Here are some final updates for ARM SoC specific dts files:
* The i.MX changes were sent relatively late, and had a dependency
on the clk tree, so I delayed that a bit. Support for the new
i.MX6qp SoC and a couple of new boards is added in this branch.
* Uniphier renames a few files to match the final product names
that were decided by the company, kudos to the kernel developer(s)
for getting support upstream before the product release.
Also two boards are added. The patches were posted early enough
and nice overall, but we forgot to apply them and decided to
give it some more time in linux-next
* at91 has two small bug fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIVAwUAVvQeGGCrR//JCVInAQLZSw//fuKWje/vigu4a8M8zQ9O3gN/8Elebq8E
OTY73jjpUfsJsRrqLPt9vmhrMsZ4raOIvG47B3ptwzvlV5ToRnlKEyyaYe200oxZ
5x+3i1jg20XRfTXwgusnENI+nqFO32VDaqSpYhUk6b1603RSzjFi+e0SydJaV78a
3GDDe9Y9lB7e5U/0BWBltPgKTQLrjyk7F32I33fcj3RInVi2NrmijXWic1eersyr
U0wHThKVGEHQSid+ZlSYZt0JnzotqCOpA+Pj3SrVCFdA9nOXT1lz1RTqSgNLhjfO
oXBKUWy0Ld1Ayjplg55Z7+QzOnn/JttHtumFYYu2OZcbSGr2AGWmKixR3j9Fvo8Y
X1xdo8eObMhxOrJIejy4NSC+xq/9Z7ur5mRcSMtfkmB1osirZrU9gevu6sBzV1Ha
ea3wFDaoXmmIjA0d5rQirR4XhDV7zs0rfbLPJd6Av6MuTw/hF6VYpEyKVUUzOqld
+jpDKweJhI64wKZ5oQ6AahCPV9LoQrTMk8ElJX07ndLSnYXAXz8B44O4It5b13fH
3UiWPX1tOV1HIed6z8zWUp77N5C5SeyNPtMcdvusf5/hS6gopgxGN3mqKmOUMLeO
iwX2krBpuXWj+3T/FjqSFdUrHAzbmjTIgqv70dreqj4DTkmeYr9BoInjWtzgZ6c0
bUPwJ93kFDc=
=p5al
-----END PGP SIGNATURE-----
Merge tag 'armsoc-dt2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull more ARM DT changes from Arnd Bergmann:
"Here are some final updates for ARM SoC specific dts files:
- The i.MX changes were sent relatively late, and had a dependency on
the clk tree, so I delayed that a bit. Support for the new i.MX6qp
SoC and a couple of new boards is added in this branch.
- Uniphier renames a few files to match the final product names that
were decided by the company, kudos to the kernel developer(s) for
getting support upstream before the product release. Also two
boards are added. The patches were posted early enough and nice
overall, but we forgot to apply them and decided to give it some
more time in linux-next
- at91 has two small bug fixes"
* tag 'armsoc-dt2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (83 commits)
ARM: dts: at91: sama5d4 Xplained: don't disable hsmci regulator
ARM: dts: at91: sama5d3 Xplained: don't disable hsmci regulator
ARM: dts: uniphier: add pinmux node for I2C ch4
ARM: dts: uniphier: add @{address} to EEPROM node
ARM: dts: uniphier: add PH1-Pro4 Sanji board support
ARM: dts: uniphier: add PH1-Pro4 Ace board support
ARM: dts: uniphier: enable I2C channel 2 of ProXstream2 Gentil board
ARM: dts: uniphier: add EEPROM node for ProXstream2 Gentil board
ARM: dts: uniphier: add reference clock nodes
ARM: dts: uniphier: rework UniPhier System Bus nodes
ARM: dts: uniphier: factor out ranges property of support card
arm64: dts: uniphier: rename PH1-LD10 to PH1-LD20
ARM: dts: imx53-qsb: Fix gpio button polarity
ARM: dts: vfxxx: Add DAC node for Vybrid SoC
ARM: dts: imx6q: add missing links between ipu2 and mipi dsi
ARM: dts: imx: Add support for Advantech/GE B850v3
ARM: dts: imx: Add support for Advantech/GE B650v3
ARM: dts: imx: Add support for Advantech/GE B450v3
ARM: dts: imx: Add support for Advantech/GE Bx50v3
ARM: dts: imx: Add Advantech BA-16 Qseven module
...
Add iio-hwmon node to expose the temperature channel on Vybrid as
hardware monitor device using the iio_hwmon driver.
Signed-off-by: Sanchayan Maity <maitysanchayan@gmail.com>
Acked-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Add a device tree node entry for DAC peripheral on Vybrid SoC.
Signed-off-by: Sanchayan Maity <maitysanchayan@gmail.com>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
GPLv2-only devicetrees make reuse difficult for software components
licensed under a different license.
