Commit Graph

10 Commits

Author SHA1 Message Date
Bjorn Andersson 93bc3feee8 rpmsg: glink: Integrate glink_ssr in qcom_glink
In all but the very special case of a system with _only_ glink_rpm,
GLINK is dependent on glink_ssr, so move it to rpmsg and combine it with
qcom_glink_native in the new qcom_glink kernel module.

Acked-by: Chris Lew <clew@codeaurora.org>
Acked-by: Rishabh Bhatnagar <rishabhb@codeaurora.org>
Link: https://lore.kernel.org/r/20200423003736.2027371-4-bjorn.andersson@linaro.org
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2020-05-07 11:04:38 -07:00
Pi-Hsun Shih 7017996951 rpmsg: add rpmsg support for mt8183 SCP.
Add a simple rpmsg support for mt8183 SCP, that use IPI / IPC directly.

Signed-off-by: Pi-Hsun Shih <pihsun@chromium.org>
Link: https://lore.kernel.org/r/20191112110330.179649-4-pihsun@chromium.org
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2020-01-20 10:29:56 -08:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Bjorn Andersson caf989c350 rpmsg: glink: Introduce glink smem based transport
The glink protocol supports different types of transports (shared
memory). With the core protocol remaining the same, the way the
transport's memory is probed and accessed is different. So add support
for glink's smem based transports.

Adding a new smem transport register function and the fifo accessors for
the same.

Acked-by: Arun Kumar Neelakantam <aneela@codeaurora.org>
Signed-off-by: Sricharan R <sricharan@codeaurora.org>
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2017-08-29 20:33:57 -07:00
Bjorn Andersson 835764ddd9 rpmsg: glink: Move the common glink protocol implementation to glink_native.c
Move the common part of glink core protocol implementation to
glink_native.c that can be shared with the smem based glink
transport in the later patches.

Acked-by: Arun Kumar Neelakantam <aneela@codeaurora.org>
Signed-off-by: Sricharan R <sricharan@codeaurora.org>
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2017-08-29 14:29:33 -07:00
Bjorn Andersson b4f8e52b89 rpmsg: Introduce Qualcomm RPM glink driver
This introduces a basic driver for communicating over "native glink"
with the RPM found in Qualcomm platforms.

Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2017-05-30 20:57:23 -07:00
Bjorn Andersson c0cdc19f84 rpmsg: Driver for user space endpoint interface
This driver allows rpmsg instances to expose access to rpmsg endpoints
to user space processes. It provides a control interface, allowing
userspace to export endpoints and an endpoint interface for each exposed
endpoint.

The implementation is based on prior art by Texas Instrument, Google,
PetaLogix and was derived from a FreeRTOS performance statistics driver
written by Michal Simek.

The control interface provides a "create endpoint" ioctl, which is fed a
name, source and destination address. The three values are used to
create the endpoint, in a backend-specific way, and a rpmsg endpoint
device is created - with the three parameters are available in sysfs for
udev usage.

E.g. to create an endpoint device for one of the Qualcomm SMD channel
related to DIAG one would issue:

  struct rpmsg_endpoint_info info = { "DIAG_CNTL", 0, 0 };
  int fd = open("/dev/rpmsg_ctrl0", O_RDWR);
  ioctl(fd, RPMSG_CREATE_EPT_IOCTL, &info);

Each created endpoint device shows up as an individual character device
in /dev, allowing permission to be controlled on a per-endpoint basis.
The rpmsg endpoint will be created and destroyed following the opening
and closing of the endpoint device, allowing rpmsg backends to open and
close the physical channel, if supported by the wire protocol.

Cc: Marek Novak <marek.novak@nxp.com>
Cc: Matteo Sartori <matteo.sartori@t3lab.it>
Cc: Michal Simek <monstr@monstr.eu>
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2017-01-18 10:43:15 -08:00
Bjorn Andersson 53e2822e56 rpmsg: Introduce Qualcomm SMD backend
This introduces a new rpmsg backend for the Qualcomm SMD system,
allowing communication with various remote processors found in Qualcomm
platforms. The implementation is based on, and intends to replace,
drivers/soc/qcom/smd.c with the necessary adaptions for fitting with the
rpmsg core.

Based on original work by Sricharan R <sricharan@codeaurora.org>

Cc: Sricharan R <sricharan@codeaurora.org>
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2016-09-08 22:15:26 -07:00
Bjorn Andersson 026dad47a8 rpmsg: Move rpmsg_device API to new file
Extract the now indirect rpmsg_create_ept() interface to a separate
file and start building up a rpmsg core.

Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2016-09-08 22:15:21 -07:00
Ohad Ben-Cohen bcabbccabf rpmsg: add virtio-based remote processor messaging bus
Add a virtio-based inter-processor communication bus, which enables
kernel drivers to communicate with entities, running on remote
processors, over shared memory using a simple messaging protocol.

Every pair of AMP processors share two vrings, which are used to send
and receive the messages over shared memory.

The header of every message sent on the rpmsg bus contains src and dst
addresses, which make it possible to multiplex several rpmsg channels on
the same vring.

Every rpmsg channel is a device on this bus. When a channel is added,
and an appropriate rpmsg driver is found and probed, it is also assigned
a local rpmsg address, which is then bound to the driver's callback.

When inbound messages carry the local address of a bound driver,
its callback is invoked by the bus.

This patch provides a kernel interface only; user space interfaces
will be later exposed by kernel users of this rpmsg bus.

Designed with Brian Swetland <swetland@google.com>.

Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au> (virtio_ids.h)
Cc: Brian Swetland <swetland@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Grant Likely <grant.likely@secretlab.ca>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg KH <greg@kroah.com>
Cc: Stephen Boyd <sboyd@codeaurora.org>
2012-02-08 22:53:58 +02:00