fscache_sysctls and fscache_sysctls_root are only used in main.c
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: David Howells <dhowells@redhat.com>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current "wait_on_bit" interface requires an 'action'
function to be provided which does the actual waiting.
There are over 20 such functions, many of them identical.
Most cases can be satisfied by one of just two functions, one
which uses io_schedule() and one which just uses schedule().
So:
Rename wait_on_bit and wait_on_bit_lock to
wait_on_bit_action and wait_on_bit_lock_action
to make it explicit that they need an action function.
Introduce new wait_on_bit{,_lock} and wait_on_bit{,_lock}_io
which are *not* given an action function but implicitly use
a standard one.
The decision to error-out if a signal is pending is now made
based on the 'mode' argument rather than being encoded in the action
function.
All instances of the old wait_on_bit and wait_on_bit_lock which
can use the new version have been changed accordingly and their
action functions have been discarded.
wait_on_bit{_lock} does not return any specific error code in the
event of a signal so the caller must check for non-zero and
interpolate their own error code as appropriate.
The wait_on_bit() call in __fscache_wait_on_invalidate() was
ambiguous as it specified TASK_UNINTERRUPTIBLE but used
fscache_wait_bit_interruptible as an action function.
David Howells confirms this should be uniformly
"uninterruptible"
The main remaining user of wait_on_bit{,_lock}_action is NFS
which needs to use a freezer-aware schedule() call.
A comment in fs/gfs2/glock.c notes that having multiple 'action'
functions is useful as they display differently in the 'wchan'
field of 'ps'. (and /proc/$PID/wchan).
As the new bit_wait{,_io} functions are tagged "__sched", they
will not show up at all, but something higher in the stack. So
the distinction will still be visible, only with different
function names (gds2_glock_wait versus gfs2_glock_dq_wait in the
gfs2/glock.c case).
Since first version of this patch (against 3.15) two new action
functions appeared, on in NFS and one in CIFS. CIFS also now
uses an action function that makes the same freezer aware
schedule call as NFS.
Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: David Howells <dhowells@redhat.com> (fscache, keys)
Acked-by: Steven Whitehouse <swhiteho@redhat.com> (gfs2)
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steve French <sfrench@samba.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140707051603.28027.72349.stgit@notabene.brown
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This typedef is unnecessary and should just be removed.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace seq_printf where possible + coalesce formats from 2 existing
seq_puts
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When FS-Cache allocates an object, the following sequence of events can
occur:
-->fscache_alloc_object()
-->cachefiles_alloc_object() [via cache->ops->alloc_object]
<--[returns new object]
-->fscache_attach_object()
<--[failed]
-->cachefiles_put_object() [via cache->ops->put_object]
-->fscache_object_destroy()
-->fscache_objlist_remove()
-->rb_erase() to remove the object from fscache_object_list.
resulting in a crash in the rbtree code.
The problem is that the object is only added to fscache_object_list on
the success path of fscache_attach_object() where it calls
fscache_objlist_add().
So if fscache_attach_object() fails, the object won't have been added to
the objlist rbtree. We do, however, unconditionally try to remove the
object from the tree.
Thanks to NeilBrown for finding this and suggesting this solution.
Reported-by: NeilBrown <neilb@suse.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: (a customer of) NeilBrown <neilb@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull block IO core updates from Jens Axboe:
"This is the pull request for the core changes in the block layer for
3.13. It contains:
- The new blk-mq request interface.
This is a new and more scalable queueing model that marries the
best part of the request based interface we currently have (which
is fully featured, but scales poorly) and the bio based "interface"
which the new drivers for high IOPS devices end up using because
it's much faster than the request based one.
The bio interface has no block layer support, since it taps into
the stack much earlier. This means that drivers end up having to
implement a lot of functionality on their own, like tagging,
timeout handling, requeue, etc. The blk-mq interface provides all
these. Some drivers even provide a switch to select bio or rq and
has code to handle both, since things like merging only works in
the rq model and hence is faster for some workloads. This is a
huge mess. Conversion of these drivers nets us a substantial code
reduction. Initial results on converting SCSI to this model even
shows an 8x improvement on single queue devices. So while the
model was intended to work on the newer multiqueue devices, it has
substantial improvements for "classic" hardware as well. This code
has gone through extensive testing and development, it's now ready
to go. A pull request is coming to convert virtio-blk to this
model will be will be coming as well, with more drivers scheduled
for 3.14 conversion.
- Two blktrace fixes from Jan and Chen Gang.
- A plug merge fix from Alireza Haghdoost.
- Conversion of __get_cpu_var() from Christoph Lameter.
- Fix for sector_div() with 64-bit divider from Geert Uytterhoeven.
- A fix for a race between request completion and the timeout
handling from Jeff Moyer. This is what caused the merge conflict
with blk-mq/core, in case you are looking at that.
- A dm stacking fix from Mike Snitzer.
- A code consolidation fix and duplicated code removal from Kent
Overstreet.
- A handful of block bug fixes from Mikulas Patocka, fixing a loop
crash and memory corruption on blk cg.
- Elevator switch bug fix from Tomoki Sekiyama.
A heads-up that I had to rebase this branch. Initially the immutable
bio_vecs had been queued up for inclusion, but a week later, it became
clear that it wasn't fully cooked yet. So the decision was made to
pull this out and postpone it until 3.14. It was a straight forward
rebase, just pruning out the immutable series and the later fixes of
problems with it. The rest of the patches applied directly and no
further changes were made"
* 'for-3.13/core' of git://git.kernel.dk/linux-block: (31 commits)
block: replace IS_ERR and PTR_ERR with PTR_ERR_OR_ZERO
block: replace IS_ERR and PTR_ERR with PTR_ERR_OR_ZERO
block: Do not call sector_div() with a 64-bit divisor
kernel: trace: blktrace: remove redundent memcpy() in compat_blk_trace_setup()
block: Consolidate duplicated bio_trim() implementations
block: Use rw_copy_check_uvector()
block: Enable sysfs nomerge control for I/O requests in the plug list
block: properly stack underlying max_segment_size to DM device
elevator: acquire q->sysfs_lock in elevator_change()
elevator: Fix a race in elevator switching and md device initialization
block: Replace __get_cpu_var uses
bdi: test bdi_init failure
block: fix a probe argument to blk_register_region
loop: fix crash if blk_alloc_queue fails
blk-core: Fix memory corruption if blkcg_init_queue fails
block: fix race between request completion and timeout handling
blktrace: Send BLK_TN_PROCESS events to all running traces
blk-mq: don't disallow request merges for req->special being set
blk-mq: mq plug list breakage
blk-mq: fix for flush deadlock
...
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
this_cpu_inc(y)
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Provide the ability to enable and disable fscache cookies. A disabled cookie
will reject or ignore further requests to:
Acquire a child cookie
Invalidate and update backing objects
Check the consistency of a backing object
Allocate storage for backing page
Read backing pages
Write to backing pages
but still allows:
Checks/waits on the completion of already in-progress objects
Uncaching of pages
Relinquishment of cookies
Two new operations are provided:
(1) Disable a cookie:
void fscache_disable_cookie(struct fscache_cookie *cookie,
bool invalidate);
If the cookie is not already disabled, this locks the cookie against other
dis/enablement ops, marks the cookie as being disabled, discards or
invalidates any backing objects and waits for cessation of activity on any
associated object.
This is a wrapper around a chunk split out of fscache_relinquish_cookie(),
but it reinitialises the cookie such that it can be reenabled.
All possible failures are handled internally. The caller should consider
calling fscache_uncache_all_inode_pages() afterwards to make sure all page
markings are cleared up.
(2) Enable a cookie:
void fscache_enable_cookie(struct fscache_cookie *cookie,
bool (*can_enable)(void *data),
void *data)
If the cookie is not already enabled, this locks the cookie against other
dis/enablement ops, invokes can_enable() and, if the cookie is not an
index cookie, will begin the procedure of acquiring backing objects.
The optional can_enable() function is passed the data argument and returns
a ruling as to whether or not enablement should actually be permitted to
begin.
All possible failures are handled internally. The cookie will only be
marked as enabled if provisional backing objects are allocated.
A later patch will introduce these to NFS. Cookie enablement during nfs_open()
is then contingent on i_writecount <= 0. can_enable() checks for a race
between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie
handling and allows us to get rid of open(O_RDONLY) accidentally introducing
caching to an inode that's open for writing already.
One operation has its API modified:
(3) Acquire a cookie.
struct fscache_cookie *fscache_acquire_cookie(
struct fscache_cookie *parent,
const struct fscache_cookie_def *def,
void *netfs_data,
bool enable);
This now has an additional argument that indicates whether the requested
cookie should be enabled by default. It doesn't need the can_enable()
function because the caller must prevent multiple calls for the same netfs
object and it doesn't need to take the enablement lock because no one else
can get at the cookie before this returns.
Signed-off-by: David Howells <dhowells@redhat.com
Add wrapper functions for dealing with cookie->n_active:
(*) __fscache_use_cookie() to increment it.
(*) __fscache_unuse_cookie() to decrement and test against zero.
(*) __fscache_wake_unused_cookie() to wake up anyone waiting for it to reach
zero.
The second and third are split so that the third can be done after cookie->lock
has been released in case the waiter wakes up whilst we're still holding it and
tries to get it.
We will need to wake-on-zero once the cookie disablement patch is applied
because it will then be possible to see n_active become zero without the cookie
being relinquished.
Also move the cookie usement out of fscache_attr_changed_op() and into
fscache_attr_changed() and the operation struct so that cookie disablement
will be able to track it.
Whilst we're at it, only increment n_active if we're about to do
fscache_submit_op() so that we don't have to deal with undoing it if anything
earlier fails. Possibly this should be moved into fscache_submit_op() which
could look at FSCACHE_OP_UNUSE_COOKIE.
Signed-off-by: David Howells <dhowells@redhat.com>
Pull ceph fixes from Sage Weil:
"These fix several bugs with RBD from 3.11 that didn't get tested in
time for the merge window: some error handling, a use-after-free, and
a sequencing issue when unmapping and image races with a notify
operation.
There is also a patch fixing a problem with the new ceph + fscache
code that just went in"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client:
fscache: check consistency does not decrement refcount
rbd: fix error handling from rbd_snap_name()
rbd: ignore unmapped snapshots that no longer exist
rbd: fix use-after free of rbd_dev->disk
rbd: make rbd_obj_notify_ack() synchronous
rbd: complete notifies before cleaning up osd_client and rbd_dev
libceph: add function to ensure notifies are complete
With users of radix_tree_preload() run from interrupt (block/blk-ioc.c is
one such possible user), the following race can happen:
radix_tree_preload()
...
radix_tree_insert()
radix_tree_node_alloc()
if (rtp->nr) {
ret = rtp->nodes[rtp->nr - 1];
<interrupt>
...
radix_tree_preload()
...
radix_tree_insert()
radix_tree_node_alloc()
if (rtp->nr) {
ret = rtp->nodes[rtp->nr - 1];
And we give out one radix tree node twice. That clearly results in radix
tree corruption with different results (usually OOPS) depending on which
two users of radix tree race.
We fix the problem by making radix_tree_node_alloc() always allocate fresh
radix tree nodes when in interrupt. Using preloading when in interrupt
doesn't make sense since all the allocations have to be atomic anyway and
we cannot steal nodes from process-context users because some users rely
on radix_tree_insert() succeeding after radix_tree_preload().
in_interrupt() check is somewhat ugly but we cannot simply key off passed
gfp_mask as that is acquired from root_gfp_mask() and thus the same for
all preload users.
Another part of the fix is to avoid node preallocation in
radix_tree_preload() when passed gfp_mask doesn't allow waiting. Again,
preallocation in such case doesn't make sense and when preallocation would
happen in interrupt we could possibly leak some allocated nodes. However,
some users of radix_tree_preload() require following radix_tree_insert()
to succeed. To avoid unexpected effects for these users,
radix_tree_preload() only warns if passed gfp mask doesn't allow waiting
and we provide a new function radix_tree_maybe_preload() for those users
which get different gfp mask from different call sites and which are
prepared to handle radix_tree_insert() failure.
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <jaxboe@fusionio.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__fscache_check_consistency() does not decrement the count of operations
active after it finishes in the success case. This leads to a hung tasks on
cookie de-registration (commonly in inode eviction).
INFO: task kworker/1:2:4214 blocked for more than 120 seconds.
kworker/1:2 D ffff880443513fc0 0 4214 2 0x00000000
Workqueue: ceph-msgr con_work [libceph]
...
