-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmBLsyoUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMpYgf/Zu1Byif+XZVdwm52wJN38ppUUVmn
4u8HvQ8Ht+P0cGg1IaNx9D5QXGRgdn72qEpWUF5aH03ahTANAuf6zXw+evKmiub/
RtJfxZWEcWeLdugLVHUSrR4MOox7uvFmCdcdht4sEPdjFdH/9JeceC3A1pZ/DYTR
+eS+E3dMWQjXnd2Omo/5f5H1LTZjNLEditnkcHT5unwKKukc008V/avgs8xOAKJB
xf3oqJF960IO+NYf8rRQb8WtyGeo0grrWjgeqvZ37gwGUaFB9ldVxchsVLsL66OR
bJRIoSiTgL+TUYSMQ5mKG4tmmBnPHUHfgfNoOXlWMoJHIjFeQ9oM6eTHhA==
=QTFW
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"More fixes for ARM and x86"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: LAPIC: Advancing the timer expiration on guest initiated write
KVM: x86/mmu: Skip !MMU-present SPTEs when removing SP in exclusive mode
KVM: kvmclock: Fix vCPUs > 64 can't be online/hotpluged
kvm: x86: annotate RCU pointers
KVM: arm64: Fix exclusive limit for IPA size
KVM: arm64: Reject VM creation when the default IPA size is unsupported
KVM: arm64: Ensure I-cache isolation between vcpus of a same VM
KVM: arm64: Don't use cbz/adr with external symbols
KVM: arm64: Fix range alignment when walking page tables
KVM: arm64: Workaround firmware wrongly advertising GICv2-on-v3 compatibility
KVM: arm64: Rename __vgic_v3_get_ich_vtr_el2() to __vgic_v3_get_gic_config()
KVM: arm64: Don't access PMSELR_EL0/PMUSERENR_EL0 when no PMU is available
KVM: arm64: Turn kvm_arm_support_pmu_v3() into a static key
KVM: arm64: Fix nVHE hyp panic host context restore
KVM: arm64: Avoid corrupting vCPU context register in guest exit
KVM: arm64: nvhe: Save the SPE context early
kvm: x86: use NULL instead of using plain integer as pointer
KVM: SVM: Connect 'npt' module param to KVM's internal 'npt_enabled'
KVM: x86: Ensure deadline timer has truly expired before posting its IRQ
When registering a memslot, we check the size and location of that
memslot against the IPA size to ensure that we can provide guest
access to the whole of the memory.
Unfortunately, this check rejects memslot that end-up at the exact
limit of the addressing capability for a given IPA size. For example,
it refuses the creation of a 2GB memslot at 0x8000000 with a 32bit
IPA space.
Fix it by relaxing the check to accept a memslot reaching the
limit of the IPA space.
Fixes: c3058d5da2 ("arm/arm64: KVM: Ensure memslots are within KVM_PHYS_SIZE")
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Reviewed-by: Andrew Jones <drjones@redhat.com>
Link: https://lore.kernel.org/r/20210311100016.3830038-3-maz@kernel.org
KVM/arm64 has forever used a 40bit default IPA space, partially
due to its 32bit heritage (where the only choice is 40bit).
However, there are implementations in the wild that have a *cough*
much smaller *cough* IPA space, which leads to a misprogramming of
VTCR_EL2, and a guest that is stuck on its first memory access
if userspace dares to ask for the default IPA setting (which most
VMMs do).
Instead, blundly reject the creation of such VM, as we can't
satisfy the requirements from userspace (with a one-off warning).
Also clarify the boot warning, and document that the VM creation
will fail when an unsupported IPA size is provided.
Although this is an ABI change, it doesn't really change much
for userspace:
- the guest couldn't run before this change, but no error was
returned. At least userspace knows what is happening.
- a memory slot that was accepted because it did fit the default
IPA space now doesn't even get a chance to be registered.
The other thing that is left doing is to convince userspace to
actually use the IPA space setting instead of relying on the
antiquated default.
Fixes: 233a7cb235 ("kvm: arm64: Allow tuning the physical address size for VM")
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Link: https://lore.kernel.org/r/20210311100016.3830038-2-maz@kernel.org
As per ARM ARM DDI 0487G.a, when FEAT_LPA2 is implemented, ID_AA64MMFR0_EL1
might contain a range of values to describe supported translation granules
(4K and 16K pages sizes in particular) instead of just enabled or disabled
values. This changes __enable_mmu() function to handle complete acceptable
range of values (depending on whether the field is signed or unsigned) now
represented with ID_AA64MMFR0_TGRAN_SUPPORTED_[MIN..MAX] pair. While here,
also fix similar situations in EFI stub and KVM as well.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: kvmarm@lists.cs.columbia.edu
Cc: linux-efi@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/1615355590-21102-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
It recently became apparent that the ARMv8 architecture has interesting
rules regarding attributes being used when fetching instructions
if the MMU is off at Stage-1.
In this situation, the CPU is allowed to fetch from the PoC and
allocate into the I-cache (unless the memory is mapped with
the XN attribute at Stage-2).
If we transpose this to vcpus sharing a single physical CPU,
it is possible for a vcpu running with its MMU off to influence
another vcpu running with its MMU on, as the latter is expected to
fetch from the PoU (and self-patching code doesn't flush below that
level).
