
mode
- improve two coccinelle scripts for better performance
- pass endianness and machine size flags to sparse for all architecture
- misc fixes
* tag 'kbuild-v4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (25 commits)
kbuild: add machine size to CHECKFLAGS
kbuild: add endianness flag to CHEKCFLAGS
kbuild: $(CHECK) doesnt need NOSTDINC_FLAGS twice
scripts: Fixed printf format mismatch
scripts/tags.sh: use `find` for $ALLSOURCE_ARCHS generation
coccinelle: deref_null: improve performance
coccinelle: mini_lock: improve performance
powerpc: Allow LD_DEAD_CODE_DATA_ELIMINATION to be selected
kbuild: Allow LD_DEAD_CODE_DATA_ELIMINATION to be selectable if enabled
kbuild: LD_DEAD_CODE_DATA_ELIMINATION no -ffunction-sections/-fdata-sections for module build
kbuild: Fix asm-generic/vmlinux.lds.h for LD_DEAD_CODE_DATA_ELIMINATION
modpost: constify *modname function argument where possible
modpost: remove redundant is_vmlinux() test
modpost: use strstarts() helper more widely
modpost: pass struct elf_info pointer to get_modinfo()
checkpatch: remove VMLINUX_SYMBOL() check
vmlinux.lds.h: remove no-op macro VMLINUX_SYMBOL()
kbuild: remove CONFIG_HAVE_UNDERSCORE_SYMBOL_PREFIX
export.h: remove code for prefixing symbols with underscore
depmod.sh: remove symbol prefix support
...
Expose a new system call allowing each thread to register one userspace
memory area to be used as an ABI between kernel and user-space for two
purposes: user-space restartable sequences and quick access to read the
current CPU number value from user-space.
* Restartable sequences (per-cpu atomics)
Restartables sequences allow user-space to perform update operations on
per-cpu data without requiring heavy-weight atomic operations.
The restartable critical sections (percpu atomics) work has been started
by Paul Turner and Andrew Hunter. It lets the kernel handle restart of
critical sections. [1] [2] The re-implementation proposed here brings a
few simplifications to the ABI which facilitates porting to other
architectures and speeds up the user-space fast path.
Here are benchmarks of various rseq use-cases.
Test hardware:
arm32: ARMv7 Processor rev 4 (v7l) "Cubietruck", 2-core
x86-64: Intel E5-2630 v3@2.40GHz, 16-core, hyperthreading
The following benchmarks were all performed on a single thread.
* Per-CPU statistic counter increment
getcpu+atomic (ns/op) rseq (ns/op) speedup
arm32: 344.0 31.4 11.0
x86-64: 15.3 2.0 7.7
* LTTng-UST: write event 32-bit header, 32-bit payload into tracer
per-cpu buffer
getcpu+atomic (ns/op) rseq (ns/op) speedup
arm32: 2502.0 2250.0 1.1
x86-64: 117.4 98.0 1.2
* liburcu percpu: lock-unlock pair, dereference, read/compare word
getcpu+atomic (ns/op) rseq (ns/op) speedup
arm32: 751.0 128.5 5.8
x86-64: 53.4 28.6 1.9
* jemalloc memory allocator adapted to use rseq
Using rseq with per-cpu memory pools in jemalloc at Facebook (based on
rseq 2016 implementation):
The production workload response-time has 1-2% gain avg. latency, and
the P99 overall latency drops by 2-3%.
* Reading the current CPU number
Speeding up reading the current CPU number on which the caller thread is
running is done by keeping the current CPU number up do date within the
cpu_id field of the memory area registered by the thread. This is done
by making scheduler preemption set the TIF_NOTIFY_RESUME flag on the
current thread. Upon return to user-space, a notify-resume handler
updates the current CPU value within the registered user-space memory
area. User-space can then read the current CPU number directly from
memory.
Keeping the current cpu id in a memory area shared between kernel and
user-space is an improvement over current mechanisms available to read
the current CPU number, which has the following benefits over
alternative approaches:
- 35x speedup on ARM vs system call through glibc
- 20x speedup on x86 compared to calling glibc, which calls vdso
executing a "lsl" instruction,
- 14x speedup on x86 compared to inlined "lsl" instruction,
- Unlike vdso approaches, this cpu_id value can be read from an inline
assembly, which makes it a useful building block for restartable
sequences.
- The approach of reading the cpu id through memory mapping shared
between kernel and user-space is portable (e.g. ARM), which is not the
case for the lsl-based x86 vdso.
On x86, yet another possible approach would be to use the gs segment
selector to point to user-space per-cpu data. This approach performs
similarly to the cpu id cache, but it has two disadvantages: it is
not portable, and it is incompatible with existing applications already
using the gs segment selector for other purposes.