Call Trace:
[<ffffffff81569fc6>] ? _raw_spin_unlock_irqrestore+0x16/0x20
[<ffffffffa0016570>] ? fscache_wait_bit_interruptible+0x30/0x30 [fscache]
[<ffffffff81568d09>] schedule+0x29/0x70
[<ffffffffa001657e>] fscache_wait_atomic_t+0xe/0x20 [fscache]
[<ffffffff815665cf>] out_of_line_wait_on_atomic_t+0x9f/0xe0
[<ffffffff81083560>] ? autoremove_wake_function+0x40/0x40
[<ffffffffa0015a9c>] __fscache_relinquish_cookie+0x15c/0x310 [fscache]
[<ffffffffa00a4fae>] ceph_fscache_unregister_inode_cookie+0x3e/0x50 [ceph]
[<ffffffffa007e373>] ceph_destroy_inode+0x33/0x200 [ceph]
[<ffffffff811c13ae>] ? __fsnotify_inode_delete+0xe/0x10
[<ffffffff8119ba1c>] destroy_inode+0x3c/0x70
[<ffffffff8119bb69>] evict+0x119/0x1b0
Signed-off-by: Milosz Tanski <milosz@adfin.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Sage Weil <sage@inktank.com>
Currently the fscache code expect the netfs to call fscache_readpages_or_alloc
inside the aops readpages callback. It marks all the pages in the list
provided by readahead with PG_private_2. In the cases that the netfs fails to
read all the pages (which is legal) it ends up returning to the readahead and
triggering a BUG. This happens because the page list still contains marked
pages.
This patch implements a simple fscache_readpages_cancel function that the netfs
should call before returning from readpages. It will revoke the pages from the
underlying cache backend and unmark them.
The problem was originally worked out in the Ceph devel tree, but it also
occurs in CIFS. It appears that NFS, AFS and 9P are okay as read_cache_pages()
will clean up the unprocessed pages in the case of an error.
This can be used to address the following oops:
[12410647.597278] BUG: Bad page state in process petabucket pfn:3d504e
[12410647.597292] page:ffffea000f541380 count:0 mapcount:0 mapping:
(null) index:0x0
[12410647.597298] page flags: 0x200000000001000(private_2)
...
[12410647.597334] Call Trace:
[12410647.597345] [<ffffffff815523f2>] dump_stack+0x19/0x1b
[12410647.597356] [<ffffffff8111def7>] bad_page+0xc7/0x120
[12410647.597359] [<ffffffff8111e49e>] free_pages_prepare+0x10e/0x120
[12410647.597361] [<ffffffff8111fc80>] free_hot_cold_page+0x40/0x170
[12410647.597363] [<ffffffff81123507>] __put_single_page+0x27/0x30
[12410647.597365] [<ffffffff81123df5>] put_page+0x25/0x40
[12410647.597376] [<ffffffffa02bdcf9>] ceph_readpages+0x2e9/0x6e0 [ceph]
[12410647.597379] [<ffffffff81122a8f>] __do_page_cache_readahead+0x1af/0x260
[12410647.597382] [<ffffffff81122ea1>] ra_submit+0x21/0x30
[12410647.597384] [<ffffffff81118f64>] filemap_fault+0x254/0x490
[12410647.597387] [<ffffffff8113a74f>] __do_fault+0x6f/0x4e0
[12410647.597391] [<ffffffff810125bd>] ? __switch_to+0x16d/0x4a0
[12410647.597395] [<ffffffff810865ba>] ? finish_task_switch+0x5a/0xc0
[12410647.597398] [<ffffffff8113d856>] handle_pte_fault+0xf6/0x930
[12410647.597401] [<ffffffff81008c33>] ? pte_mfn_to_pfn+0x93/0x110
[12410647.597403] [<ffffffff81008cce>] ? xen_pmd_val+0xe/0x10
[12410647.597405] [<ffffffff81005469>] ? __raw_callee_save_xen_pmd_val+0x11/0x1e
[12410647.597407] [<ffffffff8113f361>] handle_mm_fault+0x251/0x370
[12410647.597411] [<ffffffff812b0ac4>] ? call_rwsem_down_read_failed+0x14/0x30
[12410647.597414] [<ffffffff8155bffa>] __do_page_fault+0x1aa/0x550
[12410647.597418] [<ffffffff8108011d>] ? up_write+0x1d/0x20
[12410647.597422] [<ffffffff8113141c>] ? vm_mmap_pgoff+0xbc/0xe0
[12410647.597425] [<ffffffff81143bb8>] ? SyS_mmap_pgoff+0xd8/0x240
[12410647.597427] [<ffffffff8155c3ae>] do_page_fault+0xe/0x10
[12410647.597431] [<ffffffff81558818>] page_fault+0x28/0x30
Signed-off-by: Milosz Tanski <milosz@adfin.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Extend the fscache netfs API so that the netfs can ask as to whether a cache
object is up to date with respect to its corresponding netfs object:
int fscache_check_consistency(struct fscache_cookie *cookie)
This will call back to the netfs to check whether the auxiliary data associated
with a cookie is correct. It returns 0 if it is and -ESTALE if it isn't; it
may also return -ENOMEM and -ERESTARTSYS.
The backends now have to implement a mandatory operation pointer:
int (*check_consistency)(struct fscache_object *object)
that corresponds to the above API call. FS-Cache takes care of pinning the
object and the cookie in memory and managing this call with respect to the
object state.
Original-author: Hongyi Jia <jiayisuse@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Hongyi Jia <jiayisuse@gmail.com>
cc: Milosz Tanski <milosz@adfin.com>
Under certain circumstances, spin_is_locked() is hardwired to 0 - even when the
code would normally be in a locked section where it should return 1. This
means it cannot be used for an assertion that checks that a spinlock is locked.
Remove such usages from FS-Cache.
The following oops might otherwise be observed:
FS-Cache: Assertion failed
BUG: failure at fs/fscache/operation.c:270/fscache_start_operations()!
Kernel panic - not syncing: BUG!
CPU: 0 PID: 10 Comm: kworker/u2:1 Not tainted 3.10.0-rc1-00133-ge7ebb75 #2
Workqueue: fscache_operation fscache_op_work_func [fscache]
7f091c48 603c8947 7f090000 7f9b1361 7f25f080 00000001 7f26d440 7f091c90
60299eb8 7f091d90 602951c5 7f26d440 3000000008 7f091da0 7f091cc0 7f091cd0
00000007 00000007 00000006 7f091ae0 00000010 0000010e 7f9af330 7f091ae0
Call Trace:
7f091c88: [<60299eb8>] dump_stack+0x17/0x19
7f091c98: [<602951c5>] panic+0xf4/0x1e9
7f091d38: [<6002b10e>] set_signals+0x1e/0x40
7f091d58: [<6005b89e>] __wake_up+0x4e/0x70
7f091d98: [<7f9aa003>] fscache_start_operations+0x43/0x50 [fscache]
7f091da8: [<7f9aa1e3>] fscache_op_complete+0x1d3/0x220 [fscache]
7f091db8: [<60082985>] unlock_page+0x55/0x60
7f091de8: [<7fb25bb0>] cachefiles_read_copier+0x250/0x330 [cachefiles]
7f091e58: [<7f9ab03c>] fscache_op_work_func+0xac/0x120 [fscache]
7f091e88: [<6004d5b0>] process_one_work+0x250/0x3a0
7f091ef8: [<6004edc7>] worker_thread+0x177/0x2a0
7f091f38: [<6004ec50>] worker_thread+0x0/0x2a0
7f091f58: [<60054418>] kthread+0xd8/0xe0
7f091f68: [<6005bb27>] finish_task_switch.isra.64+0x37/0xa0
7f091fd8: [<600185cf>] new_thread_handler+0x8f/0xb0
Reported-by: Milosz Tanski <milosz@adfin.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-and-tested-By: Milosz Tanski <milosz@adfin.com>
struct fscache_retrieval contains a count of the number of pages that still
need some processing (n_pages). This is decremented as the pages are
processed.
However, this needs to be atomic as fscache_retrieval_complete() (I think) just
occasionally may be called from cachefiles_read_backing_file() and
cachefiles_read_copier() simultaneously.
This happens when an fscache_read_or_alloc_pages() request containing a lot of
pages (say a couple of hundred) is being processed. The read on each backing
page is dispatched individually because we need to insert a monitor into the
waitqueue to catch when the read completes. However, under low-memory
conditions, we might be forced to wait in the allocator - and this gives the
I/O on the backing page a chance to complete first.
When the I/O completes, fscache_enqueue_retrieval() chucks the retrieval onto
the workqueue without waiting for the operation to finish the initial I/O
dispatch (we want to release any pages we can as soon as we can), thus both can
end up running simultaneously and potentially attempting to partially complete
the retrieval simultaneously (ENOMEM may occur, backing pages may already be in
the page cache).
This was demonstrated by parallelling the non-atomic counter with an atomic
counter and printing both of them when the assertion fails. At this point, the
atomic counter has reached zero, but the non-atomic counter has not.
To fix this, make the counter an atomic_t.
This results in the following bug appearing
FS-Cache: Assertion failed
3 == 5 is false
------------[ cut here ]------------
kernel BUG at fs/fscache/operation.c:421!
or
FS-Cache: Assertion failed
3 == 5 is false
------------[ cut here ]------------
kernel BUG at fs/fscache/operation.c:414!
With a backtrace like the following:
RIP: 0010:[<ffffffffa0211b1d>] fscache_put_operation+0x1ad/0x240 [fscache]
Call Trace:
[<ffffffffa0213185>] fscache_retrieval_work+0x55/0x270 [fscache]
[<ffffffffa0213130>] ? fscache_retrieval_work+0x0/0x270 [fscache]
[<ffffffff81090b10>] worker_thread+0x170/0x2a0
[<ffffffff81096d10>] ? autoremove_wake_function+0x0/0x40
[<ffffffff810909a0>] ? worker_thread+0x0/0x2a0
[<ffffffff81096966>] kthread+0x96/0xa0
[<ffffffff8100c0ca>] child_rip+0xa/0x20
[<ffffffff810968d0>] ? kthread+0x0/0xa0
[<ffffffff8100c0c0>] ? child_rip+0x0/0x20
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-and-tested-By: Milosz Tanski <milosz@adfin.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Simplify the way fscache cache objects retain their cookie. The way I
implemented the cookie storage handling made synchronisation a pain (ie. the
object state machine can't rely on the cookie actually still being there).
Instead of the the object being detached from the cookie and the cookie being
freed in __fscache_relinquish_cookie(), we defer both operations:
(*) The detachment of the object from the list in the cookie now takes place
in fscache_drop_object() and is thus governed by the object state machine
(fscache_detach_from_cookie() has been removed).
(*) The release of the cookie is now in fscache_object_destroy() - which is
called by the cache backend just before it frees the object.
This means that the fscache_cookie struct is now available to the cache all the
way through from ->alloc_object() to ->drop_object() and ->put_object() -
meaning that it's no longer necessary to take object->lock to guarantee access.
However, __fscache_relinquish_cookie() doesn't wait for the object to go all
the way through to destruction before letting the netfs proceed. That would
massively slow down the netfs. Since __fscache_relinquish_cookie() leaves the
cookie around, in must therefore break all attachments to the netfs - which
includes ->def, ->netfs_data and any outstanding page read/writes.
To handle this, struct fscache_cookie now has an n_active counter:
(1) This starts off initialised to 1.
(2) Any time the cache needs to get at the netfs data, it calls
fscache_use_cookie() to increment it - if it is not zero. If it was zero,
then access is not permitted.
(3) When the cache has finished with the data, it calls fscache_unuse_cookie()
to decrement it. This does a wake-up on it if it reaches 0.
(4) __fscache_relinquish_cookie() decrements n_active and then waits for it to
reach 0. The initialisation to 1 in step (1) ensures that we only get
wake ups when we're trying to get rid of the cookie.
This leaves __fscache_relinquish_cookie() a lot simpler.
***
This fixes a problem in the current code whereby if fscache_invalidate() is
followed sufficiently quickly by fscache_relinquish_cookie() then it is
possible for __fscache_relinquish_cookie() to have detached the cookie from the
object and cleared the pointer before a thread is dispatched to process the
invalidation state in the object state machine.
Since the pending write clearance was deferred to the invalidation state to
make it asynchronous, we need to either wait in relinquishment for the stores
tree to be cleared in the invalidation state or we need to handle the clearance
in relinquishment.
Further, if the relinquishment code does clear the tree, then the invalidation
state need to make the clearance contingent on still having the cookie to hand
(since that's where the tree is rooted) and we have to prevent the cookie from
disappearing for the duration.
This can lead to an oops like the following:
BUG: unable to handle kernel NULL pointer dereference at 000000000000000c
...
RIP: 0010:[<ffffffff8151023e>] _spin_lock+0xe/0x30
...
CR2: 000000000000000c ...
...
Process kslowd002 (...)
....