In order to solve this, reuse the vcpu-private TLB invalidation
code to apply the same policy to the I-cache, nuking it every time
the vcpu runs on a physical CPU that ran another vcpu of the same
VM in the past.
This involve renaming __kvm_tlb_flush_local_vmid() to
__kvm_flush_cpu_context(), and inserting a local i-cache invalidation
there.
Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20210303164505.68492-1-maz@kernel.org
allmodconfig + CONFIG_LTO_CLANG_THIN=y fails to build due to following
linker errors:
ld.lld: error: irqbypass.c:(function __guest_enter: .text+0x21CC):
relocation R_AARCH64_CONDBR19 out of range: 2031220 is not in
[-1048576, 1048575]; references hyp_panic
>>> defined in vmlinux.o
ld.lld: error: irqbypass.c:(function __guest_enter: .text+0x21E0):
relocation R_AARCH64_ADR_PREL_LO21 out of range: 2031200 is not in
[-1048576, 1048575]; references hyp_panic
>>> defined in vmlinux.o
This is because with LTO, the compiler ends up placing hyp_panic()
more than 1MB away from __guest_enter(). Use an unconditional branch
and adr_l instead to fix the issue.
Link: https://github.com/ClangBuiltLinux/linux/issues/1317
Reported-by: Nathan Chancellor <nathan@kernel.org>
Suggested-by: Marc Zyngier <maz@kernel.org>
Suggested-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Will Deacon <will@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210305202124.3768527-1-samitolvanen@google.com
When walking the page tables at a given level, and if the start
address for the range isn't aligned for that level, we propagate
the misalignment on each iteration at that level.
This results in the walker ignoring a number of entries (depending
on the original misalignment) on each subsequent iteration.
Properly aligning the address before the next iteration addresses
this issue.
Cc: stable@vger.kernel.org
Reported-by: Howard Zhang <Howard.Zhang@arm.com>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Jia He <justin.he@arm.com>
Fixes: b1e57de62c ("KVM: arm64: Add stand-alone page-table walker infrastructure")
[maz: rewrite commit message]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210303024225.2591-1-justin.he@arm.com
Message-Id: <20210305185254.3730990-9-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It looks like we have broken firmware out there that wrongly advertises
a GICv2 compatibility interface, despite the CPUs not being able to deal
with it.
To work around this, check that the CPU initialising KVM is actually able
to switch to MMIO instead of system registers, and use that as a
precondition to enable GICv2 compatibility in KVM.
Note that the detection happens on a single CPU. If the firmware is
lying *and* that the CPUs are asymetric, all hope is lost anyway.
Reported-by: Shameerali Kolothum Thodi <shameerali.kolothum.thodi@huawei.com>
Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Message-Id: <20210305185254.3730990-8-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As we are about to report a bit more information to the rest of
the kernel, rename __vgic_v3_get_ich_vtr_el2() to the more
explicit __vgic_v3_get_gic_config().
No functional change.
Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Message-Id: <20210305185254.3730990-7-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When running under a nesting hypervisor, it isn't guaranteed that
the virtual HW will include a PMU. In which case, let's not try
to access the PMU registers in the world switch, as that'd be
deadly.
Reported-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Link: https://lore.kernel.org/r/20210209114844.3278746-3-maz@kernel.org
Message-Id: <20210305185254.3730990-6-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We currently find out about the presence of a HW PMU (or the handling
of that PMU by perf, which amounts to the same thing) in a fairly
roundabout way, by checking the number of counters available to perf.
That's good enough for now, but we will soon need to find about about
that on paths where perf is out of reach (in the world switch).
Instead, let's turn kvm_arm_support_pmu_v3() into a static key.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Link: https://lore.kernel.org/r/20210209114844.3278746-2-maz@kernel.org
Message-Id: <20210305185254.3730990-5-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When panicking from the nVHE hyp and restoring the host context, x29 is
expected to hold a pointer to the host context. This wasn't being done
so fix it to make sure there's a valid pointer the host context being
used.
Rather than passing a boolean indicating whether or not the host context
should be restored, instead pass the pointer to the host context. NULL
is passed to indicate that no context should be restored.
Fixes: a2e102e20f ("KVM: arm64: nVHE: Handle hyp panics")
Cc: stable@vger.kernel.org
Signed-off-by: Andrew Scull <ascull@google.com>
[maz: partial rewrite to fit 5.12-rc1]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210219122406.1337626-1-ascull@google.com
Message-Id: <20210305185254.3730990-4-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 7db2153047 ("KVM: arm64: Restore hyp when panicking in guest
context") tracks the currently running vCPU, clearing the pointer to
NULL on exit from a guest.
Unfortunately, the use of 'set_loaded_vcpu' clobbers x1 to point at the
kvm_hyp_ctxt instead of the vCPU context, causing the subsequent RAS
code to go off into the weeds when it saves the DISR assuming that the
CPU context is embedded in a struct vCPU.
Leave x1 alone and use x3 as a temporary register instead when clearing
the vCPU on the guest exit path.
Cc: Marc Zyngier <maz@kernel.org>
Cc: Andrew Scull <ascull@google.com>
Cc: <stable@vger.kernel.org>
Fixes: 7db2153047 ("KVM: arm64: Restore hyp when panicking in guest context")
Suggested-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210226181211.14542-1-will@kernel.org
Message-Id: <20210305185254.3730990-3-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The nVHE KVM hyp drains and disables the SPE buffer, before
entering the guest, as the EL1&0 translation regime
is going to be loaded with that of the guest.
