A driver may refuse to enable VLAN filtering for any reason beyond what
the DSA framework cares about, such as:
- having tc-flower rules that rely on the switch being VLAN-aware
- the particular switch does not support VLAN, even if the driver does
(the DSA framework just checks for the presence of the .port_vlan_add
and .port_vlan_del pointers)
- simply not supporting this configuration to be toggled at runtime
Currently, when a driver rejects a configuration it cannot support, it
does this from the commit phase, which triggers various warnings in
switchdev.
So propagate the prepare phase to drivers, to give them the ability to
refuse invalid configurations cleanly and avoid the warnings.
Since we need to modify all function prototypes and check for the
prepare phase from within the drivers, take that opportunity and move
the existing driver restrictions within the prepare phase where that is
possible and easy.
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
Cc: Hauke Mehrtens <hauke@hauke-m.de>
Cc: Woojung Huh <woojung.huh@microchip.com>
Cc: Microchip Linux Driver Support <UNGLinuxDriver@microchip.com>
Cc: Sean Wang <sean.wang@mediatek.com>
Cc: Landen Chao <Landen.Chao@mediatek.com>
Cc: Andrew Lunn <andrew@lunn.ch>
Cc: Vivien Didelot <vivien.didelot@gmail.com>
Cc: Jonathan McDowell <noodles@earth.li>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is a strictly cosmetic change that renames some macros in
sja1105_dynamic_config.c. They were copy-pasted in haste and this has
resulted in them having the driver prefix twice.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Return the driver name and ASIC ID so that generic user space
application are able to know they're looking at sja1105 devlink regions
when pretty-printing them.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As explained in Documentation/networking/dsa/sja1105.rst, this switch
has a static config held in the driver's memory and re-uploaded from
time to time into the device (after any major change).
The format of this static config is in fact described in UM10944.pdf and
it contains all the switch's settings (it also contains device ID, table
CRCs, etc, just like in the manual). So it is a useful and universal
devlink region to expose to user space, for debugging purposes.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We'll have more devlink code soon. Group it together in a separate
translation object.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The whole purpose of tag_8021q is to send VLAN-tagged traffic to the
CPU, from which the driver can decode the source port and switch id.
Currently this only works if the VLAN filtering on the master is
disabled. Change that by explicitly adding code to tag_8021q.c to add
the VLANs corresponding to the tags to the filter of the master
interface.
Because we now need to call vlan_vid_add, then we also need to hold the
RTNL mutex. Propagate that requirement to the callers of dsa_8021q_setup
and modify the existing call sites as appropriate. Note that one call
path, sja1105_best_effort_vlan_filtering_set -> sja1105_vlan_filtering
-> sja1105_setup_8021q_tagging, was already holding this lock.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While working on another tag_8021q driver implementation, some things
became apparent:
- It is not mandatory for a DSA driver to offload the tag_8021q VLANs by
using the VLAN table per se. For example, it can add custom TCAM rules
that simply encapsulate RX traffic, and redirect & decapsulate rules
for TX traffic. For such a driver, it makes no sense to receive the
tag_8021q configuration through the same callback as it receives the
VLAN configuration from the bridge and the 8021q modules.
- Currently, sja1105 (the only tag_8021q user) sets a
priv->expect_dsa_8021q variable to distinguish between the bridge
calling, and tag_8021q calling. That can be improved, to say the
least.
- The crosschip bridging operations are, in fact, stateful already. The
list of crosschip_links must be kept by the caller and passed to the
relevant tag_8021q functions.
So it would be nice if the tag_8021q configuration was more
self-contained. This patch attempts to do that.
Create a struct dsa_8021q_context which encapsulates a struct
dsa_switch, and has 2 function pointers for adding and deleting a VLAN.
These will replace the previous channel to the driver, which was through
the .port_vlan_add and .port_vlan_del callbacks of dsa_switch_ops.
Also put the list of crosschip_links into this dsa_8021q_context.