Call Trace:
[<ffffffffa01c3278>] fscache_invalidate_writes+0x38/0xd0 [fscache]
[<ffffffff810096f0>] ? __switch_to+0xd0/0x320
[<ffffffff8105e759>] ? find_busiest_queue+0x69/0x150
[<ffffffff8110ddd4>] ? slow_work_enqueue+0x104/0x180
[<ffffffffa01c1303>] fscache_object_slow_work_execute+0x5e3/0x9d0 [fscache]
[<ffffffff81096b67>] ? bit_waitqueue+0x17/0xd0
[<ffffffff8110e233>] slow_work_execute+0x233/0x310
[<ffffffff8110e515>] slow_work_thread+0x205/0x360
[<ffffffff81096ca0>] ? autoremove_wake_function+0x0/0x40
[<ffffffff8110e310>] ? slow_work_thread+0x0/0x360
[<ffffffff81096936>] kthread+0x96/0xa0
[<ffffffff8100c0ca>] child_rip+0xa/0x20
[<ffffffff810968a0>] ? kthread+0x0/0xa0
[<ffffffff8100c0c0>] ? child_rip+0x0/0x20
The parameter to fscache_invalidate_writes() was object->cookie which is NULL.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-By: Milosz Tanski <milosz@adfin.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Fix object state machine to have separate work and wait states as that makes
it easier to envision.
There are now three kinds of state:
(1) Work state. This is an execution state. No event processing is performed
by a work state. The function attached to a work state returns a pointer
indicating the next state to which the OSM should transition. Returning
NO_TRANSIT repeats the current state, but goes back to the scheduler
first.
(2) Wait state. This is an event processing state. No execution is
performed by a wait state. Wait states are just tables of "if event X
occurs, clear it and transition to state Y". The dispatcher returns to
the scheduler if none of the events in which the wait state has an
interest are currently pending.
(3) Out-of-band state. This is a special work state. Transitions to normal
states can be overridden when an unexpected event occurs (eg. I/O error).
Instead the dispatcher disables and clears the OOB event and transits to
the specified work state. This then acts as an ordinary work state,
though object->state points to the overridden destination. Returning
NO_TRANSIT resumes the overridden transition.
In addition, the states have names in their definitions, so there's no need for
tables of state names. Further, the EV_REQUEUE event is no longer necessary as
that is automatic for work states.
Since the states are now separate structs rather than values in an enum, it's
not possible to use comparisons other than (non-)equality between them, so use
some object->flags to indicate what phase an object is in.
The EV_RELEASE, EV_RETIRE and EV_WITHDRAW events have been squished into one
(EV_KILL). An object flag now carries the information about retirement.
Similarly, the RELEASING, RECYCLING and WITHDRAWING states have been merged
into an KILL_OBJECT state and additional states have been added for handling
waiting dependent objects (JUMPSTART_DEPS and KILL_DEPENDENTS).
A state has also been added for synchronising with parent object initialisation
(WAIT_FOR_PARENT) and another for initiating look up (PARENT_READY).
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-By: Milosz Tanski <milosz@adfin.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Wrap checks on object state (mostly outside of fs/fscache/object.c) with
inline functions so that the mechanism can be replaced.
Some of the state checks within object.c are left as-is as they will be
replaced.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-By: Milosz Tanski <milosz@adfin.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Uninline fscache_object_init() so as not to expose some of the FS-Cache
internals to the cache backend.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-By: Milosz Tanski <milosz@adfin.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
The spinlock() within the condition in while() will cause a compile error
if it is not a function. This is not a problem on mainline but it does not
look pretty and there is no reason to do it that way.
That patch writes it a little differently and avoids the double condition.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-By: Milosz Tanski <milosz@adfin.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
There is a kernel memory leak observed when the proc file
/proc/fs/fscache/stats is read.
The reason is that in fscache_stats_open, single_open is called and the
respective release function is not called during release. Hence fix
with correct release function - single_release().
Addresses https://bugzilla.kernel.org/show_bug.cgi?id=57101
Signed-off-by: Anurup m <anurup.m@huawei.com>
Cc: shyju pv <shyju.pv@huawei.com>
Cc: Sanil kumar <sanil.kumar@huawei.com>
Cc: Nataraj m <nataraj.m@huawei.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: David Howells <dhowells@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I'm not sure why, but the hlist for each entry iterators were conceived
list_for_each_entry(pos, head, member)
The hlist ones were greedy and wanted an extra parameter:
hlist_for_each_entry(tpos, pos, head, member)
Why did they need an extra pos parameter? I'm not quite sure. Not only
they don't really need it, it also prevents the iterator from looking
exactly like the list iterator, which is unfortunate.
Besides the semantic patch, there was some manual work required:
- Fix up the actual hlist iterators in linux/list.h
- Fix up the declaration of other iterators based on the hlist ones.
- A very small amount of places were using the 'node' parameter, this
was modified to use 'obj->member' instead.
- Coccinelle didn't handle the hlist_for_each_entry_safe iterator
properly, so those had to be fixed up manually.
The semantic patch which is mostly the work of Peter Senna Tschudin is here:
@@
iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host;
type T;
expression a,c,d,e;
identifier b;
statement S;
@@
-T b;
<+... when != b
(
hlist_for_each_entry(a,
- b,
c, d) S
|
hlist_for_each_entry_continue(a,
- b,
c) S
|
hlist_for_each_entry_from(a,
- b,
c) S
|
hlist_for_each_entry_rcu(a,
- b,
c, d) S
|
hlist_for_each_entry_rcu_bh(a,
- b,
c, d) S
|
hlist_for_each_entry_continue_rcu_bh(a,
- b,
c) S
|
for_each_busy_worker(a, c,
- b,
d) S
|
ax25_uid_for_each(a,
- b,
c) S
|
ax25_for_each(a,
- b,
c) S
|
inet_bind_bucket_for_each(a,
- b,
c) S
|
sctp_for_each_hentry(a,
- b,
c) S
|
sk_for_each(a,
- b,
c) S
|
sk_for_each_rcu(a,
- b,
c) S
|
sk_for_each_from
-(a, b)
+(a)
S
+ sk_for_each_from(a) S
|
sk_for_each_safe(a,
- b,
c, d) S
|
sk_for_each_bound(a,
- b,
c) S
|
hlist_for_each_entry_safe(a,
- b,
c, d, e) S
|
hlist_for_each_entry_continue_rcu(a,
- b,
c) S
|
nr_neigh_for_each(a,
- b,
c) S
|
nr_neigh_for_each_safe(a,
- b,
c, d) S
|
nr_node_for_each(a,
- b,
c) S
|
nr_node_for_each_safe(a,
- b,
c, d) S
|
- for_each_gfn_sp(a, c, d, b) S
+ for_each_gfn_sp(a, c, d) S
|
- for_each_gfn_indirect_valid_sp(a, c, d, b) S
+ for_each_gfn_indirect_valid_sp(a, c, d) S
|
for_each_host(a,
- b,
c) S
|
for_each_host_safe(a,
- b,
c, d) S
|
for_each_mesh_entry(a,
- b,
c, d) S
)
...+>
[akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c]
[akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c]
[akpm@linux-foundation.org: checkpatch fixes]
[akpm@linux-foundation.org: fix warnings]
[akpm@linux-foudnation.org: redo intrusive kvm changes]
Tested-by: Peter Senna Tschudin <peter.senna@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mark as cancelled an operation that is in progress rather than pending at the
time it is cancelled, and call fscache_complete_op() to cancel an operation so
that blocked ops can be started.
Signed-off-by: David Howells <dhowells@redhat.com>
In fscache_write_op(), if the object is determined to have become inactive or
to have lost its cookie, we don't move the operation state from in-progress,
and so an assertion in fscache_put_operation() fails with an assertion (see
below).
Instrumenting fscache_op_work_func() indicates that it called
fscache_write_op() before calling fscache_put_operation() - where the assertion
failed. The assertion at line 433 indicates that the operation state is
IN_PROGRESS rather than being COMPLETE or CANCELLED.
Instrumenting fscache_write_op() showed that it was being called on an object
that had had its cookie removed and that this was due to relinquishment of the
cookie by the netfs. At this point fscache no longer has access to the pages
of netfs data that were requested to be written, and so simply cancelling the
operation is the thing to do.
FS-Cache: Assertion failed
3 == 5 is false
------------[ cut here ]------------
kernel BUG at fs/fscache/operation.c:433!
invalid opcode: 0000 [#1] SMP
Modules linked in: cachefiles(F) nfsv4(F) nfsv3(F) nfsv2(F) nfs(F) fscache(F) auth_rpcgss(F) nfs_acl(F) lockd(F) sunrpc(F)
CPU 0
Pid: 1035, comm: kworker/u:3 Tainted: GF 3.7.0-rc8-fsdevel+ #411 /DG965RY
RIP: 0010:[<ffffffffa007db22>] [<ffffffffa007db22>] fscache_put_operation+0x11a/0x2ed [fscache]
RSP: 0018:ffff88003e32bcf8 EFLAGS: 00010296
RAX: 000000000000000f RBX: ffff88001818eb78 RCX: ffffffff6c102000
RDX: ffffffff8102d1ad RSI: ffffffff6c102000 RDI: ffffffff8102d1d6
RBP: ffff88003e32bd18 R08: 0000000000000002 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: ffffffffa00811da
R13: 0000000000000001 R14: 0000000100625d26 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff88003bc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 00007fff7dd31c68 CR3: 000000003d730000 CR4: 00000000000007f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process kworker/u:3 (pid: 1035, threadinfo ffff88003e32a000, task ffff88003bb38080)
Stack:
ffffffff8102d1ad ffff88001818eb78 ffffffffa00811da 0000000000000001
ffff88003e32bd48 ffffffffa007f0ad ffff88001818eb78 ffffffff819583c0
ffff88003df24e00 ffff88003882c3e0 ffff88003e32bde8 ffffffff81042de0
Call Trace:
[<ffffffff8102d1ad>] ? vprintk_emit+0x3c6/0x41a
[<ffffffffa00811da>] ? __fscache_read_or_alloc_pages+0x4bc/0x4bc [fscache]
[<ffffffffa007f0ad>] fscache_op_work_func+0xec/0x123 [fscache]
[<ffffffff81042de0>] process_one_work+0x21c/0x3b0
[<ffffffff81042d82>] ? process_one_work+0x1be/0x3b0
[<ffffffffa007efc1>] ? fscache_operation_gc+0x23e/0x23e [fscache]
[<ffffffff8104332e>] worker_thread+0x202/0x2df
[<ffffffff8104312c>] ? rescuer_thread+0x18e/0x18e
[<ffffffff81047c1c>] kthread+0xd0/0xd8
[<ffffffff81421bfa>] ? _raw_spin_unlock_irq+0x29/0x3e
[<ffffffff81047b4c>] ? __init_kthread_worker+0x55/0x55
[<ffffffff814227ec>] ret_from_fork+0x7c/0xb0
[<ffffffff81047b4c>] ? __init_kthread_worker+0x55/0x55
Signed-off-by: David Howells <dhowells@redhat.com>
Add a missing transition to the FS-Cache object state machine to handle an
invalidation event occuring between the back end completing the object lookup
by calling fscache_obtained_object() (which moves to state OBJECT_AVAILABLE)
and the backend returning to fscache_lookup_object() and thence to
fscache_object_state_machine() which then does a goto lookup_transit to handle
the transition - but lookup_transit doesn't handle EV_INVALIDATE.
Without this, the following BUG can be logged:
FS-Cache: Unsupported event 2 [5/f7] in state OBJECT_AVAILABLE
------------[ cut here ]------------
kernel BUG at fs/fscache/object.c:357!
Where event 2 is EV_INVALIDATE.
Signed-off-by: David Howells <dhowells@redhat.com>
nfs_migrate_page() does not wait for FS-Cache to finish with a page, probably
leading to the following bad-page-state:
BUG: Bad page state in process python-bin pfn:17d39b
page:ffffea00053649e8 flags:004000000000100c count:0 mapcount:0 mapping:(null)
index:38686 (Tainted: G B ---------------- )
Pid: 31053, comm: python-bin Tainted: G B ----------------
2.6.32-71.24.1.el6.x86_64 #1
Call Trace:
[<ffffffff8111bfe7>] bad_page+0x107/0x160
[<ffffffff8111ee69>] free_hot_cold_page+0x1c9/0x220
[<ffffffff8111ef19>] __pagevec_free+0x59/0xb0
[<ffffffff8104b988>] ? flush_tlb_others_ipi+0x128/0x130
[<ffffffff8112230c>] release_pages+0x21c/0x250
[<ffffffff8115b92a>] ? remove_migration_pte+0x28a/0x2b0
[<ffffffff8115f3f8>] ? mem_cgroup_get_reclaim_stat_from_page+0x18/0x70
[<ffffffff81122687>] ____pagevec_lru_add+0x167/0x180
[<ffffffff811226f8>] __lru_cache_add+0x58/0x70
[<ffffffff81122731>] lru_cache_add_lru+0x21/0x40
[<ffffffff81123f49>] putback_lru_page+0x69/0x100
[<ffffffff8115c0bd>] migrate_pages+0x13d/0x5d0
[<ffffffff81122687>] ? ____pagevec_lru_add+0x167/0x180
[<ffffffff81152ab0>] ? compaction_alloc+0x0/0x370
[<ffffffff8115255c>] compact_zone+0x4cc/0x600
[<ffffffff8111cfac>] ? get_page_from_freelist+0x15c/0x820
[<ffffffff810672f4>] ? check_preempt_wakeup+0x1c4/0x3c0
[<ffffffff8115290e>] compact_zone_order+0x7e/0xb0
[<ffffffff81152a49>] try_to_compact_pages+0x109/0x170
[<ffffffff8111e94d>] __alloc_pages_nodemask+0x5ed/0x850
[<ffffffff814c9136>] ? thread_return+0x4e/0x778
[<ffffffff81150d43>] alloc_pages_vma+0x93/0x150
[<ffffffff81167ea5>] do_huge_pmd_anonymous_page+0x135/0x340
[<ffffffff814cb6f6>] ? rwsem_down_read_failed+0x26/0x30
[<ffffffff81136755>] handle_mm_fault+0x245/0x2b0
[<ffffffff814ce383>] do_page_fault+0x123/0x3a0
[<ffffffff814cbdf5>] page_fault+0x25/0x30
nfs_migrate_page() calls nfs_fscache_release_page() which doesn't actually wait
- even if __GFP_WAIT is set. The reason that doesn't wait is that
fscache_maybe_release_page() might deadlock the allocator as the work threads
writing to the cache may all end up sleeping on memory allocation.