But this operation is performed way too late, because :
- The owning translation regime of the SPE buffer
is transferred to EL2. (MDCR_EL2_E2PB == 0)
- The guest Stage1 is loaded.
Thus the flush could use the host EL1 virtual address,
but use the EL2 translations instead of host EL1, for writing
out any cached data.
Fix this by moving the SPE buffer handling early enough.
The restore path is doing the right thing.
Fixes: 014c4c77aa ("KVM: arm64: Improve debug register save/restore flow")
Cc: stable@vger.kernel.org
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210302120345.3102874-1-suzuki.poulose@arm.com
Message-Id: <20210305185254.3730990-2-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Fix lockdep false alarm on resume-from-cpuidle path
- Fix memory leak in kexec_file
- Fix module linker script to work with GDB
- Fix error code when trying to use uprobes with AArch32 instructions
- Fix late VHE enabling with 64k pages
- Add missing ISBs after TLB invalidation
- Fix seccomp when tracing syscall -1
- Fix stacktrace return code at end of stack
- Fix inconsistent whitespace for pointer return values
- Fix compiler warnings when building with W=1
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmA40kUQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNLMUB/93o3Ucd3SeLLmOziyZMWjxCNcuzXAXDhFH
z0q0Zq8U5+xHaCH+jPASNwS7gT6dMX8E60SlXcvVaHuBaH5zsrZnOtpJ5mZQAQ7E
nR1M5ANfusMJ8uRpDHhy5ymJ4IcE/yn74rapBIeGs1e4vWF60Lb6nSVrEJMNRada
zbRr2z9bMecQPGX+KSWpgYg4dLRpyTo8oSYJiYmyoSczGvXhrFHlnIJeaKrJuvGt
IIhil8l9uZd5j0ucVWGiYgAcAuqzgkH2yEiNbkGRwn0nMK+4HGbXpEuzUm/90p3y
lRLQSvx/hKwerIlodUYbFDx4FMXoFfMRQm/8/6tCBrUn/4exDslZ
=wuLk
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
"The big one is a fix for the VHE enabling path during early boot,
where the code enabling the MMU wasn't necessarily in the identity map
of the new page-tables, resulting in a consistent crash with 64k
pages. In fixing that, we noticed some missing barriers too, so we
added those for the sake of architectural compliance.
Other than that, just the usual merge window trickle. There'll be more
to come, too.
Summary:
- Fix lockdep false alarm on resume-from-cpuidle path
- Fix memory leak in kexec_file
- Fix module linker script to work with GDB
- Fix error code when trying to use uprobes with AArch32 instructions
- Fix late VHE enabling with 64k pages
- Add missing ISBs after TLB invalidation
- Fix seccomp when tracing syscall -1
- Fix stacktrace return code at end of stack
- Fix inconsistent whitespace for pointer return values
- Fix compiler warnings when building with W=1"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: stacktrace: Report when we reach the end of the stack
arm64: ptrace: Fix seccomp of traced syscall -1 (NO_SYSCALL)
arm64: Add missing ISB after invalidating TLB in enter_vhe
arm64: Add missing ISB after invalidating TLB in __primary_switch
arm64: VHE: Enable EL2 MMU from the idmap
KVM: arm64: make the hyp vector table entries local
arm64/mm: Fixed some coding style issues
arm64: uprobe: Return EOPNOTSUPP for AARCH32 instruction probing
kexec: move machine_kexec_post_load() to public interface
arm64 module: set plt* section addresses to 0x0
arm64: kexec_file: fix memory leakage in create_dtb() when fdt_open_into() fails
arm64: spectre: Prevent lockdep splat on v4 mitigation enable path
Make the hyp vector table entries local functions so they
are not accidentally referred to outside of this file.
Using SYM_CODE_START_LOCAL matches the other vector tables (in hyp-stub.S,
hibernate-asm.S and entry.S)
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210222164956.43514-1-joey.gouly@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
- Support for userspace to emulate Xen hypercalls
- Raise the maximum number of user memslots
- Scalability improvements for the new MMU. Instead of the complex
"fast page fault" logic that is used in mmu.c, tdp_mmu.c uses an
rwlock so that page faults are concurrent, but the code that can run
against page faults is limited. Right now only page faults take the
lock for reading; in the future this will be extended to some
cases of page table destruction. I hope to switch the default MMU
around 5.12-rc3 (some testing was delayed due to Chinese New Year).