Drivers that don't support cross-chip bridging can simply omit to
initialize this list, as long as they dont call any cross-chip function.
The sja1105_vlan_add and sja1105_vlan_del functions are refactored into
a smaller sja1105_vlan_add_one, which now has 2 entry points:
- sja1105_vlan_add, from struct dsa_switch_ops
- sja1105_dsa_8021q_vlan_add, from the tag_8021q ops
But even this change is fairly trivial. It just reflects the fact that
for sja1105, the VLANs from these 2 channels end up in the same hardware
table. However that is not necessarily true in the general sense (and
that's the reason for making this change).
The rest of the patch is mostly plain refactoring of "ds" -> "ctx". The
dsa_8021q_context structure needs to be propagated because adding a VLAN
is now done through the ops function pointers inside of it.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There is no point in calling dsa_port_setup_8021q_tagging for each
individual port. Additionally, it will become more difficult to do that
when we'll have a context structure to tag_8021q (next patch). So
refactor this now.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Clang warns:
drivers/net/dsa/sja1105/sja1105_main.c:3418:38: warning: address of
array 'match->compatible' will always evaluate to 'true'
[-Wpointer-bool-conversion]
for (match = sja1105_dt_ids; match->compatible; match++) {
~~~ ~~~~~~~^~~~~~~~~~
1 warning generated.
We should check the value of the first character in compatible to see if
it is empty or not. This matches how the rest of the tree iterates over
IDs.
Fixes: 0b0e299720 ("net: dsa: sja1105: use detected device id instead of DT one on mismatch")
Link: https://github.com/ClangBuiltLinux/linux/issues/1139
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Acked-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Although we can detect the chip revision 100% at runtime, it is useful
to specify it in the device tree compatible string too, because
otherwise there would be no way to assess the correctness of device tree
bindings statically, without booting a board (only some switch versions
have internal RGMII delays and/or an SGMII port).
But for testing the P/Q/R/S support, what I have is a reworked board
with the SJA1105T replaced by a pin-compatible SJA1105Q, and I don't
want to keep a separate device tree blob just for this one-off board.
Since just the chip has been replaced, its RGMII delay setup is
inherently the same (meaning: delays added by the PHY on the slave
ports, and by PCB traces on the fixed-link CPU port).
For this board, I'd rather have the driver shout at me, but go ahead and
use what it found even if it doesn't match what it's been told is there.
[ 2.970826] sja1105 spi0.1: Device tree specifies chip SJA1105T but found SJA1105Q, please fix it!
[ 2.980010] sja1105 spi0.1: Probed switch chip: SJA1105Q
[ 3.005082] sja1105 spi0.1: Enabled switch tagging
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current poll interval is enough to ensure that rising and falling
edge events are not lost for a 1 PPS signal with 50% duty cycle.
But when we deliver the events to user space, it will try to infer if
they were corresponding to a rising or to a falling edge (the kernel
driver doesn't know that either). User space will try to make that
inference based on the time at which the PPS master had emitted the
pulse (i.e. if it's a .0 time, it's rising edge, if it's .5 time, it's
falling edge).
But there is no in-kernel API for retrieving the precise timestamp
corresponding to a PPS master (aka perout) pulse. So user space has to
guess even that. It will read the PTP time on the PPS master right after
we've delivered the extts event, and declare that the PPS master time
was just the closest integer second, based on 2 thresholds (lower than
.25, or higher than .75, and ignore anything else).
Except that, if we poll for extts events (and our hardware doesn't
really help us, by not providing an interrupt), then there is a risk
that the poll period (and therefore the time at which the event is
delivered) might confuse user space.
Because we are always scheduling the next extts poll at
SJA1105_EXTTS_INTERVAL "from now" (that's the only thing that the
schedule_delayed_work() API gives us), it means that the start time of
the next delayed workqueue will always be shifted to the right a little
bit (shifted with the SPI access duration of this workqueue run).