However, I wonder if that is actually a problem. There are a number of things
I can do to deal with this:
(1) Make nfs_migrate_page() wait.
(2) Make fscache_maybe_release_page() honour the __GFP_WAIT flag.
(3) Set a timeout around the wait.
(4) Make nfs_migrate_page() return an error if the page is still busy.
For the moment, I'll select (2) and (4).
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
The function to submit an exclusive op (fscache_submit_exclusive_op()) can BUG
if there's been an I/O error because it may see the parent cache object in an
unexpected state. It should only BUG if there hasn't been an I/O error.
In this case the problem was produced by remounting the cache partition to be
R/O. The EROFS state was detected and the cache was aborted, but not
everything handled the aborting correctly.
SysRq : Emergency Remount R/O
EXT4-fs (sda6): re-mounted. Opts: (null)
Emergency Remount complete
CacheFiles: I/O Error: Failed to update xattr with error -30
FS-Cache: Cache cachefiles stopped due to I/O error
------------[ cut here ]------------
kernel BUG at fs/fscache/operation.c:128!
invalid opcode: 0000 [#1] SMP
CPU 0
Modules linked in: cachefiles nfs fscache auth_rpcgss nfs_acl lockd sunrpc
Pid: 6612, comm: kworker/u:2 Not tainted 3.1.0-rc8-fsdevel+ #1093 /DG965RY
RIP: 0010:[<ffffffffa00739c0>] [<ffffffffa00739c0>] fscache_submit_exclusive_op+0x2ad/0x2c2 [fscache]
RSP: 0018:ffff880000853d40 EFLAGS: 00010206
RAX: ffff880038ac72a8 RBX: ffff8800181f2260 RCX: ffffffff81f2b2b0
RDX: 0000000000000001 RSI: ffffffff8179a478 RDI: ffff8800181f2280
RBP: ffff880000853d60 R08: 0000000000000002 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000001 R12: ffff880038ac7268
R13: ffff8800181f2280 R14: ffff88003a359190 R15: 000000010122b162
FS: 0000000000000000(0000) GS:ffff88003bc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 00000034cc4a77f0 CR3: 0000000010e96000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process kworker/u:2 (pid: 6612, threadinfo ffff880000852000, task ffff880014c3c040)
Stack:
ffff8800181f2260 ffff8800181f2310 ffff880038ac7268 ffff8800181f2260
ffff880000853dc0 ffffffffa0072375 ffff880037ecfe00 ffff88003a359198
ffff880000853dc0 0000000000000246 0000000000000000 ffff88000a91d308
Call Trace:
[<ffffffffa0072375>] fscache_object_work_func+0x792/0xe65 [fscache]
[<ffffffff81047e44>] process_one_work+0x1eb/0x37f
[<ffffffff81047de6>] ? process_one_work+0x18d/0x37f
[<ffffffffa0071be3>] ? fscache_enqueue_dependents+0xd8/0xd8 [fscache]
[<ffffffff810482e4>] worker_thread+0x15a/0x21a
[<ffffffff8104818a>] ? rescuer_thread+0x188/0x188
[<ffffffff8104bf96>] kthread+0x7f/0x87
[<ffffffff813ad6f4>] kernel_thread_helper+0x4/0x10
[<ffffffff81026b98>] ? finish_task_switch+0x45/0xc0
[<ffffffff813abd1d>] ? retint_restore_args+0xe/0xe
[<ffffffff8104bf17>] ? __init_kthread_worker+0x53/0x53
[<ffffffff813ad6f0>] ? gs_change+0xb/0xb
Signed-off-by: David Howells <dhowells@redhat.com>
Limit the number of I/O error reports for a cache to 1 to prevent massive
amounts of noise. After the first I/O error the cache is taken off line
automatically, so must be restarted to resume caching.
Signed-off-by: David Howells <dhowells@redhat.com>
Don't mask off the object event mask when printing it. That way it can be seen
if threre are bits set that shouldn't be.
Signed-off-by: David Howells <dhowells@redhat.com>
Initialise the object event mask with the calculated mask rather than unmasking
undefined events also.
Signed-off-by: David Howells <dhowells@redhat.com>
Provide a proper invalidation method rather than relying on the netfs retiring
the cookie it has and getting a new one. The problem with this is that isn't
easy for the netfs to make sure that it has completed/cancelled all its
outstanding storage and retrieval operations on the cookie it is retiring.
Instead, have the cache provide an invalidation method that will cancel or wait
for all currently outstanding operations before invalidating the cache, and
will cause new operations to queue up behind that. Whilst invalidation is in
progress, some requests will be rejected until the cache can stack a barrier on
the operation queue to cause new operations to be deferred behind it.
Signed-off-by: David Howells <dhowells@redhat.com>
Fix the state management of internal fscache operations and the accounting of
what operations are in what states.
This is done by:
(1) Give struct fscache_operation a enum variable that directly represents the
state it's currently in, rather than spreading this knowledge over a bunch
of flags, who's processing the operation at the moment and whether it is
queued or not.
This makes it easier to write assertions to check the state at various
points and to prevent invalid state transitions.
(2) Add an 'operation complete' state and supply a function to indicate the
completion of an operation (fscache_op_complete()) and make things call
it. The final call to fscache_put_operation() can then check that an op
in the appropriate state (complete or cancelled).
(3) Adjust the use of object->n_ops, ->n_in_progress, ->n_exclusive to better
govern the state of an object:
(a) The ->n_ops is now the number of extant operations on the object
and is now decremented by fscache_put_operation() only.
(b) The ->n_in_progress is simply the number of objects that have been
taken off of the object's pending queue for the purposes of being
run. This is decremented by fscache_op_complete() only.
(c) The ->n_exclusive is the number of exclusive ops that have been
submitted and queued or are in progress. It is decremented by
fscache_op_complete() and by fscache_cancel_op().
fscache_put_operation() and fscache_operation_gc() now no longer try to
clean up ->n_exclusive and ->n_in_progress. That was leading to double
decrements against fscache_cancel_op().
fscache_cancel_op() now no longer decrements ->n_ops. That was leading to
double decrements against fscache_put_operation().
fscache_submit_exclusive_op() now decides whether it has to queue an op
based on ->n_in_progress being > 0 rather than ->n_ops > 0 as the latter
will persist in being true even after all preceding operations have been
cancelled or completed. Furthermore, if an object is active and there are
runnable ops against it, there must be at least one op running.
(4) Add a remaining-pages counter (n_pages) to struct fscache_retrieval and
provide a function to record completion of the pages as they complete.
When n_pages reaches 0, the operation is deemed to be complete and
fscache_op_complete() is called.
Add calls to fscache_retrieval_complete() anywhere we've finished with a
page we've been given to read or allocate for. This includes places where
we just return pages to the netfs for reading from the server and where
accessing the cache fails and we discard the proposed netfs page.
The bugs in the unfixed state management manifest themselves as oopses like the
following where the operation completion gets out of sync with return of the
cookie by the netfs. This is possible because the cache unlocks and returns
all the netfs pages before recording its completion - which means that there's
nothing to stop the netfs discarding them and returning the cookie.
FS-Cache: Cookie 'NFS.fh' still has outstanding reads
------------[ cut here ]------------
kernel BUG at fs/fscache/cookie.c:519!
invalid opcode: 0000 [#1] SMP
CPU 1
Modules linked in: cachefiles nfs fscache auth_rpcgss nfs_acl lockd sunrpc
Pid: 400, comm: kswapd0 Not tainted 3.1.0-rc7-fsdevel+ #1090 /DG965RY
RIP: 0010:[<ffffffffa007050a>] [<ffffffffa007050a>] __fscache_relinquish_cookie+0x170/0x343 [fscache]
RSP: 0018:ffff8800368cfb00 EFLAGS: 00010282
RAX: 000000000000003c RBX: ffff880023cc8790 RCX: 0000000000000000
RDX: 0000000000002f2e RSI: 0000000000000001 RDI: ffffffff813ab86c
RBP: ffff8800368cfb50 R08: 0000000000000002 R09: 0000000000000000
R10: ffff88003a1b7890 R11: ffff88001df6e488 R12: ffff880023d8ed98
R13: ffff880023cc8798 R14: 0000000000000004 R15: ffff88003b8bf370
FS: 0000000000000000(0000) GS:ffff88003bd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 00000000008ba008 CR3: 0000000023d93000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process kswapd0 (pid: 400, threadinfo ffff8800368ce000, task ffff88003b8bf040)
Stack:
ffff88003b8bf040 ffff88001df6e528 ffff88001df6e528 ffffffffa00b46b0
ffff88003b8bf040 ffff88001df6e488 ffff88001df6e620 ffffffffa00b46b0
ffff88001ebd04c8 0000000000000004 ffff8800368cfb70 ffffffffa00b2c91
Call Trace:
[<ffffffffa00b2c91>] nfs_fscache_release_inode_cookie+0x3b/0x47 [nfs]
[<ffffffffa008f25f>] nfs_clear_inode+0x3c/0x41 [nfs]
[<ffffffffa0090df1>] nfs4_evict_inode+0x2f/0x33 [nfs]
[<ffffffff810d8d47>] evict+0xa1/0x15c
[<ffffffff810d8e2e>] dispose_list+0x2c/0x38
[<ffffffff810d9ebd>] prune_icache_sb+0x28c/0x29b
[<ffffffff810c56b7>] prune_super+0xd5/0x140
[<ffffffff8109b615>] shrink_slab+0x102/0x1ab
[<ffffffff8109d690>] balance_pgdat+0x2f2/0x595
[<ffffffff8103e009>] ? process_timeout+0xb/0xb
[<ffffffff8109dba3>] kswapd+0x270/0x289
[<ffffffff8104c5ea>] ? __init_waitqueue_head+0x46/0x46
[<ffffffff8109d933>] ? balance_pgdat+0x595/0x595
[<ffffffff8104bf7a>] kthread+0x7f/0x87
[<ffffffff813ad6b4>] kernel_thread_helper+0x4/0x10
[<ffffffff81026b98>] ? finish_task_switch+0x45/0xc0
[<ffffffff813abcdd>] ? retint_restore_args+0xe/0xe
[<ffffffff8104befb>] ? __init_kthread_worker+0x53/0x53
[<ffffffff813ad6b0>] ? gs_change+0xb/0xb
Signed-off-by: David Howells <dhowells@redhat.com>
Make fscache_relinquish_cookie() log a warning and wait if there are any
outstanding reads left on the cookie it was given.
Signed-off-by: David Howells <dhowells@redhat.com>
Check that the netfs isn't trying to relinquish a cookie that still has read
operations in progress upon it. If there are, then give log a warning and BUG.
Signed-off-by: David Howells <dhowells@redhat.com>
Downgrade the requirements passed to the allocator in the gfp flags parameter.
FS-Cache/CacheFiles can handle OOM conditions simply by aborting the attempt to
store an object or a page in the cache.
Signed-off-by: David Howells <dhowells@redhat.com>
Under some circumstances CacheFiles defers the marking of pages with PG_fscache
so that it can take advantage of pagevecs to reduce the number of calls to
fscache_mark_pages_cached() and the netfs's hook to keep track of this.
There are, however, two problems with this:
(1) It can lead to the PG_fscache mark being applied _after_ the page is set
PG_uptodate and unlocked (by the call to fscache_end_io()).
(2) CacheFiles's ref on the page is dropped immediately following
fscache_end_io() - and so may not still be held when the mark is applied.
This can lead to the page being passed back to the allocator before the
mark is applied.
Fix this by, where appropriate, marking the page before calling
fscache_end_io() and releasing the page. This means that we can't take
advantage of pagevecs and have to make a separate call for each page to the
marking routines.