- Cleanups for MAXPHYADDR checks
- Use static calls for vendor-specific callbacks
- On AMD, use VMLOAD/VMSAVE to save and restore host state
- Stop using deprecated jump label APIs
- Workaround for AMD erratum that made nested virtualization unreliable
- Support for LBR emulation in the guest
- Support for communicating bus lock vmexits to userspace
- Add support for SEV attestation command
- Miscellaneous cleanups
PPC:
- Support for second data watchpoint on POWER10
- Remove some complex workarounds for buggy early versions of POWER9
- Guest entry/exit fixes
ARM64
- Make the nVHE EL2 object relocatable
- Cleanups for concurrent translation faults hitting the same page
- Support for the standard TRNG hypervisor call
- A bunch of small PMU/Debug fixes
- Simplification of the early init hypercall handling
Non-KVM changes (with acks):
- Detection of contended rwlocks (implemented only for qrwlocks,
because KVM only needs it for x86)
- Allow __DISABLE_EXPORTS from assembly code
- Provide a saner follow_pfn replacements for modules
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmApSRgUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroOc7wf9FnlinKoTFaSk7oeuuhF/CoCVwSFs
Z9+A2sNI99tWHQxFR6dyDkEFeQoXnqSxfLHtUVIdH/JnTg0FkEvFz3NK+0PzY1PF
PnGNbSoyhP58mSBG4gbBAxdF3ZJZMB8GBgYPeR62PvMX2dYbcHqVBNhlf6W4MQK4
5mAUuAnbf19O5N267sND+sIg3wwJYwOZpRZB7PlwvfKAGKf18gdBz5dQ/6Ej+apf
P7GODZITjqM5Iho7SDm/sYJlZprFZT81KqffwJQHWFMEcxFgwzrnYPx7J3gFwRTR
eeh9E61eCBDyCTPpHROLuNTVBqrAioCqXLdKOtO5gKvZI3zmomvAsZ8uXQ==
=uFZU
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"x86:
- Support for userspace to emulate Xen hypercalls
- Raise the maximum number of user memslots
- Scalability improvements for the new MMU.
Instead of the complex "fast page fault" logic that is used in
mmu.c, tdp_mmu.c uses an rwlock so that page faults are concurrent,
but the code that can run against page faults is limited. Right now
only page faults take the lock for reading; in the future this will
be extended to some cases of page table destruction. I hope to
switch the default MMU around 5.12-rc3 (some testing was delayed
due to Chinese New Year).
- Cleanups for MAXPHYADDR checks
- Use static calls for vendor-specific callbacks
- On AMD, use VMLOAD/VMSAVE to save and restore host state
- Stop using deprecated jump label APIs
- Workaround for AMD erratum that made nested virtualization
unreliable
- Support for LBR emulation in the guest
- Support for communicating bus lock vmexits to userspace
- Add support for SEV attestation command
- Miscellaneous cleanups
PPC:
- Support for second data watchpoint on POWER10
- Remove some complex workarounds for buggy early versions of POWER9
- Guest entry/exit fixes
ARM64:
- Make the nVHE EL2 object relocatable
- Cleanups for concurrent translation faults hitting the same page
- Support for the standard TRNG hypervisor call
- A bunch of small PMU/Debug fixes
- Simplification of the early init hypercall handling
Non-KVM changes (with acks):
- Detection of contended rwlocks (implemented only for qrwlocks,
because KVM only needs it for x86)
- Allow __DISABLE_EXPORTS from assembly code
- Provide a saner follow_pfn replacements for modules"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (192 commits)
KVM: x86/xen: Explicitly pad struct compat_vcpu_info to 64 bytes
KVM: selftests: Don't bother mapping GVA for Xen shinfo test
KVM: selftests: Fix hex vs. decimal snafu in Xen test
KVM: selftests: Fix size of memslots created by Xen tests
KVM: selftests: Ignore recently added Xen tests' build output
KVM: selftests: Add missing header file needed by xAPIC IPI tests
KVM: selftests: Add operand to vmsave/vmload/vmrun in svm.c
KVM: SVM: Make symbol 'svm_gp_erratum_intercept' static
locking/arch: Move qrwlock.h include after qspinlock.h
KVM: PPC: Book3S HV: Fix host radix SLB optimisation with hash guests
KVM: PPC: Book3S HV: Ensure radix guest has no SLB entries
KVM: PPC: Don't always report hash MMU capability for P9 < DD2.2
KVM: PPC: Book3S HV: Save and restore FSCR in the P9 path
KVM: PPC: remove unneeded semicolon
KVM: PPC: Book3S HV: Use POWER9 SLBIA IH=6 variant to clear SLB
KVM: PPC: Book3S HV: No need to clear radix host SLB before loading HPT guest
KVM: PPC: Book3S HV: Fix radix guest SLB side channel
KVM: PPC: Book3S HV: Remove support for running HPT guest on RPT host without mixed mode support
KVM: PPC: Book3S HV: Introduce new capability for 2nd DAWR
KVM: PPC: Book3S HV: Add infrastructure to support 2nd DAWR
...
- vDSO build improvements including support for building with BSD.
- Cleanup to the AMU support code and initialisation rework to support
cpufreq drivers built as modules.
- Removal of synthetic frame record from exception stack when entering
the kernel from EL0.
- Add support for the TRNG firmware call introduced by Arm spec
DEN0098.
- Cleanup and refactoring across the board.
- Avoid calling arch_get_random_seed_long() from
add_interrupt_randomness()
- Perf and PMU updates including support for Cortex-A78 and the v8.3
SPE extensions.
- Significant steps along the road to leaving the MMU enabled during
kexec relocation.
- Faultaround changes to initialise prefaulted PTEs as 'old' when
hardware access-flag updates are supported, which drastically
improves vmscan performance.
- CPU errata updates for Cortex-A76 (#1463225) and Cortex-A55
(#1024718)
- Preparatory work for yielding the vector unit at a finer granularity
in the crypto code, which in turn will one day allow us to defer
softirq processing when it is in use.