Benchmarking various approaches for reading the current CPU number:
ARMv7 Processor rev 4 (v7l)
Machine model: Cubietruck
- Baseline (empty loop): 8.4 ns
- Read CPU from rseq cpu_id: 16.7 ns
- Read CPU from rseq cpu_id (lazy register): 19.8 ns
- glibc 2.19-0ubuntu6.6 getcpu: 301.8 ns
- getcpu system call: 234.9 ns
x86-64 Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz:
- Baseline (empty loop): 0.8 ns
- Read CPU from rseq cpu_id: 0.8 ns
- Read CPU from rseq cpu_id (lazy register): 0.8 ns
- Read using gs segment selector: 0.8 ns
- "lsl" inline assembly: 13.0 ns
- glibc 2.19-0ubuntu6 getcpu: 16.6 ns
- getcpu system call: 53.9 ns
- Speed (benchmark taken on v8 of patchset)
Running 10 runs of hackbench -l 100000 seems to indicate, contrary to
expectations, that enabling CONFIG_RSEQ slightly accelerates the
scheduler:
Configuration: 2 sockets * 8-core Intel(R) Xeon(R) CPU E5-2630 v3 @
2.40GHz (directly on hardware, hyperthreading disabled in BIOS, energy
saving disabled in BIOS, turboboost disabled in BIOS, cpuidle.off=1
kernel parameter), with a Linux v4.6 defconfig+localyesconfig,
restartable sequences series applied.
* CONFIG_RSEQ=n
avg.: 41.37 s
std.dev.: 0.36 s
* CONFIG_RSEQ=y
avg.: 40.46 s
std.dev.: 0.33 s
- Size
On x86-64, between CONFIG_RSEQ=n/y, the text size increase of vmlinux is
567 bytes, and the data size increase of vmlinux is 5696 bytes.
[1] https://lwn.net/Articles/650333/
[2] http://www.linuxplumbersconf.org/2013/ocw/system/presentations/1695/original/LPC%20-%20PerCpu%20Atomics.pdf
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Chris Lameter <cl@linux.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Andrew Hunter <ahh@google.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Maurer <bmaurer@fb.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-api@vger.kernel.org
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20151027235635.16059.11630.stgit@pjt-glaptop.roam.corp.google.com
Link: http://lkml.kernel.org/r/20150624222609.6116.86035.stgit@kitami.mtv.corp.google.com
Link: https://lkml.kernel.org/r/20180602124408.8430-3-mathieu.desnoyers@efficios.com
Pull timers and timekeeping updates from Thomas Gleixner:
- Core infrastucture work for Y2038 to address the COMPAT interfaces:
+ Add a new Y2038 safe __kernel_timespec and use it in the core
code
+ Introduce config switches which allow to control the various
compat mechanisms
+ Use the new config switch in the posix timer code to control the
32bit compat syscall implementation.
- Prevent bogus selection of CPU local clocksources which causes an
endless reselection loop
- Remove the extra kthread in the clocksource code which has no value
and just adds another level of indirection
- The usual bunch of trivial updates, cleanups and fixlets all over the
place
- More SPDX conversions
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
clocksource/drivers/mxs_timer: Switch to SPDX identifier
clocksource/drivers/timer-imx-tpm: Switch to SPDX identifier
clocksource/drivers/timer-imx-gpt: Switch to SPDX identifier
clocksource/drivers/timer-imx-gpt: Remove outdated file path
clocksource/drivers/arc_timer: Add comments about locking while read GFRC
clocksource/drivers/mips-gic-timer: Add pr_fmt and reword pr_* messages
clocksource/drivers/sprd: Fix Kconfig dependency
clocksource: Move inline keyword to the beginning of function declarations
timer_list: Remove unused function pointer typedef
timers: Adjust a kernel-doc comment
tick: Prefer a lower rating device only if it's CPU local device
clocksource: Remove kthread
time: Change nanosleep to safe __kernel_* types
time: Change types to new y2038 safe __kernel_* types
time: Fix get_timespec64() for y2038 safe compat interfaces
time: Add new y2038 safe __kernel_timespec
posix-timers: Make compat syscalls depend on CONFIG_COMPAT_32BIT_TIME
time: Introduce CONFIG_COMPAT_32BIT_TIME
time: Introduce CONFIG_64BIT_TIME in architectures
compat: Enable compat_get/put_timespec64 always
...
- replaceme the force_dma flag with a dma_configure bus method.
(Nipun Gupta, although one patch is іncorrectly attributed to me
due to a git rebase bug)
- use GFP_DMA32 more agressively in dma-direct. (Takashi Iwai)
- remove PCI_DMA_BUS_IS_PHYS and rely on the dma-mapping API to do the
right thing for bounce buffering.
- move dma-debug initialization to common code, and apply a few cleanups
to the dma-debug code.