The consensus is that a GPL/X11 dual-license should allow all necessary
uses, so relicense the vfxxx.dtsi, vf500.dtsi and vf610.dtsi files to
this combination.
CCs were acquired using (updated some email addresses, commented out
bouncing email addresses with --):
git shortlog -sne --no-merges arch/arm/boot/dts/vf???.dtsi
--CC: Chao Fu <B44548@freescale.com>
CC: Cosmin Stoica <cosminstefan.stoica@freescale.com>
CC: Frank Li <Frank.Li@freescale.com>
CC: Fugang Duan <B38611@freescale.com>
--CC: Huang Shijie <b32955@freescale.com>
--CC: Jingchang Lu <jingchang.lu@freescale.com>
--CC: Xiubo Li <Li.Xiubo@freescale.com>
Acked-by: Shawn Guo <shawnguo@kernel.org>
Acked-by: Lucas Stach <l.stach@pengutronix.de>
Acked-by: Stephen Warren <swarren@nvidia.com>
Acked-by: Cory Tusar <cory.tusar@pid1solutions.com>
Acked-by: Sanchayan Maity <maitysanchayan@gmail.com>
Acked-by: Bhuvanchandra DV <bhuvanchandra.dv@toradex.com>
Acked-by: Yuan Yao <yao.yuan@freescale.com>
Signed-off-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
Add alias for FEC ethernet on Vybrid to allow bootloaders (like U-Boot)
patch-in the MAC address using this alias.
Signed-off-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
This adds the remaining SAI instances SAI0, SAI1 and SAI3. All
instances are very similar, except that the DMA channel of SAI3
is available on MUX1 (compared to MUX0 for SAI0-SAI2). Also,
SAI3 has a slightly different memory map due to a deeper FIFO,
however in practice the current driver works for SAI3 fine.
Signed-off-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
Extend the existing Vybrid DSPI devicetree implementation to also
describe the dspi2 and dspi3 functional blocks.
Signed-off-by: Cory Tusar <cory.tusar@pid1solutions.com>
Acked-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
So far, only the bus clock has been assigned, but in reality the
SAI IP has for clock inputs. The driver has been updated to
make use of the additional clock inputs by c3ecef21c3 ("ASoC:
fsl_sai: add sai master mode support"). Due to a bug in the
clock tree, the audio clock has been enabled none the less by
the specified bus clock (see "ARM: imx: clk-vf610: fix SAI
clock tree"), which made master mode even without the proper
clock assigned working.
This patch completes the clock definition for SAI2. On Vybrid,
only two MCLK out of the four options are available (the first
being the bus clock itself). See chapter 8.10.1.2.3 of the
Vybrid Reference manual ("SAI transmitter and receiver options
for MCLK selection"). Note: The audio clocks are only required
in master mode.
Signed-off-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
Per the Vybrid Reference Manual (section 3.8.6.1), dspi0 has 6 chip
select signals associated with it, while dspi1 has only 4.
Signed-off-by: Cory Tusar <cory.tusar@pid1solutions.com>
Acked-by: Stefan Agner <stefan@agner.ch>
Cc: <stable@vger.kernel.org>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
Something seems to have gone wrong during the merging of the device
tree changes with the following patch
"ARM: dts: add property for maximum ADC clock frequencies"
The property "fsl,adck-max-frequency" instead of being applied for
the ADC1 node got applied to the esdhc0 node. This patch fixes it.
Signed-off-by: Sanchayan Maity <maitysanchayan@gmail.com>
Fixes: def0641e2f ("ARM: dts: add property for maximum ADC clock frequencies")
Cc: <stable@vger.kernel.org>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
This adds the NAND flash controller (NFC) peripherial. The driver
supports the SLC NAND chips found on Freescale's Vybrid Tower System
Module. The Micron NAND chip on the module needs 4-bit ECC per 512
byte page. Use 24-bit ECC per 2k page, which is supported by the
driver.
Signed-off-by: Bill Pringlemeir <bpringlemeir@nbsps.com>
Reviewed-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
The ADC clock frequency is limited depending on modes used. Add
device tree property which allow to set the mode used and the
maximum frequency ratings for the instance. These allows to
set the ADC clock to a frequency which is within specification
according to the actual mode used.
Acked-by: Fugang Duan <B38611@freescale.com>
Signed-off-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
This commit adds io-channel-cells property to the ADC node. This
property is required in order for an IIO consumer driver to work.
Especially required for Colibri VF50, as the touchscreen driver
uses ADC channels with the ADC driver based on IIO framework.
Signed-off-by: Sanchayan Maity <maitysanchayan@gmail.com>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
snvs is MFP device. Change dts to use syscon to allocate register resource.
snvs power off also switch to common syscon-poweroff
Signed-off-by: Frank Li <Frank.Li@freescale.com>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
Extend the existing Vybrid eSDHC devicetree implementation to also
describe the esdhc0 functional block.