- Support for overriding CPU ID register fields on the command-line.
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmAmwZcQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNLA1B/0XMwWUhmJ4ZPK4sr28YWHNGLuCFHDgkMKU
dEmS806OF9d0J7fTczGsKdS4IKtXWko67Z0UGiPIStwfm0itSW2Zgbo9KZeDPqPI
fH0s23nQKxUMyNW7b9p4cTV3YuGVMZSBoMug2jU2DEDpSqeGBk09NPi6inERBCz/
qZxcqXTKxXbtOY56eJmq09UlFZiwfONubzuCrrUH7LU8ZBSInM/6Q4us/oVm4zYI
Pnv996mtL4UxRqq/KoU9+cQ1zsI01kt9/coHwfCYvSpZEVAnTWtfECsJ690tr3mF
TSKQLvOzxbDtU+HcbkNVKW0A38EIO1xXr8yXW9SJx6BJBkyb24xo
=IwMb
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
- vDSO build improvements including support for building with BSD.
- Cleanup to the AMU support code and initialisation rework to support
cpufreq drivers built as modules.
- Removal of synthetic frame record from exception stack when entering
the kernel from EL0.
- Add support for the TRNG firmware call introduced by Arm spec
DEN0098.
- Cleanup and refactoring across the board.
- Avoid calling arch_get_random_seed_long() from
add_interrupt_randomness()
- Perf and PMU updates including support for Cortex-A78 and the v8.3
SPE extensions.
- Significant steps along the road to leaving the MMU enabled during
kexec relocation.
- Faultaround changes to initialise prefaulted PTEs as 'old' when
hardware access-flag updates are supported, which drastically
improves vmscan performance.
- CPU errata updates for Cortex-A76 (#1463225) and Cortex-A55
(#1024718)
- Preparatory work for yielding the vector unit at a finer granularity
in the crypto code, which in turn will one day allow us to defer
softirq processing when it is in use.
- Support for overriding CPU ID register fields on the command-line.
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (85 commits)
drivers/perf: Replace spin_lock_irqsave to spin_lock
mm: filemap: Fix microblaze build failure with 'mmu_defconfig'
arm64: Make CPU_BIG_ENDIAN depend on ld.bfd or ld.lld 13.0.0+
arm64: cpufeatures: Allow disabling of Pointer Auth from the command-line
arm64: Defer enabling pointer authentication on boot core
arm64: cpufeatures: Allow disabling of BTI from the command-line
arm64: Move "nokaslr" over to the early cpufeature infrastructure
KVM: arm64: Document HVC_VHE_RESTART stub hypercall
arm64: Make kvm-arm.mode={nvhe, protected} an alias of id_aa64mmfr1.vh=0
arm64: Add an aliasing facility for the idreg override
arm64: Honor VHE being disabled from the command-line
arm64: Allow ID_AA64MMFR1_EL1.VH to be overridden from the command line
arm64: cpufeature: Add an early command-line cpufeature override facility
arm64: Extract early FDT mapping from kaslr_early_init()
arm64: cpufeature: Use IDreg override in __read_sysreg_by_encoding()
arm64: cpufeature: Add global feature override facility
arm64: Move SCTLR_EL1 initialisation to EL-agnostic code
arm64: Simplify init_el2_state to be non-VHE only
arm64: Move VHE-specific SPE setup to mutate_to_vhe()
arm64: Drop early setting of MDSCR_EL2.TPMS
...
- Make the nVHE EL2 object relocatable, resulting in much more
maintainable code
- Handle concurrent translation faults hitting the same page
in a more elegant way
- Support for the standard TRNG hypervisor call
- A bunch of small PMU/Debug fixes
- Allow the disabling of symbol export from assembly code
- Simplification of the early init hypercall handling
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmAmjqEPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDoUEQAIrJ7YF4v4gz06a0HG9+b6fbmykHyxlG7jfm
trvctfaiKzOybKoY5odPpNFzhbYOOdXXqYipyTHGwBYtGSy9G/9SjMKSUrfln2Ni
lr1wBqapr9TE+SVKoR8pWWuZxGGbHVa7brNuMbMsMi1wwAsM2/n70H9PXrdq3QiK
Ge1DWLso2oEfhtTwqNKa4dwB2MHjBhBFhhq+Nq5pslm6mmxJaYqz7pyBmw/C+2cc
oU/6kpAa1yPAauptWXtYXJYOMHihxgEa1IdK3Gl0hUyFyu96xVkwH/KFsj+bRs23
QGGCSdy4313hzaoGaSOTK22R98Aeg0wI9a6tcCBvVVjTAztnlu1FPtUZr8e/F7uc
+r8xVJUJFiywt3Zktf/D7YDK9LuMMqFnj0BkI4U9nIBY59XZRNhENsBCmjru5lnL
iXa5cuta03H4emfssIChLpgn0XHFas6t5dFXBPGbXyw0qsQchTw98iQX9LVxefUK
rOUGPIN4nE9ESRIZe0SPlAVeCtNP8cLH7+0YG9MJ1QeDVYaUsnvy9Ln/ox+514mR
5y2KJ6y7xnLB136SKCzPDDloYtz7BDiJq6a/RPiXKGheKoxy+N+BSe58yWCqFZYE
Fx/cGUr7oSg39U7gCboog6BDp5e2CXBfbRllg6P47bZFfdPNwzNEzHvk49VltMxx
Rl2W05bk
=6EwV
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for Linux 5.12
- Make the nVHE EL2 object relocatable, resulting in much more
maintainable code
- Handle concurrent translation faults hitting the same page
in a more elegant way
- Support for the standard TRNG hypervisor call
- A bunch of small PMU/Debug fixes
- Allow the disabling of symbol export from assembly code
- Simplification of the early init hypercall handling