In turn, because user space sees extts events that are non-periodic
compared to the PPS master's time, this means that it might start making
wrong guesses about rising/falling edge.
To understand the effect, here is the output of ts2phc currently. Notice
the 'src' timestamps of the 'SKIP extts' events, and how they have a
large wander. They keep increasing until the upper limit for the ignore
threshold (.75 seconds), after which the application starts ignoring the
_other_ edge.
ts2phc[26.624]: /dev/ptp3 SKIP extts index 0 at 21.449898912 src 21.657784518
ts2phc[27.133]: adding tstamp 21.949894240 to clock /dev/ptp3
ts2phc[27.133]: adding tstamp 22.000000000 to clock /dev/ptp1
ts2phc[27.133]: /dev/ptp3 offset 640 s2 freq +5112
ts2phc[27.636]: /dev/ptp3 SKIP extts index 0 at 22.449889360 src 22.669398022
ts2phc[28.140]: adding tstamp 22.949884376 to clock /dev/ptp3
ts2phc[28.140]: adding tstamp 23.000000000 to clock /dev/ptp1
ts2phc[28.140]: /dev/ptp3 offset 96 s2 freq +4760
ts2phc[28.644]: /dev/ptp3 SKIP extts index 0 at 23.449879504 src 23.677420422
ts2phc[29.153]: adding tstamp 23.949874704 to clock /dev/ptp3
ts2phc[29.153]: adding tstamp 24.000000000 to clock /dev/ptp1
ts2phc[29.153]: /dev/ptp3 offset -264 s2 freq +4429
ts2phc[29.656]: /dev/ptp3 SKIP extts index 0 at 24.449870008 src 24.689407238
ts2phc[30.160]: adding tstamp 24.949865376 to clock /dev/ptp3
ts2phc[30.160]: adding tstamp 25.000000000 to clock /dev/ptp1
ts2phc[30.160]: /dev/ptp3 offset -280 s2 freq +4334
ts2phc[30.664]: /dev/ptp3 SKIP extts index 0 at 25.449860760 src 25.697449926
ts2phc[31.168]: adding tstamp 25.949856176 to clock /dev/ptp3
ts2phc[31.168]: adding tstamp 26.000000000 to clock /dev/ptp1
ts2phc[31.168]: /dev/ptp3 offset -176 s2 freq +4354
ts2phc[31.672]: /dev/ptp3 SKIP extts index 0 at 26.449851584 src 26.705433606
ts2phc[32.180]: adding tstamp 26.949846992 to clock /dev/ptp3
ts2phc[32.180]: adding tstamp 27.000000000 to clock /dev/ptp1
ts2phc[32.180]: /dev/ptp3 offset -80 s2 freq +4397
ts2phc[32.684]: /dev/ptp3 SKIP extts index 0 at 27.449842384 src 27.717415110
ts2phc[33.192]: adding tstamp 27.949837768 to clock /dev/ptp3
ts2phc[33.192]: adding tstamp 28.000000000 to clock /dev/ptp1
ts2phc[33.192]: /dev/ptp3 offset 0 s2 freq +4453
ts2phc[33.696]: /dev/ptp3 SKIP extts index 0 at 28.449833128 src 28.729412902
ts2phc[34.200]: adding tstamp 28.949828472 to clock /dev/ptp3
ts2phc[34.200]: adding tstamp 29.000000000 to clock /dev/ptp1
ts2phc[34.200]: /dev/ptp3 offset 8 s2 freq +4461
ts2phc[34.704]: /dev/ptp3 SKIP extts index 0 at 29.449823816 src 29.737416038
ts2phc[35.208]: adding tstamp 29.949819152 to clock /dev/ptp3
ts2phc[35.208]: adding tstamp 30.000000000 to clock /dev/ptp1
ts2phc[35.208]: /dev/ptp3 offset -8 s2 freq +4447
ts2phc[35.712]: /dev/ptp3 SKIP extts index 0 at 30.449814496 src 30.745554982
ts2phc[36.216]: adding tstamp 30.949809840 to clock /dev/ptp3
ts2phc[36.216]: adding tstamp 31.000000000 to clock /dev/ptp1
ts2phc[36.216]: /dev/ptp3 offset -8 s2 freq +4445
ts2phc[36.468]: /dev/ptp3 SKIP extts index 0 at 31.449805184 src 31.501109446
ts2phc[36.972]: adding tstamp 31.949800536 to clock /dev/ptp3
ts2phc[36.972]: adding tstamp 32.000000000 to clock /dev/ptp1