Tested on a custom VF610-based board with a Toshiba THGBM1G5D2EBAI7 eMMC
module attached to esdhc0.
Signed-off-by: Cory Tusar <cory.tusar@pid1solutions.com>
Acked-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
This commit extends the existing Vybrid QSPI devicetree implementation
to also describe the qspi1 functional block.
Signed-off-by: Cory Tusar <cory.tusar@pid1solutions.com>
Reviewed-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
Both 'reg' and 'reg-names' are required properties according to binding
documentation, and both should contain two items.
Signed-off-by: Cory Tusar <cory.tusar@pid1solutions.com>
Acked-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
This commit extends the existing Vybrid I2C support to cover buses i2c1,
i2c2, and i2c3. Based in (very) large part on an initial patch by
Stefan Agner that was just lacking a couple of DMA assignments.
Signed-off-by: Cory Tusar <cory.tusar@pid1solutions.com>
Acked-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>
While adding the MSCM interrupt router, all interrupts have been moved
to vfxxx.dtsi again. However, some properties got lost. Readd the
missing interrupt properties.
Fixes: 97e6466ab9d0 ("ARM: dts: vf610: add Miscellaneous System Control
Module (MSCM)")
Signed-off-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>
Add the Miscellaneous System Control Module (MSCM) to the base
device tree for Vybrid SoC's. This module contains registers
to get information of the individual and current (accessing)
CPU. In a second block, there is an interrupt router, which
handles the routing of the interrupts between the two CPU cores
on VF6xx variants of the SoC. However, also on single core
variants the interrupt router needs to be configured in order
to receive interrupts on the CPU's interrupt controller. Almost
all peripheral interrupts are routed through the router, hence
the MSCM module is the default interrupt parent for this SoC.
In a earlier commit the interrupt nodes were moved out of the
peripheral nodes and specified in the CPU specific vf500.dtsi
device tree. This allowed to use the base device tree vfxxx.dtsi
also for a Cortex-M4 specific device tree, which uses different
interrupt nodes due to the NVIC interrupt controller. However,
since the interrupt parent for peripherals is the MSCM module
independently which CPU the device tree is used for, we can move
the interrupt nodes into the base device tree vfxxx.dtsi again.
Depending on which CPU this base device tree will be used with,
the correct parent interrupt controller has to be assigned to
the MSCM-IR node (GIC or NVIC). The driver takes care of the
parent interrupt controller specific needs (interrupt-cells).
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>
The anyway depricated gpio-range-cells property was never used
by the pin controller driver. This patch removes it.
Signed-off-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>
On Vybrid, all peripherals are numbered starting with zero,
including the GPIO and PORT module. However, the labels of the
corresponding device tree nodes start with one, which is confusing.
Fix that by renaming the labels of the gpio nodes in the device
tree.
Signed-off-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>
Add device tree node for the Secure Non-Volatile Storage
(SNVS) on the VF610 platform. The SNVS block also has a
Real Time Counter (RTC).
Signed-off-by: Sanchayan Maity <maitysanchayan@gmail.com>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>
Add the system reset controller (SRC) module and use syscon-reboot
to register a restart handler which restarts the SoC using the
SRC SW_RST bit.
Signed-off-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>
During restructuring of the device tree files the watchdog was
changed to be disabled by default. However, since the watchdog
instance is dedicated to the Cortex-A5, enable the peripheral
by default in the base device tree vf500.dtsi.
Signed-off-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>
Use GPIO support by adding SD card detection configuration and
GPIO pinmux for Colibri's standard GPIO pins. Attach the GPIO
pins to the iomuxc node to get the GPIO pin settings applied.
Signed-off-by: Stefan Agner <stefan@agner.ch>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>
This adds more generic base device trees for Vybrid SoCs. There
are three series of Vybrid SoC commonly available:
- VF3xx series: single core, Cortex-A5 without external memory
- VF5xx series: single core, Cortex-A5
- VF6xx series: dual core, Cortex-A5/Cortex-M4
The second digit represents the presents of a L2 cache (VFx1x).
The VF3xx series are not suitable for Linux especially since the
internal memory is quite small (1.5MiB).
The VF500 is essentially the base SoC, with only one core and
without L1 cache. The VF610 is a superset of the VF500, hence
vf500.dtsi is then included and enhanced by vf610.dtsi. There is
no board using VF510 or VF600 currently, but, if needed, they can
be added easily.
The Linux kernel can also run on the Cortex-M4 CPU of Vybrid
using !MMU support. This patchset creates a device tree structure
which allows to share peripherals nodes for a VF6xx Cortex-M4
device tree too. The two CPU types have different views of the
system: Foremost they are using different interrupt controllers,
but also the memory map is slightly different. The base device
tree vfxxx.dtsi allows to create SoC and board level device trees
supporting the Cortex-M4 while reusing the shared peripherals
nodes.
Signed-off-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>