- Don't allow tagged pointers to point to memslots
- Filter out ARMv8.1+ PMU events on v8.0 hardware
- Hide PMU registers from userspace when no PMU is configured
- More PMU cleanups
- Don't try to handle broken PSCI firmware
- More sys_reg() to reg_to_encoding() conversions
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmAJn00PHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpD47AQAJtT2NbvumRBhnNAMD6+bDB0AeFdcd4s12FN
fffsR+7UgCU4YrbMCcBEd/3gGc0/bSPQqo6ZVNaxL4M+bDR7loCKIF/kDLjv6gtu
28Q5c+DqFirKyIWMmNSJmHPu5rXEJQOjrLtxsXigRi9QvFIALyXKYq5Bu/67Xcat
2aoIfQyPuJYYpd/HAEa25kmJgH9Z1Wj3gQ82mGAlRWyIuSkVI0/HRGNE+dKe3fjx
1D9lQaBwT8lsCelv6GpNZbsXo2Zh5Y/Zi7KLY6uNAD9iTHbaOwiLZMBWi9ag97Hc
WNM4bTzWa7NGGBXvlxnoXH+o5X473JQbj/pVR8EBZvntCzdi7P8PIXo6eOIT4Z9L
nVKXjt4NH5VER4p48tPR+ZlGYocLb7BDRFW05myUIFu0nT93O8cKmFxyuXdkJv5p
J6DRTOohRkXh8wl7F+bBlgC+qbRbungpFWFhfpf09aKUbpR1Py+W+yrX6HDL92bT
gGT0wKq6yTPYdHTBFQJEfSibCXPM9d2Q2cYZcLeJaMz3eZ2cxEcRU/De63qQ7EIy
A2DXAVJnvmmzbeuCW4j7kaYAV81nKypdfBUNvZx4of/UBJSapifxAOWU9UAHPp3A
0/qWLp2up1GOjIepF6tNpfwiPV3RvqCXi7XVy+bBIV+pgfHvl3DkBGcVhLKXI2JE
JO9jh9rn
=GHVB
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-5.11-2' into kvmarm-master/next
KVM/arm64 fixes for 5.11, take #2
- Don't allow tagged pointers to point to memslots
- Filter out ARMv8.1+ PMU events on v8.0 hardware
- Hide PMU registers from userspace when no PMU is configured
- More PMU cleanups
- Don't try to handle broken PSCI firmware
- More sys_reg() to reg_to_encoding() conversions
Signed-off-by: Marc Zyngier <maz@kernel.org>
Admitedly, passing id_aa64mmfr1.vh=0 on the command-line isn't
that easy to understand, and it is likely that users would much
prefer write "kvm-arm.mode=nvhe", or "...=protected".
So here you go. This has the added advantage that we can now
always honor the "kvm-arm.mode=protected" option, even when
booting on a VHE system.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: David Brazdil <dbrazdil@google.com>
Link: https://lore.kernel.org/r/20210208095732.3267263-18-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
As init_el2_state is now nVHE only, let's simplify it and drop
the VHE setup.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: David Brazdil <dbrazdil@google.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20210208095732.3267263-9-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
In order to ensure the module loader does not get confused if a symbol
is exported in EL2 nVHE code (as will be the case when we will compile
e.g. lib/memset.S into the EL2 object), make sure to stub all exports
using __DISABLE_EXPORTS in the nvhe folder.
Suggested-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210203141931.615898-3-qperret@google.com
Instead of using a bunch of magic numbers, use the existing definitions
that have been added since 8673e02e58 ("arm64: perf: Add support
for ARMv8.5-PMU 64-bit counters")
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Upgrading the PMU code from ARMv8.1 to ARMv8.4 turns out to be
pretty easy. All that is required is support for PMMIR_EL1, which
is read-only, and for which returning 0 is a valid option as long
as we don't advertise STALL_SLOT as an implemented event.
Let's just do that and adjust what we return to the guest.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Let's not pretend we support anything but ARMv8.0 as far as the
debug architecture is concerned.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Our current ID register filtering is starting to be a mess of if()
statements, and isn't going to get any saner.
Let's turn it into a switch(), which has a chance of being more
readable, and introduce a FEATURE() macro that allows easy generation
of feature masks.
No functionnal change intended.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Despite advertising support for AArch32 PMUv3p1, we fail to handle
the PMCEID{2,3} registers, which conveniently alias with the top
bits of PMCEID{0,1}_EL1.
Implement these registers with the usual AA32(HI/LO) aliasing
mechanism.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
We shouldn't expose *any* PMU capability when no PMU has been
configured for this VM.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
The AArch32 CP14 DBGDIDR has bit 15 set to RES1, which our current
emulation doesn't set. Just add the missing bit.
Reported-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
gen-hyprel is, for better or worse, a native-endian program:
it assumes that the ELF data structures are in the host's
endianness, and even assumes that the compiled kernel is
little-endian in one particular case.