The symptoms of this are Bad Page state errors cropping up under memory
pressure, for example:
BUG: Bad page state in process tar pfn:002da
page:ffffea0000009fb0 count:0 mapcount:0 mapping: (null) index:0x1447
page flags: 0x1000(private_2)
Pid: 4574, comm: tar Tainted: G W 3.1.0-rc4-fsdevel+ #1064
Call Trace:
[<ffffffff8109583c>] ? dump_page+0xb9/0xbe
[<ffffffff81095916>] bad_page+0xd5/0xea
[<ffffffff81095d82>] get_page_from_freelist+0x35b/0x46a
[<ffffffff810961f3>] __alloc_pages_nodemask+0x362/0x662
[<ffffffff810989da>] __do_page_cache_readahead+0x13a/0x267
[<ffffffff81098942>] ? __do_page_cache_readahead+0xa2/0x267
[<ffffffff81098d7b>] ra_submit+0x1c/0x20
[<ffffffff8109900a>] ondemand_readahead+0x28b/0x29a
[<ffffffff81098ee2>] ? ondemand_readahead+0x163/0x29a
[<ffffffff810990ce>] page_cache_sync_readahead+0x38/0x3a
[<ffffffff81091d8a>] generic_file_aio_read+0x2ab/0x67e
[<ffffffffa008cfbe>] nfs_file_read+0xa4/0xc9 [nfs]
[<ffffffff810c22c4>] do_sync_read+0xba/0xfa
[<ffffffff81177a47>] ? security_file_permission+0x7b/0x84
[<ffffffff810c25dd>] ? rw_verify_area+0xab/0xc8
[<ffffffff810c29a4>] vfs_read+0xaa/0x13a
[<ffffffff810c2a79>] sys_read+0x45/0x6c
[<ffffffff813ac37b>] system_call_fastpath+0x16/0x1b
As can be seen, PG_private_2 (== PG_fscache) is set in the page flags.
Instrumenting fscache_mark_pages_cached() to verify whether page->mapping was
set appropriately showed that sometimes it wasn't. This led to the discovery
that sometimes the page has apparently been reclaimed by the time the marker
got to see it.
Reported-by: M. Stevens <m@tippett.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
The compiler, at least for ix86 and m68k, validly warns that the
comparison:
next <= (loff_t)-1
is always true (and it's always true also for x86-64 and probably all
other arches - as long as pgoff_t isn't wider than loff_t). The
intention appears to be to avoid wrapping of "next", so rather than
eliminating the pointless comparison, fix the loop to indeed get exited
when "next" would otherwise wrap.
On m68k the following warning is observed:
fs/fscache/page.c: In function '__fscache_uncache_all_inode_pages':
fs/fscache/page.c:979: warning: comparison is always false due to limited range of data type
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reported-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Suresh Jayaraman <sjayaraman@suse.de>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add an FS-Cache helper to bulk uncache pages on an inode. This will
only work for the circumstance where the pages in the cache correspond
1:1 with the pages attached to an inode's page cache.
This is required for CIFS and NFS: When disabling inode cookie, we were
returning the cookie and setting cifsi->fscache to NULL but failed to
invalidate any previously mapped pages. This resulted in "Bad page
state" errors and manifested in other kind of errors when running
fsstress. Fix it by uncaching mapped pages when we disable the inode
cookie.
This patch should fix the following oops and "Bad page state" errors
seen during fsstress testing.
------------[ cut here ]------------
kernel BUG at fs/cachefiles/namei.c:201!
invalid opcode: 0000 [#1] SMP
Pid: 5, comm: kworker/u:0 Not tainted 2.6.38.7-30.fc15.x86_64 #1 Bochs Bochs
RIP: 0010: cachefiles_walk_to_object+0x436/0x745 [cachefiles]
RSP: 0018:ffff88002ce6dd00 EFLAGS: 00010282
RAX: ffff88002ef165f0 RBX: ffff88001811f500 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000100 RDI: 0000000000000282
RBP: ffff88002ce6dda0 R08: 0000000000000100 R09: ffffffff81b3a300
R10: 0000ffff00066c0a R11: 0000000000000003 R12: ffff88002ae54840
R13: ffff88002ae54840 R14: ffff880029c29c00 R15: ffff88001811f4b0
FS: 00007f394dd32720(0000) GS:ffff88002ef00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 00007fffcb62ddf8 CR3: 000000001825f000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process kworker/u:0 (pid: 5, threadinfo ffff88002ce6c000, task ffff88002ce55cc0)
Stack:
0000000000000246 ffff88002ce55cc0 ffff88002ce6dd58 ffff88001815dc00
ffff8800185246c0 ffff88001811f618 ffff880029c29d18 ffff88001811f380
ffff88002ce6dd50 ffffffff814757e4 ffff88002ce6dda0 ffffffff8106ac56
Call Trace:
cachefiles_lookup_object+0x78/0xd4 [cachefiles]
fscache_lookup_object+0x131/0x16d [fscache]
fscache_object_work_func+0x1bc/0x669 [fscache]
process_one_work+0x186/0x298
worker_thread+0xda/0x15d
kthread+0x84/0x8c
kernel_thread_helper+0x4/0x10
RIP cachefiles_walk_to_object+0x436/0x745 [cachefiles]
---[ end trace 1d481c9af1804caa ]---
I tested the uncaching by the following means:
(1) Create a big file on my NFS server (104857600 bytes).
(2) Read the file into the cache with md5sum on the NFS client. Look in
/proc/fs/fscache/stats:
Pages : mrk=25601 unc=0
(3) Open the file for read/write ("bash 5<>/warthog/bigfile"). Look in proc
again:
Pages : mrk=25601 unc=25601
Reported-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-and-Tested-by: Suresh Jayaraman <sjayaraman@suse.de>
cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no CONFIG_WORKQUEUE_DEBUGFS any more, so this code is dead.
Signed-off-by: WANG Cong <amwang@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
fscache_submit_exclusive_op() adds an operation to the pending list if
other operations are pending. Fix the check for pending ops as n_ops
must be greater than 0 at the point it is checked as it is incremented
immediately before under lock.
Signed-off-by: Akshat Aranya <aranya@nec-labs.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a dummy printk function for the maintenance of unused printks through gcc
format checking, and also so that side-effect checking is maintained too.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 8b8edefa (fscache: convert object to use workqueue instead of
slow-work) made fscache_exit() call unregister_sysctl_table()
unconditionally breaking build when sysctl is disabled. Fix it by
putting it inside CONFIG_SYSCTL.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: David Howells <dhowells@redhat.com>
Make fscache operation to use only workqueue instead of combination of
workqueue and slow-work. FSCACHE_OP_SLOW is dropped and
FSCACHE_OP_FAST is renamed to FSCACHE_OP_ASYNC and uses newly added
fscache_op_wq workqueue to execute op->processor().
fscache_operation_init_slow() is dropped and fscache_operation_init()
now takes @processor argument directly.
* Unbound workqueue is used.
* fscache_retrieval_work() is no longer necessary as OP_ASYNC now does
the equivalent thing.
* sysctl fscache.operation_max_active added to control concurrency.
The default value is nr_cpus clamped between 2 and
WQ_UNBOUND_MAX_ACTIVE.
* debugfs support is dropped for now. Tracing API based debug
facility is planned to be added.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Howells <dhowells@redhat.com>
Make fscache object state transition callbacks use workqueue instead
of slow-work. New dedicated unbound CPU workqueue fscache_object_wq
is created. get/put callbacks are renamed and modified to take
@object and called directly from the enqueue wrapper and the work
function. While at it, make all open coded instances of get/put to
use fscache_get/put_object().
* Unbound workqueue is used.
* work_busy() output is printed instead of slow-work flags in object
debugging outputs. They mean basically the same thing bit-for-bit.
* sysctl fscache.object_max_active added to control concurrency. The
default value is nr_cpus clamped between 4 and
WQ_UNBOUND_MAX_ACTIVE.
* slow_work_sleep_till_thread_needed() is replaced with fscache
private implementation fscache_object_sleep_till_congested() which
waits on fscache_object_wq congestion.
* debugfs support is dropped for now. Tracing API based debug
facility is planned to be added.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Howells <dhowells@redhat.com>
fscache_write_op() makes unnecessary checks of the page variable to see if it
is NULL. It can't be NULL at those points as the kernel would already have
crashed a little higher up where we examined page->index.
Furthermore, unless radix_tree_gang_lookup_tag() can return 1 but no page, a
NULL pointer crash should not be encountered there as we can only get there if
r_t_g_l_t() returned 1.
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
fs/fscache/object-list.c: In function 'fscache_objlist_lookup':
fs/fscache/object-list.c:105: warning: cast to pointer from integer of different size
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Order the debugfs statistics correctly. The values displayed through a
seq_printf() statement should be in the same order as the names in the
format string.
In the 'Lookups' line, objects created ('crt=') and lookups timed out
('tmo=') have their values transposed.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
CONFIG_SLOW_WORK_PROC was changed to CONFIG_SLOW_WORK_DEBUG, but not in all
instances. Change the remaining instances. This makes the debugfs file
display the time mark and the owner's description again.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sparse complained about this missing spin_unlock()
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the EXPERIMENTAL flag from FS-Cache so that Ubuntu can make use of the
facility.
Signed-off-by: Christian Kujau <lists@nerdbynature.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andrew Morton's compiler sees the following warning in FS-Cache:
fs/fscache/object-list.c: In function 'fscache_objlist_lookup':
fs/fscache/object-list.c:94: warning: 'obj' may be used uninitialized in this function
which my compiler doesn't. This is a false positive as obj can only be
used in the comparison against minobj if minobj has been set to something
other than NULL, but for that to happen, obj has to be first set to
something.
Deal with this by preclearing obj too.
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Provide nop fscache_stat_d() macro if CONFIG_FSCACHE_STATS=n lest errors like
the following occur:
fs/fscache/cache.c: In function 'fscache_withdraw_cache':
fs/fscache/cache.c:386: error: implicit declaration of function 'fscache_stat_d'
fs/fscache/cache.c:386: error: 'fscache_n_cop_sync_cache' undeclared (first use in this function)
fs/fscache/cache.c:386: error: (Each undeclared identifier is reported only once
fs/fscache/cache.c:386: error: for each function it appears in.)
fs/fscache/cache.c:392: error: 'fscache_n_cop_dissociate_pages' undeclared (first use in this function)
Signed-off-by: David Howells <dhowells@redhat.com>
Catch an overly long wait for an old, dying active object when we want to
replace it with a new one. The probability is that all the slow-work threads
are hogged, and the delete can't get a look in.
What we do instead is:
(1) if there's nothing in the slow work queue, we sleep until either the dying
object has finished dying or there is something in the slow work queue
behind which we can queue our object.
(2) if there is something in the slow work queue, we return ETIMEDOUT to
fscache_lookup_object(), which then puts us back on the slow work queue,
presumably behind the deletion that we're blocked by. We are then
deferred for a while until we work our way back through the queue -
without blocking a slow-work thread unnecessarily.
A backtrace similar to the following may appear in the log without this patch:
INFO: task kslowd004:5711 blocked for more than 120 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
kslowd004 D 0000000000000000 0 5711 2 0x00000080
ffff88000340bb80 0000000000000046 ffff88002550d000 0000000000000000
ffff88002550d000 0000000000000007 ffff88000340bfd8 ffff88002550d2a8
000000000000ddf0 00000000000118c0 00000000000118c0 ffff88002550d2a8
Call Trace:
[<ffffffff81058e21>] ? trace_hardirqs_on+0xd/0xf
[<ffffffffa011c4d8>] ? cachefiles_wait_bit+0x0/0xd [cachefiles]
[<ffffffffa011c4e1>] cachefiles_wait_bit+0x9/0xd [cachefiles]
[<ffffffff81353153>] __wait_on_bit+0x43/0x76
[<ffffffff8111ae39>] ? ext3_xattr_get+0x1ec/0x270
[<ffffffff813531ef>] out_of_line_wait_on_bit+0x69/0x74
[<ffffffffa011c4d8>] ? cachefiles_wait_bit+0x0/0xd [cachefiles]
[<ffffffff8104c125>] ? wake_bit_function+0x0/0x2e
[<ffffffffa011bc79>] cachefiles_mark_object_active+0x203/0x23b [cachefiles]
[<ffffffffa011c209>] cachefiles_walk_to_object+0x558/0x827 [cachefiles]
[<ffffffffa011a429>] cachefiles_lookup_object+0xac/0x12a [cachefiles]
[<ffffffffa00aa1e9>] fscache_lookup_object+0x1c7/0x214 [fscache]
[<ffffffffa00aafc5>] fscache_object_state_machine+0xa5/0x52d [fscache]
[<ffffffffa00ab4ac>] fscache_object_slow_work_execute+0x5f/0xa0 [fscache]
[<ffffffff81082093>] slow_work_execute+0x18f/0x2d1
[<ffffffff8108239a>] slow_work_thread+0x1c5/0x308
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffff810821d5>] ? slow_work_thread+0x0/0x308
[<ffffffff8104be91>] kthread+0x7a/0x82
[<ffffffff8100beda>] child_rip+0xa/0x20
[<ffffffff8100b87c>] ? restore_args+0x0/0x30
[<ffffffff8104be17>] ? kthread+0x0/0x82
[<ffffffff8100bed0>] ? child_rip+0x0/0x20
1 lock held by kslowd004/5711:
#0: (&sb->s_type->i_mutex_key#7/1){+.+.+.}, at: [<ffffffffa011be64>] cachefiles_walk_to_object+0x1b3/0x827 [cachefiles]
Signed-off-by: David Howells <dhowells@redhat.com>
FS-Cache objects have an FSCACHE_OBJECT_EV_REQUEUE event that can theoretically
be raised to ask the state machine to requeue the object for further processing
before the work function returns to the slow-work facility.