ts2phc[36.972]: /dev/ptp3 offset -8 s2 freq +4442
ts2phc[37.480]: /dev/ptp3 SKIP extts index 0 at 32.449795896 src 32.513320070
ts2phc[37.984]: adding tstamp 32.949791248 to clock /dev/ptp3
ts2phc[37.984]: adding tstamp 33.000000000 to clock /dev/ptp1
ts2phc[37.984]: /dev/ptp3 offset 0 s2 freq +4448
Fix that by taking the following measures:
- Schedule the poll from a timer. Because we are really scheduling the
timer periodically, the extts events delivered to user space are
periodic too, and don't suffer from the "shift-to-the-right" effect.
- Increase the poll period to 6 times a second. This imposes a smaller
upper bound to the shift that can occur to the delivery time of extts
events, and makes user space (ts2phc) to always interpret correctly
which events should be skipped and which shouldn't.
- Move the SPI readout itself to the main PTP kernel thread, instead of
the generic workqueue. This is because the timer runs in atomic
context, but is also better than before, because if needed, we can
chrt & taskset this kernel thread, to ensure it gets enough priority
under load.
After this patch, one can notice that the wander is greatly reduced, and
that the latencies of one extts poll are not propagated to the next. The
'src' timestamp that is skipped is never larger than .65 seconds (which
means .15 seconds larger than the time at which the real event occurred
at, and .10 seconds smaller than the .75 upper threshold for ignoring
the falling edge):
ts2phc[40.076]: adding tstamp 34.949261296 to clock /dev/ptp3
ts2phc[40.076]: adding tstamp 35.000000000 to clock /dev/ptp1
ts2phc[40.076]: /dev/ptp3 offset 48 s2 freq +4631
ts2phc[40.568]: /dev/ptp3 SKIP extts index 0 at 35.449256496 src 35.595791078
ts2phc[41.064]: adding tstamp 35.949251744 to clock /dev/ptp3
ts2phc[41.064]: adding tstamp 36.000000000 to clock /dev/ptp1
ts2phc[41.064]: /dev/ptp3 offset -224 s2 freq +4374
ts2phc[41.552]: /dev/ptp3 SKIP extts index 0 at 36.449247088 src 36.579825574
ts2phc[42.044]: adding tstamp 36.949242456 to clock /dev/ptp3
ts2phc[42.044]: adding tstamp 37.000000000 to clock /dev/ptp1
ts2phc[42.044]: /dev/ptp3 offset -240 s2 freq +4290
ts2phc[42.536]: /dev/ptp3 SKIP extts index 0 at 37.449237848 src 37.563828774
ts2phc[43.028]: adding tstamp 37.949233264 to clock /dev/ptp3
ts2phc[43.028]: adding tstamp 38.000000000 to clock /dev/ptp1
ts2phc[43.028]: /dev/ptp3 offset -144 s2 freq +4314
ts2phc[43.520]: /dev/ptp3 SKIP extts index 0 at 38.449228656 src 38.547823238
ts2phc[44.012]: adding tstamp 38.949224048 to clock /dev/ptp3
ts2phc[44.012]: adding tstamp 39.000000000 to clock /dev/ptp1
ts2phc[44.012]: /dev/ptp3 offset -80 s2 freq +4335
ts2phc[44.508]: /dev/ptp3 SKIP extts index 0 at 39.449219432 src 39.535846118
ts2phc[44.996]: adding tstamp 39.949214816 to clock /dev/ptp3
ts2phc[44.996]: adding tstamp 40.000000000 to clock /dev/ptp1
ts2phc[44.996]: /dev/ptp3 offset -32 s2 freq +4359
ts2phc[45.488]: /dev/ptp3 SKIP extts index 0 at 40.449210192 src 40.515824678
ts2phc[45.980]: adding tstamp 40.949205568 to clock /dev/ptp3
ts2phc[45.980]: adding tstamp 41.000000000 to clock /dev/ptp1
ts2phc[45.980]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[46.636]: /dev/ptp3 SKIP extts index 0 at 41.449200928 src 41.664176902