None of these assumptions hold true though: people actually build
(use?) BE arm64 kernels, and seem to avoid doing so on BE hosts.
Madness!
In order to solve this, wrap each access to the ELF data structures
with the required byte-swapping magic. This requires to obtain
the kernel data structure, and provide per-endianess wrappers.
This result in a kernel that links and even boots in a model.
Fixes: 8c49b5d43d ("KVM: arm64: Generate hyp relocation data")
Reported-by: Guenter Roeck <linux@roeck-us.net>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: David Brazdil <dbrazdil@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
- Avoid clobbering extra registers on initialisation
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmAS8woPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDlA8QAMViqFlguoOr01uesh1BC+Mdj+yBnxPneAVi
7CskUNTryqTnnx+AoVJp25BZzdOz1E+bExj2KSrjn5HF3jOiML8tWJDXIjtw/VHT
ibSZ37PB5GX755T4JciNRJIlMA8VvFYdzvaDOB9Ue1HHJLtzOnuL3jM1y1gtx6l8
I/zQpzqrQ+4J4xA41x9FtwJLqSS68Pnf9v+ZBBjH+Quv54uyhcaWK0UvWwitHsGY
QC5ihf/98u39/3kOSDxFiTzR0uMPhA9w6Qj/6Sr/ycMRCxsNgf9r1rC8axIE2WlR
L4SaD2A793bhumwlXkaDxTE1YS0CNb00fGAaG//VTK8dBpejEYbUjm8sVwyhLMNG
wlTWXoN3B1bWhfElhD06Q7fVk5muTTI7E7IMpkP5CffBDn+l3knYq33cVps5VZzV
/Jph3q+OfQtgLr0AYOCy+I5PXJjFJZq3HH/LhQoWHMibDjuAfX/AYWVxuRpbiozI
HG2+VodSV2VOgf7ng3A5Q7HWeqpdiF9Yqu+ZoACO5hso6YxlniO4CAf21ABf1qUF
FJOZrB8YUP8AjPDvBYgjKXlt272ogUC5FF0ZLhU6yoMS4uPAjme52bVDKFPeagmp
1PopPzGy2z3lkpXoMH4iOosIE76oa0D4E62udt4uAKTYjmA/kxdGbJu3IRVxOYv2
deaZYoi2
=LLd9
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-5.11-3' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 5.11, take #3
- Avoid clobbering extra registers on initialisation
- Don't allow tagged pointers to point to memslots
- Filter out ARMv8.1+ PMU events on v8.0 hardware
- Hide PMU registers from userspace when no PMU is configured
- More PMU cleanups
- Don't try to handle broken PSCI firmware
- More sys_reg() to reg_to_encoding() conversions
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmAJn00PHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpD47AQAJtT2NbvumRBhnNAMD6+bDB0AeFdcd4s12FN
fffsR+7UgCU4YrbMCcBEd/3gGc0/bSPQqo6ZVNaxL4M+bDR7loCKIF/kDLjv6gtu
28Q5c+DqFirKyIWMmNSJmHPu5rXEJQOjrLtxsXigRi9QvFIALyXKYq5Bu/67Xcat
2aoIfQyPuJYYpd/HAEa25kmJgH9Z1Wj3gQ82mGAlRWyIuSkVI0/HRGNE+dKe3fjx
1D9lQaBwT8lsCelv6GpNZbsXo2Zh5Y/Zi7KLY6uNAD9iTHbaOwiLZMBWi9ag97Hc
WNM4bTzWa7NGGBXvlxnoXH+o5X473JQbj/pVR8EBZvntCzdi7P8PIXo6eOIT4Z9L
nVKXjt4NH5VER4p48tPR+ZlGYocLb7BDRFW05myUIFu0nT93O8cKmFxyuXdkJv5p
J6DRTOohRkXh8wl7F+bBlgC+qbRbungpFWFhfpf09aKUbpR1Py+W+yrX6HDL92bT
gGT0wKq6yTPYdHTBFQJEfSibCXPM9d2Q2cYZcLeJaMz3eZ2cxEcRU/De63qQ7EIy
A2DXAVJnvmmzbeuCW4j7kaYAV81nKypdfBUNvZx4of/UBJSapifxAOWU9UAHPp3A
0/qWLp2up1GOjIepF6tNpfwiPV3RvqCXi7XVy+bBIV+pgfHvl3DkBGcVhLKXI2JE
JO9jh9rn
=GHVB
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-5.11-2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 5.11, take #2
- Don't allow tagged pointers to point to memslots
- Filter out ARMv8.1+ PMU events on v8.0 hardware
- Hide PMU registers from userspace when no PMU is configured
- More PMU cleanups
- Don't try to handle broken PSCI firmware
- More sys_reg() to reg_to_encoding() conversions
Provide a hypervisor implementation of the ARM architected TRNG firmware
interface described in ARM spec DEN0098. All function IDs are implemented,
including both 32-bit and 64-bit versions of the TRNG_RND service, which
is the centerpiece of the API.
The API is backed by the kernel's entropy pool only, to avoid guests
draining more precious direct entropy sources.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
[Andre: minor fixes, drop arch_get_random() usage]
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210106103453.152275-6-andre.przywara@arm.com
We now set the pfn dirty and mark the page dirty before calling fault
handlers in user_mem_abort(), so we might end up having spurious dirty
pages if update of permissions or mapping has failed. Let's move these
two operations after the fault handlers, and they will be done only if
the fault has been handled successfully.