However, fscache_object_work_execute() was clearing that bit before checking
the event mask to see whether the object has any pending events that require it
to be requeued immediately.
Instead, the bit should be cleared after the check and enqueue.
Signed-off-by: David Howells <dhowells@redhat.com>
Start processing an object's operations when that object moves into the DYING
state as the object cannot be destroyed until all its outstanding operations
have completed.
Furthermore, make sure that read and allocation operations handle being woken
up on a dead object. Such events are recorded in the Allocs.abt and
Retrvls.abt statistics as viewable through /proc/fs/fscache/stats.
The code for waiting for object activation for the read and allocation
operations is also extracted into its own function as it is much the same in
all cases, differing only in the stats incremented.
Signed-off-by: David Howells <dhowells@redhat.com>
We must make sure that FSCACHE_COOKIE_LOOKING_UP is cleared on lookup failure
(if an object reaches the LC_DYING state), and we should clear it before
clearing FSCACHE_COOKIE_CREATING.
If this doesn't happen then fscache_wait_for_deferred_lookup() may hold
allocation and retrieval operations indefinitely until they're interrupted by
signals - which in turn pins the dying object until they go away.
Signed-off-by: David Howells <dhowells@redhat.com>
Add a stat counter to count retirement events rather than ordinary release
events (the retire argument to fscache_relinquish_cookie()).
Signed-off-by: David Howells <dhowells@redhat.com>
Handle netfs pages that the vmscan algorithm wants to evict from the pagecache
under OOM conditions, but that are waiting for write to the cache. Under these
conditions, vmscan calls the releasepage() function of the netfs, asking if a
page can be discarded.
The problem is typified by the following trace of a stuck process:
kslowd005 D 0000000000000000 0 4253 2 0x00000080
ffff88001b14f370 0000000000000046 ffff880020d0d000 0000000000000007
0000000000000006 0000000000000001 ffff88001b14ffd8 ffff880020d0d2a8
000000000000ddf0 00000000000118c0 00000000000118c0 ffff880020d0d2a8
Call Trace:
[<ffffffffa00782d8>] __fscache_wait_on_page_write+0x8b/0xa7 [fscache]
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffffa0078240>] ? __fscache_check_page_write+0x63/0x70 [fscache]
[<ffffffffa00b671d>] nfs_fscache_release_page+0x4e/0xc4 [nfs]
[<ffffffffa00927f0>] nfs_release_page+0x3c/0x41 [nfs]
[<ffffffff810885d3>] try_to_release_page+0x32/0x3b
[<ffffffff81093203>] shrink_page_list+0x316/0x4ac
[<ffffffff8109372b>] shrink_inactive_list+0x392/0x67c
[<ffffffff813532fa>] ? __mutex_unlock_slowpath+0x100/0x10b
[<ffffffff81058df0>] ? trace_hardirqs_on_caller+0x10c/0x130
[<ffffffff8135330e>] ? mutex_unlock+0x9/0xb
[<ffffffff81093aa2>] shrink_list+0x8d/0x8f
[<ffffffff81093d1c>] shrink_zone+0x278/0x33c
[<ffffffff81052d6c>] ? ktime_get_ts+0xad/0xba
[<ffffffff81094b13>] try_to_free_pages+0x22e/0x392
[<ffffffff81091e24>] ? isolate_pages_global+0x0/0x212
[<ffffffff8108e743>] __alloc_pages_nodemask+0x3dc/0x5cf
[<ffffffff81089529>] grab_cache_page_write_begin+0x65/0xaa
[<ffffffff8110f8c0>] ext3_write_begin+0x78/0x1eb
[<ffffffff81089ec5>] generic_file_buffered_write+0x109/0x28c
[<ffffffff8103cb69>] ? current_fs_time+0x22/0x29
[<ffffffff8108a509>] __generic_file_aio_write+0x350/0x385
[<ffffffff8108a588>] ? generic_file_aio_write+0x4a/0xae
[<ffffffff8108a59e>] generic_file_aio_write+0x60/0xae
[<ffffffff810b2e82>] do_sync_write+0xe3/0x120
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffff810b18e1>] ? __dentry_open+0x1a5/0x2b8
[<ffffffff810b1a76>] ? dentry_open+0x82/0x89
[<ffffffffa00e693c>] cachefiles_write_page+0x298/0x335 [cachefiles]
[<ffffffffa0077147>] fscache_write_op+0x178/0x2c2 [fscache]
[<ffffffffa0075656>] fscache_op_execute+0x7a/0xd1 [fscache]
[<ffffffff81082093>] slow_work_execute+0x18f/0x2d1
[<ffffffff8108239a>] slow_work_thread+0x1c5/0x308
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffff810821d5>] ? slow_work_thread+0x0/0x308
[<ffffffff8104be91>] kthread+0x7a/0x82
[<ffffffff8100beda>] child_rip+0xa/0x20
[<ffffffff8100b87c>] ? restore_args+0x0/0x30
[<ffffffff8102ef83>] ? tg_shares_up+0x171/0x227
[<ffffffff8104be17>] ? kthread+0x0/0x82
[<ffffffff8100bed0>] ? child_rip+0x0/0x20
In the above backtrace, the following is happening:
(1) A page storage operation is being executed by a slow-work thread
(fscache_write_op()).
(2) FS-Cache farms the operation out to the cache to perform
(cachefiles_write_page()).
(3) CacheFiles is then calling Ext3 to perform the actual write, using Ext3's
standard write (do_sync_write()) under KERNEL_DS directly from the netfs
page.
(4) However, for Ext3 to perform the write, it must allocate some memory, in
particular, it must allocate at least one page cache page into which it
can copy the data from the netfs page.
(5) Under OOM conditions, the memory allocator can't immediately come up with
a page, so it uses vmscan to find something to discard
(try_to_free_pages()).
(6) vmscan finds a clean netfs page it might be able to discard (possibly the
one it's trying to write out).
(7) The netfs is called to throw the page away (nfs_release_page()) - but it's
called with __GFP_WAIT, so the netfs decides to wait for the store to
complete (__fscache_wait_on_page_write()).
(8) This blocks a slow-work processing thread - possibly against itself.
The system ends up stuck because it can't write out any netfs pages to the
cache without allocating more memory.
To avoid this, we make FS-Cache cancel some writes that aren't in the middle of
actually being performed. This means that some data won't make it into the
cache this time. To support this, a new FS-Cache function is added
fscache_maybe_release_page() that replaces what the netfs releasepage()
functions used to do with respect to the cache.
The decisions fscache_maybe_release_page() makes are counted and displayed
through /proc/fs/fscache/stats on a line labelled "VmScan". There are four
counters provided: "nos=N" - pages that weren't pending storage; "gon=N" -
pages that were pending storage when we first looked, but weren't by the time
we got the object lock; "bsy=N" - pages that we ignored as they were actively
being written when we looked; and "can=N" - pages that we cancelled the storage
of.
What I'd really like to do is alter the behaviour of the cancellation
heuristics, depending on how necessary it is to expel pages. If there are
plenty of other pages that aren't waiting to be written to the cache that
could be ejected first, then it would be nice to hold up on immediate
cancellation of cache writes - but I don't see a way of doing that.
Signed-off-by: David Howells <dhowells@redhat.com>
FS-Cache doesn't correctly handle the netfs requesting a read from the cache
on an object that failed or was withdrawn by the cache. A trace similar to
the following might be seen:
CacheFiles: Lookup failed error -105
[exe ] unexpected submission OP165afe [OBJ6cac OBJECT_LC_DYING]
[exe ] objstate=OBJECT_LC_DYING [OBJECT_LC_DYING]
[exe ] objflags=0
[exe ] objevent=9 [fffffffffffffffb]
[exe ] ops=0 inp=0 exc=0
Pid: 6970, comm: exe Not tainted 2.6.32-rc6-cachefs #50
Call Trace:
[<ffffffffa0076477>] fscache_submit_op+0x3ff/0x45a [fscache]
[<ffffffffa0077997>] __fscache_read_or_alloc_pages+0x187/0x3c4 [fscache]
[<ffffffffa00b6480>] ? nfs_readpage_from_fscache_complete+0x0/0x66 [nfs]
[<ffffffffa00b6388>] __nfs_readpages_from_fscache+0x7e/0x176 [nfs]
[<ffffffff8108e483>] ? __alloc_pages_nodemask+0x11c/0x5cf
[<ffffffffa009d796>] nfs_readpages+0x114/0x1d7 [nfs]
[<ffffffff81090314>] __do_page_cache_readahead+0x15f/0x1ec
[<ffffffff81090228>] ? __do_page_cache_readahead+0x73/0x1ec
[<ffffffff810903bd>] ra_submit+0x1c/0x20
[<ffffffff810906bb>] ondemand_readahead+0x227/0x23a
[<ffffffff81090762>] page_cache_sync_readahead+0x17/0x19
[<ffffffff8108a99e>] generic_file_aio_read+0x236/0x5a0
[<ffffffffa00937bd>] nfs_file_read+0xe4/0xf3 [nfs]
[<ffffffff810b2fa2>] do_sync_read+0xe3/0x120
[<ffffffff81354cc3>] ? _spin_unlock_irq+0x2b/0x31
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffff811848e5>] ? selinux_file_permission+0x5d/0x10f
[<ffffffff81352bdb>] ? thread_return+0x3e/0x101
[<ffffffff8117d7b0>] ? security_file_permission+0x11/0x13
[<ffffffff810b3b06>] vfs_read+0xaa/0x16f
[<ffffffff81058df0>] ? trace_hardirqs_on_caller+0x10c/0x130
[<ffffffff810b3c84>] sys_read+0x45/0x6c
[<ffffffff8100ae2b>] system_call_fastpath+0x16/0x1b
The object state might also be OBJECT_DYING or OBJECT_WITHDRAWING.
This should be handled by simply rejecting the new operation with ENOBUFS.
There's no need to log an error for it. Events of this type now appear in the
stats file under Ops:rej.
Signed-off-by: David Howells <dhowells@redhat.com>
Don't delete pending pages from the page-store tracking tree, but rather send
them for another write as they've presumably been updated.
Signed-off-by: David Howells <dhowells@redhat.com>
FS-Cache has two structs internally for keeping track of the internal state of
a cached file: the fscache_cookie struct, which represents the netfs's state,
and fscache_object struct, which represents the cache's state. Each has a
pointer that points to the other (when both are in existence), and each has a
spinlock for pointer maintenance.
Since netfs operations approach these structures from the cookie side, they get
the cookie lock first, then the object lock. Cache operations, on the other
hand, approach from the object side, and get the object lock first. It is not
then permitted for a cache operation to get the cookie lock whilst it is
holding the object lock lest deadlock occur; instead, it must do one of two
things:
(1) increment the cookie usage counter, drop the object lock and then get both
locks in order, or
(2) simply hold the object lock as certain parts of the cookie may not be
altered whilst the object lock is held.
It is also not permitted to follow either pointer without holding the lock at
the end you start with. To break the pointers between the cookie and the
object, both locks must be held.
fscache_write_op(), however, violates the locking rules: It attempts to get the
cookie lock without (a) checking that the cookie pointer is a valid pointer,
and (b) holding the object lock to protect the cookie pointer whilst it follows
it. This is so that it can access the pending page store tree without
interference from __fscache_write_page().
This is fixed by splitting the cookie lock, such that the page store tracking
tree is protected by its own lock, and checking that the cookie pointer is
non-NULL before we attempt to follow it whilst holding the object lock.
The new lock is subordinate to both the cookie lock and the object lock, and so
should be taken after those.
Signed-off-by: David Howells <dhowells@redhat.com>
The object-available state in the object processing state machine (as
processed by fscache_object_available()) can't rely on the cookie to be
available because the FSCACHE_COOKIE_CREATING bit may have been cleared by
fscache_obtained_object() prior to the object being put into the
FSCACHE_OBJECT_AVAILABLE state.
Clearing the FSCACHE_COOKIE_CREATING bit on a cookie permits
__fscache_relinquish_cookie() to proceed and detach the cookie from the
object.
To deal with this, we don't dereference object->cookie in
fscache_object_available() if the object has already been detached.
In addition, a couple of assertions are added into fscache_drop_object() to
make sure the object is unbound from the cookie before it gets there.
Signed-off-by: David Howells <dhowells@redhat.com>
Permit the operations to retrieve data from the cache or to allocate space in
the cache for future writes to be interrupted whilst they're waiting for
permission for the operation to proceed. Typically this wait occurs whilst the
cache object is being looked up on disk in the background.