ts2phc[47.132]: adding tstamp 41.949196288 to clock /dev/ptp3
ts2phc[47.132]: adding tstamp 42.000000000 to clock /dev/ptp1
ts2phc[47.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[47.620]: /dev/ptp3 SKIP extts index 0 at 42.449191656 src 42.648117190
ts2phc[48.112]: adding tstamp 42.949187016 to clock /dev/ptp3
ts2phc[48.112]: adding tstamp 43.000000000 to clock /dev/ptp1
ts2phc[48.112]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[48.604]: /dev/ptp3 SKIP extts index 0 at 43.449182384 src 43.632112582
ts2phc[49.100]: adding tstamp 43.949177736 to clock /dev/ptp3
ts2phc[49.100]: adding tstamp 44.000000000 to clock /dev/ptp1
ts2phc[49.100]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[49.588]: /dev/ptp3 SKIP extts index 0 at 44.449173096 src 44.616136774
ts2phc[50.080]: adding tstamp 44.949168464 to clock /dev/ptp3
ts2phc[50.080]: adding tstamp 45.000000000 to clock /dev/ptp1
ts2phc[50.080]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[50.572]: /dev/ptp3 SKIP extts index 0 at 45.449163816 src 45.600134662
ts2phc[51.064]: adding tstamp 45.949159160 to clock /dev/ptp3
ts2phc[51.064]: adding tstamp 46.000000000 to clock /dev/ptp1
ts2phc[51.064]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[51.556]: /dev/ptp3 SKIP extts index 0 at 46.449154528 src 46.584588550
ts2phc[52.048]: adding tstamp 46.949149896 to clock /dev/ptp3
ts2phc[52.048]: adding tstamp 47.000000000 to clock /dev/ptp1
ts2phc[52.048]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[52.540]: /dev/ptp3 SKIP extts index 0 at 47.449145256 src 47.568132198
ts2phc[53.032]: adding tstamp 47.949140616 to clock /dev/ptp3
ts2phc[53.032]: adding tstamp 48.000000000 to clock /dev/ptp1
ts2phc[53.032]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[53.524]: /dev/ptp3 SKIP extts index 0 at 48.449135968 src 48.552121446
ts2phc[54.016]: adding tstamp 48.949131320 to clock /dev/ptp3
ts2phc[54.016]: adding tstamp 49.000000000 to clock /dev/ptp1
ts2phc[54.016]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[54.512]: /dev/ptp3 SKIP extts index 0 at 49.449126680 src 49.540147014
ts2phc[55.000]: adding tstamp 49.949122040 to clock /dev/ptp3
ts2phc[55.000]: adding tstamp 50.000000000 to clock /dev/ptp1
ts2phc[55.000]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[55.492]: /dev/ptp3 SKIP extts index 0 at 50.449117400 src 50.520119078
ts2phc[55.988]: adding tstamp 50.949112768 to clock /dev/ptp3
ts2phc[55.988]: adding tstamp 51.000000000 to clock /dev/ptp1
ts2phc[55.988]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[56.476]: /dev/ptp3 SKIP extts index 0 at 51.449108120 src 51.504175910
ts2phc[57.132]: adding tstamp 51.949103480 to clock /dev/ptp3
ts2phc[57.132]: adding tstamp 52.000000000 to clock /dev/ptp1
ts2phc[57.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[57.624]: /dev/ptp3 SKIP extts index 0 at 52.449098840 src 52.651833574
ts2phc[58.116]: adding tstamp 52.949094200 to clock /dev/ptp3
ts2phc[58.116]: adding tstamp 53.000000000 to clock /dev/ptp1
ts2phc[58.116]: /dev/ptp3 offset 8 s2 freq +4392
ts2phc[58.612]: /dev/ptp3 SKIP extts index 0 at 53.449089560 src 53.639826918