When an -EAGAIN errno is returned from the map handler, we hope to the
vcpu to enter guest directly instead of exiting back to userspace, so
adjust the return value at the end of function.
Signed-off-by: Yanan Wang <wangyanan55@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210114121350.123684-4-wangyanan55@huawei.com
(1) During running time of a a VM with numbers of vCPUs, if some vCPUs
access the same GPA almost at the same time and the stage-2 mapping of
the GPA has not been built yet, as a result they will all cause
translation faults. The first vCPU builds the mapping, and the followed
ones end up updating the valid leaf PTE. Note that these vCPUs might
want different access permissions (RO, RW, RX, RWX, etc.).
(2) It's inevitable that we sometimes will update an existing valid leaf
PTE in the map path, and we perform break-before-make in this case.
Then more unnecessary translation faults could be caused if the
*break stage* of BBM is just catched by other vCPUS.
With (1) and (2), something unsatisfactory could happen: vCPU A causes
a translation fault and builds the mapping with RW permissions, vCPU B
then update the valid leaf PTE with break-before-make and permissions
are updated back to RO. Besides, *break stage* of BBM may trigger more
translation faults. Finally, some useless small loops could occur.
We can make some optimization to solve above problems: When we need to
update a valid leaf PTE in the map path, let's filter out the case where
this update only change access permissions, and don't update the valid
leaf PTE here in this case. Instead, let the vCPU enter back the guest
and it will exit next time to go through the relax_perms path without
break-before-make if it still wants more permissions.
Signed-off-by: Yanan Wang <wangyanan55@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210114121350.123684-3-wangyanan55@huawei.com
Procedures of hyp stage-1 map and guest stage-2 map are quite different,
but they are tied closely by function kvm_set_valid_leaf_pte().
So adjust the relative code for ease of code maintenance in the future.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Yanan Wang <wangyanan55@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210114121350.123684-2-wangyanan55@huawei.com
The arguments for __do_hyp_init are now passed with a pointer to a
struct which means there are scratch registers available for use. Thanks
to this, we no longer need to use clever, but hard to read, tricks that
avoid the need for scratch registers when checking for the
__kvm_hyp_init HVC.
Tested-by: David Brazdil <dbrazdil@google.com>
Signed-off-by: Andrew Scull <ascull@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210125145415.122439-2-ascull@google.com
arm_smccc_1_1_hvc() only adds write contraints for x0-3 in the inline
assembly for the HVC instruction so make sure those are the only
registers that change when __do_hyp_init is called.
Tested-by: David Brazdil <dbrazdil@google.com>
Signed-off-by: Andrew Scull <ascull@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210125145415.122439-3-ascull@google.com
Hyp code used the hyp_symbol_addr helper to force PC-relative addressing
because absolute addressing results in kernel VAs due to the way hyp
code is linked. This is not true anymore, so remove the helper and
update all of its users.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: David Brazdil <dbrazdil@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210105180541.65031-9-dbrazdil@google.com
Storing a function pointer in hyp now generates relocation information
used at early boot to convert the address to hyp VA. The existing
alternative-based conversion mechanism is therefore obsolete. Remove it
and simplify its users.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: David Brazdil <dbrazdil@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210105180541.65031-8-dbrazdil@google.com
Hyp code uses absolute addressing to obtain a kimg VA of a small number
of kernel symbols. Since the kernel now converts constant pool addresses
to hyp VAs, this trick does not work anymore.
Change the helpers to convert from hyp VA back to kimg VA or PA, as
needed and rework the callers accordingly.
Signed-off-by: David Brazdil <dbrazdil@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210105180541.65031-7-dbrazdil@google.com
KVM nVHE code runs under a different VA mapping than the kernel, hence
so far it avoided using absolute addressing because the VA in a constant
pool is relocated by the linker to a kernel VA (see hyp_symbol_addr).
Now the kernel has access to a list of positions that contain a kimg VA
but will be accessed only in hyp execution context. These are generated
by the gen-hyprel build-time tool and stored in .hyp.reloc.
Add early boot pass over the entries and convert the kimg VAs to hyp VAs.
Note that this requires for .hyp* ELF sections to be mapped read-write
at that point.
Signed-off-by: David Brazdil <dbrazdil@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210105180541.65031-6-dbrazdil@google.com
Add a post-processing step to compilation of KVM nVHE hyp code which
calls a custom host tool (gen-hyprel) on the partially linked object
file (hyp sections' names prefixed).
The tool lists all R_AARCH64_ABS64 data relocations targeting hyp
sections and generates an assembly file that will form a new section
.hyp.reloc in the kernel binary. The new section contains an array of
32-bit offsets to the positions targeted by these relocations.
Since these addresses of those positions will not be determined until
linking of `vmlinux`, each 32-bit entry carries a R_AARCH64_PREL32
relocation with addend <section_base_sym> + <r_offset>. The linker of
`vmlinux` will therefore fill the slot accordingly.
This relocation data will be used at runtime to convert the kernel VAs
at those positions to hyp VAs.
Signed-off-by: David Brazdil <dbrazdil@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210105180541.65031-5-dbrazdil@google.com