If an interruption occurs, and the operation has not yet been given the
go-ahead to run, the operation is dequeued and cancelled, and control returns
to the read operation of the netfs routine with none of the requested pages
having been read or in any way marked as known by the cache.
This means that the initial wait is done interruptibly rather than
uninterruptibly.
In addition, extra stats values are made available to show the number of ops
cancelled and the number of cache space allocations interrupted.
Signed-off-by: David Howells <dhowells@redhat.com>
__fscache_write_page() attempts to load the radix tree preallocation pool for
the CPU it is on before calling radix_tree_insert(), as the insertion must be
done inside a pair of spinlocks.
Use of the preallocation pool, however, is contingent on the radix tree being
initialised without __GFP_WAIT specified. __fscache_acquire_cookie() was
passing GFP_NOFS to INIT_RADIX_TREE() - but that includes __GFP_WAIT.
The solution is to AND out __GFP_WAIT.
Additionally, the banner comment to radix_tree_preload() is altered to make
note of this prerequisite. Possibly there should be a WARN_ON() too.
Without this fix, I have seen the following recursive deadlock caused by
radix_tree_insert() attempting to allocate memory inside the spinlocked
region, which resulted in FS-Cache being called back into to release memory -
which required the spinlock already held.
=============================================
[ INFO: possible recursive locking detected ]
2.6.32-rc6-cachefs #24
---------------------------------------------
nfsiod/7916 is trying to acquire lock:
(&cookie->lock){+.+.-.}, at: [<ffffffffa0076872>] __fscache_uncache_page+0xdb/0x160 [fscache]
but task is already holding lock:
(&cookie->lock){+.+.-.}, at: [<ffffffffa0076acc>] __fscache_write_page+0x15c/0x3f3 [fscache]
other info that might help us debug this:
5 locks held by nfsiod/7916:
#0: (nfsiod){+.+.+.}, at: [<ffffffff81048290>] worker_thread+0x19a/0x2e2
#1: (&task->u.tk_work#2){+.+.+.}, at: [<ffffffff81048290>] worker_thread+0x19a/0x2e2
#2: (&cookie->lock){+.+.-.}, at: [<ffffffffa0076acc>] __fscache_write_page+0x15c/0x3f3 [fscache]
#3: (&object->lock#2){+.+.-.}, at: [<ffffffffa0076b07>] __fscache_write_page+0x197/0x3f3 [fscache]
#4: (&cookie->stores_lock){+.+...}, at: [<ffffffffa0076b0f>] __fscache_write_page+0x19f/0x3f3 [fscache]
stack backtrace:
Pid: 7916, comm: nfsiod Not tainted 2.6.32-rc6-cachefs #24
Call Trace:
[<ffffffff8105ac7f>] __lock_acquire+0x1649/0x16e3
[<ffffffff81059ded>] ? __lock_acquire+0x7b7/0x16e3
[<ffffffff8100e27d>] ? dump_trace+0x248/0x257
[<ffffffff8105ad70>] lock_acquire+0x57/0x6d
[<ffffffffa0076872>] ? __fscache_uncache_page+0xdb/0x160 [fscache]
[<ffffffff8135467c>] _spin_lock+0x2c/0x3b
[<ffffffffa0076872>] ? __fscache_uncache_page+0xdb/0x160 [fscache]
[<ffffffffa0076872>] __fscache_uncache_page+0xdb/0x160 [fscache]
[<ffffffffa0077eb7>] ? __fscache_check_page_write+0x0/0x71 [fscache]
[<ffffffffa00b4755>] nfs_fscache_release_page+0x86/0xc4 [nfs]
[<ffffffffa00907f0>] nfs_release_page+0x3c/0x41 [nfs]
[<ffffffff81087ffb>] try_to_release_page+0x32/0x3b
[<ffffffff81092c2b>] shrink_page_list+0x316/0x4ac
[<ffffffff81058a9b>] ? mark_held_locks+0x52/0x70
[<ffffffff8135451b>] ? _spin_unlock_irq+0x2b/0x31
[<ffffffff81093153>] shrink_inactive_list+0x392/0x67c
[<ffffffff81058a9b>] ? mark_held_locks+0x52/0x70
[<ffffffff810934ca>] shrink_list+0x8d/0x8f
[<ffffffff81093744>] shrink_zone+0x278/0x33c
[<ffffffff81052c70>] ? ktime_get_ts+0xad/0xba
[<ffffffff8109453b>] try_to_free_pages+0x22e/0x392
[<ffffffff8109184c>] ? isolate_pages_global+0x0/0x212
[<ffffffff8108e16b>] __alloc_pages_nodemask+0x3dc/0x5cf
[<ffffffff810ae24a>] cache_alloc_refill+0x34d/0x6c1
[<ffffffff811bcf74>] ? radix_tree_node_alloc+0x52/0x5c
[<ffffffff810ae929>] kmem_cache_alloc+0xb2/0x118
[<ffffffff811bcf74>] radix_tree_node_alloc+0x52/0x5c
[<ffffffff811bcfd5>] radix_tree_insert+0x57/0x19c
[<ffffffffa0076b53>] __fscache_write_page+0x1e3/0x3f3 [fscache]
[<ffffffffa00b4248>] __nfs_readpage_to_fscache+0x58/0x11e [nfs]
[<ffffffffa009bb77>] nfs_readpage_release+0x34/0x9b [nfs]
[<ffffffffa009c0d9>] nfs_readpage_release_full+0x32/0x4b [nfs]
[<ffffffffa0006cff>] rpc_release_calldata+0x12/0x14 [sunrpc]
[<ffffffffa0006e2d>] rpc_free_task+0x59/0x61 [sunrpc]
[<ffffffffa0006f03>] rpc_async_release+0x10/0x12 [sunrpc]
[<ffffffff810482e5>] worker_thread+0x1ef/0x2e2
[<ffffffff81048290>] ? worker_thread+0x19a/0x2e2
[<ffffffff81352433>] ? thread_return+0x3e/0x101
[<ffffffffa0006ef3>] ? rpc_async_release+0x0/0x12 [sunrpc]
[<ffffffff8104bff5>] ? autoremove_wake_function+0x0/0x34
[<ffffffff81058d25>] ? trace_hardirqs_on+0xd/0xf
[<ffffffff810480f6>] ? worker_thread+0x0/0x2e2
[<ffffffff8104bd21>] kthread+0x7a/0x82
[<ffffffff8100beda>] child_rip+0xa/0x20
[<ffffffff8100b87c>] ? restore_args+0x0/0x30
[<ffffffff8104c2b9>] ? add_wait_queue+0x15/0x44
[<ffffffff8104bca7>] ? kthread+0x0/0x82
[<ffffffff8100bed0>] ? child_rip+0x0/0x20
Signed-off-by: David Howells <dhowells@redhat.com>
Clear the pointers from the fscache_cookie struct to netfs private data after
clearing the pointer to the cookie from the fscache_object struct and
releasing the object lock, rather than before.
This allows the netfs private data pointers to be relied on simply by holding
the object lock, rather than having to hold the cookie lock. This is makes
things simpler as the cookie lock has to be taken before the object lock, but
sometimes the object pointer is all that the code has.
Signed-off-by: David Howells <dhowells@redhat.com>
Count entries to and exits from cache operation table functions. Maintain
these as a single counter that's added to or removed from as appropriate.
Signed-off-by: David Howells <dhowells@redhat.com>
Allow the current state of all fscache objects to be dumped by doing:
cat /proc/fs/fscache/objects
By default, all objects and all fields will be shown. This can be restricted
by adding a suitable key to one of the caller's keyrings (such as the session
keyring):
keyctl add user fscache:objlist "<restrictions>" @s
The <restrictions> are:
K Show hexdump of object key (don't show if not given)
A Show hexdump of object aux data (don't show if not given)
And paired restrictions:
C Show objects that have a cookie
c Show objects that don't have a cookie
B Show objects that are busy
b Show objects that aren't busy
W Show objects that have pending writes
w Show objects that don't have pending writes
R Show objects that have outstanding reads
r Show objects that don't have outstanding reads
S Show objects that have slow work queued
s Show objects that don't have slow work queued
If neither side of a restriction pair is given, then both are implied. For
example:
keyctl add user fscache:objlist KB @s
shows objects that are busy, and lists their object keys, but does not dump
their auxiliary data. It also implies "CcWwRrSs", but as 'B' is given, 'b' is
not implied.
Signed-off-by: David Howells <dhowells@redhat.com>
Annotate slow-work runqueue proc lines for FS-Cache work items. Objects
include the object ID and the state. Operations include the object ID, the
operation ID and the operation type and state.
Signed-off-by: David Howells <dhowells@redhat.com>
Wait for outstanding slow work items belonging to a module to clear when
unregistering that module as a user of the facility. This prevents the put_ref
code of a work item from being taken away before it returns.
Signed-off-by: David Howells <dhowells@redhat.com>
Fix up renamed filenames in comments in fs/fscache/internal.h.
Originally, the files were all called fsc-xxx.c, but they got renamed to
just xxx.c.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement the data I/O part of the FS-Cache netfs API. The documentation and
API header file were added in a previous patch.
This patch implements the following functions for the netfs to call:
(*) fscache_attr_changed().
Indicate that the object has changed its attributes. The only attribute
currently recorded is the file size. Only pages within the set file size
will be stored in the cache.
This operation is submitted for asynchronous processing, and will return
immediately. It will return -ENOMEM if an out of memory error is
encountered, -ENOBUFS if the object is not actually cached, or 0 if the
operation is successfully queued.
(*) fscache_read_or_alloc_page().
(*) fscache_read_or_alloc_pages().
Request data be fetched from the disk, and allocate internal metadata to
track the netfs pages and reserve disk space for unknown pages.
These operations perform semi-asynchronous data reads. Upon returning
they will indicate which pages they think can be retrieved from disk, and
will have set in progress attempts to retrieve those pages.
These will return, in order of preference, -ENOMEM on memory allocation
error, -ERESTARTSYS if a signal interrupted proceedings, -ENODATA if one
or more requested pages are not yet cached, -ENOBUFS if the object is not
actually cached or if there isn't space for future pages to be cached on
this object, or 0 if successful.
In the case of the multipage function, the pages for which reads are set
in progress will be removed from the list and the page count decreased
appropriately.
If any read operations should fail, the completion function will be given
an error, and will also be passed contextual information to allow the
netfs to fall back to querying the server for the absent pages.
For each successful read, the page completion function will also be
called.
Any pages subsequently tracked by the cache will have PG_fscache set upon
them on return. fscache_uncache_page() must be called for such pages.
If supplied by the netfs, the mark_pages_cached() cookie op will be
invoked for any pages now tracked.
(*) fscache_alloc_page().
Allocate internal metadata to track a netfs page and reserve disk space.
This will return -ENOMEM on memory allocation error, -ERESTARTSYS on
signal, -ENOBUFS if the object isn't cached, or there isn't enough space
in the cache, or 0 if successful.
Any pages subsequently tracked by the cache will have PG_fscache set upon
them on return. fscache_uncache_page() must be called for such pages.
If supplied by the netfs, the mark_pages_cached() cookie op will be
invoked for any pages now tracked.
(*) fscache_write_page().
Request data be stored to disk. This may only be called on pages that
have been read or alloc'd by the above three functions and have not yet
been uncached.
This will return -ENOMEM on memory allocation error, -ERESTARTSYS on
signal, -ENOBUFS if the object isn't cached, or there isn't immediately
enough space in the cache, or 0 if successful.
On a successful return, this operation will have queued the page for
asynchronous writing to the cache. The page will be returned with
PG_fscache_write set until the write completes one way or another. The
caller will not be notified if the write fails due to an I/O error. If
that happens, the object will become available and all pending writes will
be aborted.
Note that the cache may batch up page writes, and so it may take a while
to get around to writing them out.
The caller must assume that until PG_fscache_write is cleared the page is
use by the cache. Any changes made to the page may be reflected on disk.
The page may even be under DMA.
(*) fscache_uncache_page().
Indicate that the cache should stop tracking a page previously read or
alloc'd from the cache. If the page was alloc'd only, but unwritten, it
will not appear on disk.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Implement the cookie management part of the FS-Cache netfs client API. The
documentation and API header file were added in a previous patch.
This patch implements the following three functions:
(1) fscache_acquire_cookie().
Acquire a cookie to represent an object to the netfs. If the object in
question is a non-index object, then that object and its parent indices
will be created on disk at this point if they don't already exist. Index
creation is deferred because an index may reside in multiple caches.
(2) fscache_relinquish_cookie().
Retire or release a cookie previously acquired. At this point, the
object on disk may be destroyed.
(3) fscache_update_cookie().
Update the in-cache representation of a cookie. This is used to update
the auxiliary data for coherency management purposes.
With this patch it is possible to have a netfs instruct a cache backend to
look up, validate and create metadata on disk and to destroy it again.
The ability to actually store and retrieve data in the objects so created is
added in later patches.
Note that these functions will never return an error. _All_ errors are
handled internally to FS-Cache.