ts2phc[59.100]: adding tstamp 53.949084920 to clock /dev/ptp3
ts2phc[59.100]: adding tstamp 54.000000000 to clock /dev/ptp1
ts2phc[59.100]: /dev/ptp3 offset 8 s2 freq +4394
ts2phc[59.592]: /dev/ptp3 SKIP extts index 0 at 54.449080272 src 54.619842278
ts2phc[60.084]: adding tstamp 54.949075624 to clock /dev/ptp3
ts2phc[60.084]: adding tstamp 55.000000000 to clock /dev/ptp1
ts2phc[60.084]: /dev/ptp3 offset 8 s2 freq +4397
ts2phc[60.576]: /dev/ptp3 SKIP extts index 0 at 55.449070968 src 55.603885542
ts2phc[61.068]: adding tstamp 55.949066312 to clock /dev/ptp3
ts2phc[61.068]: adding tstamp 56.000000000 to clock /dev/ptp1
ts2phc[61.068]: /dev/ptp3 offset 0 s2 freq +4391
ts2phc[61.560]: /dev/ptp3 SKIP extts index 0 at 56.449061680 src 56.587885798
ts2phc[62.052]: adding tstamp 56.949057032 to clock /dev/ptp3
ts2phc[62.052]: adding tstamp 57.000000000 to clock /dev/ptp1
ts2phc[62.052]: /dev/ptp3 offset -8 s2 freq +4383
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since 'tcfp_burst' with TICK factor, driver side always need to recover
it to the original value, this patch moves the generic calculation and
recover to the 'burst' original value before offloading to device driver.
Signed-off-by: Po Liu <po.liu@nxp.com>
Acked-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Minor overlapping changes in xfrm_device.c, between the double
ESP trailing bug fix setting the XFRM_INIT flag and the changes
in net-next preparing for bonding encryption support.
Signed-off-by: David S. Miller <davem@davemloft.net>
The sja1105_gating_cfg_time_to_interval function does this, as per the
comments:
/* The gate entries contain absolute times in their e->interval field. Convert
* that to proper intervals (i.e. "0, 5, 10, 15" to "5, 5, 5, 5").
*/
To perform that task, it iterates over gating_cfg->entries, at each step
updating the interval of the _previous_ entry. So one interval remains
to be updated at the end of the loop: the last one (since it isn't
"prev" for anyone else).
But there was an erroneous check, that the last element's interval
should not be updated if it's also the only element. I'm not quite sure
why that check was there, but it's clearly incorrect, as a tc-gate
schedule with a single element would get an e->interval of zero,
regardless of the duration requested by the user. The switch wouldn't
even consider this configuration as valid: it will just drop all traffic
that matches the rule.
Fixes: 834f8933d5 ("net: dsa: sja1105: implement tc-gate using time-triggered virtual links")
Reported-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, tas_data->enabled would remain true even after deleting all
tc-gate rules from the switch ports, which would cause the
sja1105_tas_state_machine to get unnecessarily scheduled.
Also, if there were any errors which would prevent the hardware from
enabling the gating schedule, the sja1105_tas_state_machine would
continuously detect and print that, spamming the kernel log, even if the
rules were subsequently deleted.
The rules themselves are _not_ active, because sja1105_init_scheduling
does enough of a job to not install the gating schedule in the static
config. But the virtual link rules themselves are still present.