- cleanup the Kconfig mess around swiotlb selection
- swiotlb comment fixup (Yisheng Xie)
- a trivial swiotlb fix. (Dan Carpenter)
- support swiotlb on RISC-V. (based on a patch from Palmer Dabbelt)
- add a new generic dma-noncoherent dma_map_ops implementation and use
it for arc, c6x and nds32.
- improve scatterlist validity checking in dma-debug. (Robin Murphy)
- add a struct device quirk to limit the dma-mask to 32-bit due to
bridge/system issues, and switch x86 to use it instead of a local
hack for VIA bridges.
- handle devices without a dma_mask more gracefully in the dma-direct
code.
-----BEGIN PGP SIGNATURE-----
iQI/BAABCAApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAlsU1hwLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYPraxAAocC7JiFKW133/VugCtGA1x9uE8DPHealtsWTAeEq
KOOB3GxWMU2hKqQ4km5tcfdWoGJvvab6hmDXcitzZGi2JajO7Ae0FwIy3yvxSIKm
iH/ON7c4sJt8gKrXYsLVylmwDaimNs4a6xfODoCRgnWuovI2QrrZzupnlzPNsiOC
lv8ezzcW+Ay/gvDD/r72psO+w3QELETif/OzR/qTOtvLrVabM06eHmPQ8Wb98smu
/UPMMv6/3XwQnxpxpdyqN+p/gUdneXithzT261wTeZ+8gDXmcWBwHGcMBCimcoBi
FklW52moazIPIsTysqoNlVFsLGJTeS4p2D3BLAp5NwWYsLv+zHUVZsI1JY/8u5Ox
mM11LIfvu9JtUzaqD9SvxlxIeLhhYZZGnUoV3bQAkpHSQhN/xp2YXd5NWSo5ac2O
dch83+laZkZgd6ryw6USpt/YTPM/UHBYy7IeGGHX/PbmAke0ZlvA6Rae7kA5DG59
7GaLdwQyrHp8uGFgwze8P+R4POSk1ly73HHLBT/pFKnDD7niWCPAnBzuuEQGJs00
0zuyWLQyzOj1l6HCAcMNyGnYSsMp8Fx0fvEmKR/EYs8O83eJKXi6L9aizMZx4v1J
0wTolUWH6SIIdz474YmewhG5YOLY7mfe9E8aNr8zJFdwRZqwaALKoteRGUxa3f6e
zUE=
=6Acj
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-4.18' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping updates from Christoph Hellwig:
- replace the force_dma flag with a dma_configure bus method. (Nipun
Gupta, although one patch is іncorrectly attributed to me due to a
git rebase bug)
- use GFP_DMA32 more agressively in dma-direct. (Takashi Iwai)
- remove PCI_DMA_BUS_IS_PHYS and rely on the dma-mapping API to do the
right thing for bounce buffering.
- move dma-debug initialization to common code, and apply a few
cleanups to the dma-debug code.
- cleanup the Kconfig mess around swiotlb selection
- swiotlb comment fixup (Yisheng Xie)
- a trivial swiotlb fix. (Dan Carpenter)
- support swiotlb on RISC-V. (based on a patch from Palmer Dabbelt)
- add a new generic dma-noncoherent dma_map_ops implementation and use
it for arc, c6x and nds32.
- improve scatterlist validity checking in dma-debug. (Robin Murphy)
- add a struct device quirk to limit the dma-mask to 32-bit due to
bridge/system issues, and switch x86 to use it instead of a local
hack for VIA bridges.
- handle devices without a dma_mask more gracefully in the dma-direct
code.
* tag 'dma-mapping-4.18' of git://git.infradead.org/users/hch/dma-mapping: (48 commits)
dma-direct: don't crash on device without dma_mask
nds32: use generic dma_noncoherent_ops
nds32: implement the unmap_sg DMA operation
nds32: consolidate DMA cache maintainance routines
x86/pci-dma: switch the VIA 32-bit DMA quirk to use the struct device flag
x86/pci-dma: remove the explicit nodac and allowdac option
x86/pci-dma: remove the experimental forcesac boot option
Documentation/x86: remove a stray reference to pci-nommu.c
core, dma-direct: add a flag 32-bit dma limits
dma-mapping: remove unused gfp_t parameter to arch_dma_alloc_attrs
dma-debug: check scatterlist segments
c6x: use generic dma_noncoherent_ops
arc: use generic dma_noncoherent_ops
arc: fix arc_dma_{map,unmap}_page
arc: fix arc_dma_sync_sg_for_{cpu,device}
arc: simplify arc_dma_sync_single_for_{cpu,device}
dma-mapping: provide a generic dma-noncoherent implementation
dma-mapping: simplify Kconfig dependencies
riscv: add swiotlb support
riscv: only enable ZONE_DMA32 for 64-bit
...