The worst that can happen is that fscache_acquire_cookie() may return a NULL
pointer - which is considered a negative cookie pointer and can be passed back
to any function that takes a cookie without harm. A negative cookie pointer
merely suppresses caching at that level.
The stub in linux/fscache.h will detect inline the negative cookie pointer and
abort the operation as fast as possible. This means that the compiler doesn't
have to set up for a call in that case.
See the documentation in Documentation/filesystems/caching/netfs-api.txt for
more information.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Implement the cache object management state machine.
The following documentation is added to illuminate the working of this state
machine. It will also be added as:
Documentation/filesystems/caching/object.txt
====================================================
IN-KERNEL CACHE OBJECT REPRESENTATION AND MANAGEMENT
====================================================
==============
REPRESENTATION
==============
FS-Cache maintains an in-kernel representation of each object that a netfs is
currently interested in. Such objects are represented by the fscache_cookie
struct and are referred to as cookies.
FS-Cache also maintains a separate in-kernel representation of the objects that
a cache backend is currently actively caching. Such objects are represented by
the fscache_object struct. The cache backends allocate these upon request, and
are expected to embed them in their own representations. These are referred to
as objects.
There is a 1:N relationship between cookies and objects. A cookie may be
represented by multiple objects - an index may exist in more than one cache -
or even by no objects (it may not be cached).
Furthermore, both cookies and objects are hierarchical. The two hierarchies
correspond, but the cookies tree is a superset of the union of the object trees
of multiple caches:
NETFS INDEX TREE : CACHE 1 : CACHE 2
: :
: +-----------+ :
+----------->| IObject | :
+-----------+ | : +-----------+ :
| ICookie |-------+ : | :
+-----------+ | : | : +-----------+
| +------------------------------>| IObject |
| : | : +-----------+
| : V : |
| : +-----------+ : |
V +----------->| IObject | : |
+-----------+ | : +-----------+ : |
| ICookie |-------+ : | : V
+-----------+ | : | : +-----------+
| +------------------------------>| IObject |
+-----+-----+ : | : +-----------+
| | : | : |
V | : V : |
+-----------+ | : +-----------+ : |
| ICookie |------------------------->| IObject | : |
+-----------+ | : +-----------+ : |
| V : | : V
| +-----------+ : | : +-----------+
| | ICookie |-------------------------------->| IObject |
| +-----------+ : | : +-----------+
V | : V : |
+-----------+ | : +-----------+ : |
| DCookie |------------------------->| DObject | : |
+-----------+ | : +-----------+ : |
| : : |
+-------+-------+ : : |
| | : : |
V V : : V
+-----------+ +-----------+ : : +-----------+
| DCookie | | DCookie |------------------------>| DObject |
+-----------+ +-----------+ : : +-----------+
: :
In the above illustration, ICookie and IObject represent indices and DCookie
and DObject represent data storage objects. Indices may have representation in
multiple caches, but currently, non-index objects may not. Objects of any type
may also be entirely unrepresented.
As far as the netfs API goes, the netfs is only actually permitted to see
pointers to the cookies. The cookies themselves and any objects attached to
those cookies are hidden from it.
===============================
OBJECT MANAGEMENT STATE MACHINE
===============================
Within FS-Cache, each active object is managed by its own individual state
machine. The state for an object is kept in the fscache_object struct, in
object->state. A cookie may point to a set of objects that are in different
states.
Each state has an action associated with it that is invoked when the machine
wakes up in that state. There are four logical sets of states:
(1) Preparation: states that wait for the parent objects to become ready. The
representations are hierarchical, and it is expected that an object must
be created or accessed with respect to its parent object.
(2) Initialisation: states that perform lookups in the cache and validate
what's found and that create on disk any missing metadata.
(3) Normal running: states that allow netfs operations on objects to proceed
and that update the state of objects.
(4) Termination: states that detach objects from their netfs cookies, that
delete objects from disk, that handle disk and system errors and that free
up in-memory resources.
In most cases, transitioning between states is in response to signalled events.
When a state has finished processing, it will usually set the mask of events in
which it is interested (object->event_mask) and relinquish the worker thread.
Then when an event is raised (by calling fscache_raise_event()), if the event
is not masked, the object will be queued for processing (by calling
fscache_enqueue_object()).
PROVISION OF CPU TIME
---------------------
The work to be done by the various states is given CPU time by the threads of
the slow work facility (see Documentation/slow-work.txt). This is used in
preference to the workqueue facility because:
(1) Threads may be completely occupied for very long periods of time by a
particular work item. These state actions may be doing sequences of
synchronous, journalled disk accesses (lookup, mkdir, create, setxattr,
getxattr, truncate, unlink, rmdir, rename).
(2) Threads may do little actual work, but may rather spend a lot of time
sleeping on I/O. This means that single-threaded and 1-per-CPU-threaded
workqueues don't necessarily have the right numbers of threads.
LOCKING SIMPLIFICATION
----------------------
Because only one worker thread may be operating on any particular object's
state machine at once, this simplifies the locking, particularly with respect
to disconnecting the netfs's representation of a cache object (fscache_cookie)
from the cache backend's representation (fscache_object) - which may be
requested from either end.
=================
THE SET OF STATES
=================
The object state machine has a set of states that it can be in. There are
preparation states in which the object sets itself up and waits for its parent
object to transit to a state that allows access to its children:
(1) State FSCACHE_OBJECT_INIT.
Initialise the object and wait for the parent object to become active. In
the cache, it is expected that it will not be possible to look an object
up from the parent object, until that parent object itself has been looked
up.
There are initialisation states in which the object sets itself up and accesses
disk for the object metadata:
(2) State FSCACHE_OBJECT_LOOKING_UP.
Look up the object on disk, using the parent as a starting point.
FS-Cache expects the cache backend to probe the cache to see whether this
object is represented there, and if it is, to see if it's valid (coherency
management).
The cache should call fscache_object_lookup_negative() to indicate lookup
failure for whatever reason, and should call fscache_obtained_object() to
indicate success.
At the completion of lookup, FS-Cache will let the netfs go ahead with
read operations, no matter whether the file is yet cached. If not yet
cached, read operations will be immediately rejected with ENODATA until
the first known page is uncached - as to that point there can be no data
to be read out of the cache for that file that isn't currently also held
in the pagecache.
(3) State FSCACHE_OBJECT_CREATING.
Create an object on disk, using the parent as a starting point. This
happens if the lookup failed to find the object, or if the object's
coherency data indicated what's on disk is out of date. In this state,
FS-Cache expects the cache to create
The cache should call fscache_obtained_object() if creation completes
successfully, fscache_object_lookup_negative() otherwise.
At the completion of creation, FS-Cache will start processing write
operations the netfs has queued for an object. If creation failed, the
write ops will be transparently discarded, and nothing recorded in the
cache.
There are some normal running states in which the object spends its time
servicing netfs requests:
(4) State FSCACHE_OBJECT_AVAILABLE.
A transient state in which pending operations are started, child objects
are permitted to advance from FSCACHE_OBJECT_INIT state, and temporary
lookup data is freed.
(5) State FSCACHE_OBJECT_ACTIVE.
The normal running state. In this state, requests the netfs makes will be
passed on to the cache.
(6) State FSCACHE_OBJECT_UPDATING.
The state machine comes here to update the object in the cache from the
netfs's records. This involves updating the auxiliary data that is used
to maintain coherency.
And there are terminal states in which an object cleans itself up, deallocates
memory and potentially deletes stuff from disk:
(7) State FSCACHE_OBJECT_LC_DYING.
The object comes here if it is dying because of a lookup or creation
error. This would be due to a disk error or system error of some sort.
Temporary data is cleaned up, and the parent is released.
(8) State FSCACHE_OBJECT_DYING.
The object comes here if it is dying due to an error, because its parent
cookie has been relinquished by the netfs or because the cache is being
withdrawn.
Any child objects waiting on this one are given CPU time so that they too
can destroy themselves. This object waits for all its children to go away
before advancing to the next state.
(9) State FSCACHE_OBJECT_ABORT_INIT.
The object comes to this state if it was waiting on its parent in
FSCACHE_OBJECT_INIT, but its parent died. The object will destroy itself
so that the parent may proceed from the FSCACHE_OBJECT_DYING state.
(10) State FSCACHE_OBJECT_RELEASING.
(11) State FSCACHE_OBJECT_RECYCLING.
The object comes to one of these two states when dying once it is rid of
all its children, if it is dying because the netfs relinquished its
cookie. In the first state, the cached data is expected to persist, and
in the second it will be deleted.
(12) State FSCACHE_OBJECT_WITHDRAWING.
The object transits to this state if the cache decides it wants to
withdraw the object from service, perhaps to make space, but also due to
error or just because the whole cache is being withdrawn.
(13) State FSCACHE_OBJECT_DEAD.
The object transits to this state when the in-memory object record is
ready to be deleted. The object processor shouldn't ever see an object in
this state.
THE SET OF EVENTS
-----------------
There are a number of events that can be raised to an object state machine:
(*) FSCACHE_OBJECT_EV_UPDATE
The netfs requested that an object be updated. The state machine will ask
the cache backend to update the object, and the cache backend will ask the
netfs for details of the change through its cookie definition ops.
(*) FSCACHE_OBJECT_EV_CLEARED
This is signalled in two circumstances:
(a) when an object's last child object is dropped and
(b) when the last operation outstanding on an object is completed.
This is used to proceed from the dying state.
(*) FSCACHE_OBJECT_EV_ERROR
This is signalled when an I/O error occurs during the processing of some
object.
(*) FSCACHE_OBJECT_EV_RELEASE
(*) FSCACHE_OBJECT_EV_RETIRE
These are signalled when the netfs relinquishes a cookie it was using.
The event selected depends on whether the netfs asks for the backing
object to be retired (deleted) or retained.
(*) FSCACHE_OBJECT_EV_WITHDRAW
This is signalled when the cache backend wants to withdraw an object.
This means that the object will have to be detached from the netfs's
cookie.
Because the withdrawing releasing/retiring events are all handled by the object
state machine, it doesn't matter if there's a collision with both ends trying
to sever the connection at the same time. The state machine can just pick
which one it wants to honour, and that effects the other.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Add helpers for use with wait_on_bit().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Add functions to register and unregister a network filesystem or other client
of the FS-Cache service. This allocates and releases the cookie representing
the top-level index for a netfs, and makes it available to the netfs.
If the FS-Cache facility is disabled, then the calls are optimised away at
compile time.
Note that whilst this patch may appear to work with FS-Cache enabled and a
netfs attempting to use it, it will leak the cookie it allocates for the netfs
as fscache_relinquish_cookie() is implemented in a later patch. This will
cause the slab code to emit a warning when the module is removed.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Provide a slab from which can be allocated the FS-Cache cookies that will be
presented to the netfs.
Also provide a slab constructor and a function to recursively discard a cookie
and its ancestor chain.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Implement the entry points by which a cache backend may initialise, add,
declare an error upon and withdraw a cache.
Further, an object is created in sysfs under which each cache added will get
an object created:
/sys/fs/fscache/<cachetag>/
All of this is described in Documentation/filesystems/caching/backend-api.txt
added by a previous patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Implement two features of FS-Cache:
(1) The ability to request and release cache tags - names by which a cache may
be known to a netfs, and thus selected for use.
(2) An internal function by which a cache is selected by consulting the netfs,
if the netfs wishes to be consulted.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Add a description of the root index of the cache for later patches to make use
of.
The root index is owned by FS-Cache itself. When a netfs requests caching
facilities, FS-Cache will, if one doesn't already exist, create an entry in
the root index with the key being the name of the netfs ("AFS" for example),
and the auxiliary data holding the index structure version supplied by the
netfs:
FSDEF
|
+-----------+
| |
NFS AFS
[v=1] [v=1]
If an entry with the appropriate name does already exist, the version is
compared. If the version is different, the entire subtree from that entry
will be discarded and a new entry created.
The new entry will be an index, and a cookie referring to it will be passed to
the netfs. This is then the root handle by which the netfs accesses the
cache. It can create whatever objects it likes in that index, including
further indices.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Make FS-Cache create its /proc interface and present various statistical
information through it. Also provide the functions for updating this
information.
These features are enabled by:
CONFIG_FSCACHE_PROC
CONFIG_FSCACHE_STATS
CONFIG_FSCACHE_HISTOGRAM
The /proc directory for FS-Cache is also exported so that caching modules can
add their own statistics there too.
The FS-Cache module is loadable at this point, and the statistics files can be
examined by userspace:
cat /proc/fs/fscache/stats
cat /proc/fs/fscache/histogram
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Add the main configuration option, allowing FS-Cache to be selected; the
module entry and exit functions and the debugging stuff used by these patches.
The two configuration options added are:
CONFIG_FSCACHE
CONFIG_FSCACHE_DEBUG
The first enables the facility, and the second makes the debugging statements
enableable through the "debug" module parameter. The value of this parameter
is a bitmask as described in:
Documentation/filesystems/caching/fscache.txt
The module can be loaded at this point, but all it will do at this point in
the patch series is to start up the slow work facility and shut it down again.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>