So call the functions that remove the tc-gate configuration from
priv->tas_data.gating_cfg, so that tas_data->enabled can be set to
false, and sja1105_tas_state_machine will stop from being scheduled.
Fixes: 834f8933d5 ("net: dsa: sja1105: implement tc-gate using time-triggered virtual links")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently sja1105_compose_gating_subschedule is not prepared to be
called for the case where we want to recompute the global tc-gate
configuration after we've deleted those actions on a port.
After deleting the tc-gate actions on the last port, max_cycle_time
would become zero, and that would incorrectly prevent
sja1105_free_gating_config from getting called.
So move the freeing function above the check for the need to apply a new
configuration.
Fixes: 834f8933d5 ("net: dsa: sja1105: implement tc-gate using time-triggered virtual links")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
It turns out that sja1105_compose_gating_subschedule must also be called
from sja1105_vl_delete, to recalculate the overall tc-gate
configuration. Currently this is not possible without introducing a
forward declaration. So move the function at the top of the file, along
with its dependencies.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since struct sja1105_private only holds a const pointer to one of these
structures based on device tree compatible string, the structures
themselves can be made const.
Also add an empty line between each structure definition, to appease
checkpatch.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The per-chip instantiations of struct sja1105_table_ops and struct
sja1105_dynamic_table_ops can be made constant, so do that.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Sparse is complaining and giving the following warning message:
'Using plain integer as NULL pointer'.
This is not what's going on, instead {0} is used as a zero initializer
for the structure members, to indicate that the particular chip revision
does not support those particular config tables.
But since the config tables are declared globally, the unpopulated
elements are zero-initialized anyway. So, to make sparse shut up, let's
remove the zero initializers.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Make use of the struct_size() helper instead of an open-coded version
in order to avoid any potential type mistakes.
This code was detected with the help of Coccinelle and, audited and
fixed manually.
Addresses-KSPP-ID: https://github.com/KSPP/linux/issues/83
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Acked-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds a drop frames counter to tc flower offloading.
Reporting h/w dropped frames is necessary for some actions.
Some actions like police action and the coming introduced stream gate
action would produce dropped frames which is necessary for user. Status
update shows how many filtered packets increasing and how many dropped
in those packets.
v2: Changes
- Update commit comments suggest by Jiri Pirko.
Signed-off-by: Po Liu <Po.Liu@nxp.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Reviewed-by: Vlad Buslov <vladbu@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This action requires the VLAN awareness state of the switch to be of the
same type as the key that's being added:
- If the switch is unaware of VLAN, then the tc filter key must only
contain the destination MAC address.
- If the switch is VLAN-aware, the key must also contain the VLAN ID and
PCP.
But this check doesn't work unless we verify the VLAN awareness state on
both the "if" and the "else" branches.
Fixes: 834f8933d5 ("net: dsa: sja1105: implement tc-gate using time-triggered virtual links")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This action requires the VLAN awareness state of the switch to be of the
same type as the key that's being added:
- If the switch is unaware of VLAN, then the tc filter key must only
contain the destination MAC address.
- If the switch is VLAN-aware, the key must also contain the VLAN ID and
PCP.
But this check doesn't work unless we verify the VLAN awareness state on
both the "if" and the "else" branches.
Fixes: dfacc5a23e ("net: dsa: sja1105: support flow-based redirection via virtual links")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This shouldn't be there.
Fixes: 834f8933d5 ("net: dsa: sja1105: implement tc-gate using time-triggered virtual links")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
It isn't actually described clearly at all in UM10944.pdf, but on TX of
a management frame (such as PTP), this needs to happen:
- The destination MAC address (i.e. 01-80-c2-00-00-0e), along with the
desired destination port, need to be installed in one of the 4
management slots of the switch, over SPI.
- The host can poll over SPI for that management slot's ENFPORT field.
That gets unset when the switch has matched the slot to the frame.
And therein lies the problem. ENFPORT does not mean that the packet has
been transmitted. Just that it has been received over the CPU port, and
that the mgmt slot is yet again available.
This is relevant because of what we are doing in sja1105_ptp_txtstamp_skb,
which is called right after sja1105_mgmt_xmit. We are in a hard
real-time deadline, since the hardware only gives us 24 bits of TX
timestamp, so we need to read the full PTP clock to reconstruct it.
Because we're in a hurry (in an attempt to make sure that we have a full
64-bit PTP time which is as close as possible to the actual transmission
time of the frame, to avoid 24-bit wraparounds), first we read the PTP
clock, then we poll for the TX timestamp to become available.
But of course, we don't know for sure that the frame has been
transmitted when we read the full PTP clock. We had assumed that ENFPORT
means it has, but the assumption is incorrect. And while in most
real-life scenarios this has never been caught due to software delays,
nowhere is this fact more obvious than with a tc-taprio offload, where
PTP traffic gets a small timeslot very rarely (example: 1 packet per 10
ms). In that case, we will be reading the PTP clock for timestamp
reconstruction too early (before the packet has been transmitted), and
this renders the reconstruction procedure incorrect (see the assumptions
described in the comments found on function sja1105_tstamp_reconstruct).
So the PTP TX timestamps will be off by 1<<24 clock ticks, or 135 ms
(1 tick is 8 ns).
So fix this case of premature optimization by simply reordering the
sja1105_ptpegr_ts_poll and the sja1105_ptpclkval_read function calls. It
turns out that in practice, the 135 ms hard deadline for PTP timestamp
wraparound is not so hard, since even the most bandwidth-intensive PTP
profiles, such as 802.1AS-2011, have a sync frame interval of 125 ms.
So if we couldn't deliver a timestamp in 135 ms (which we can), we're
toast and have much bigger problems anyway.
Fixes: 47ed985e97 ("net: dsa: sja1105: Add logic for TX timestamping")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Newer C compilers are complaining about the fact that there are no
function prototypes in sja1105_vl.c for the non-static functions.
Give them what they want.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The dynamic configuration interface for the General Params and the L2
Lookup Params tables was copy-pasted between E/T devices and P/Q/R/S
devices. Nonetheless, these interfaces are bitwise different.
The driver is using dynamic reconfiguration of the General Parameters
table for the port mirroring feature, which was therefore broken on
P/Q/R/S.
Note that this patch can't be backported easily very far to stable trees
(since it conflicts with some other development done since the
introduction of the driver). So the Fixes: tag is purely informational.
Fixes: 8aa9ebccae ("net: dsa: Introduce driver for NXP SJA1105 5-port L2 switch")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Newer compilers complain with W=1 builds that there are non-static
functions defined in sja1105_static_config.c that don't have a
prototype, because their prototype is defined in sja1105.h which this
translation unit does not include.
I don't entirely understand what is the point of these warnings, since
in principle there's nothing wrong with that. But let's move the
prototypes to a header file that _is_ included by
sja1105_static_config.c, since that will make these warnings go away.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Be there 2 switches spi/spi2.0 and spi/spi2.1 in a cross-chip setup,
both under the same VLAN-filtering bridge, both in the
SJA1105_VLAN_BEST_EFFORT state.
If we try to change the VLAN state of one of the switches (to
SJA1105_VLAN_FILTERING_FULL) we get the following error:
devlink dev param set spi/spi2.1 name best_effort_vlan_filtering value
false cmode runtime
[ 38.325683] sja1105 spi2.1: Not allowed to overcommit frame memory.
L2 memory partitions and VL memory partitions share the
same space. The sum of all 16 memory partitions is not
allowed to be larger than 929 128-byte blocks (or 910
with retagging). Please adjust
l2-forwarding-parameters-table.part_spc and/or
vl-forwarding-parameters-table.partspc.
[ 38.356803] sja1105 spi2.1: Invalid config, cannot upload
This is because the spi/spi2.1 switch doesn't support tagging anymore in
the SJA1105_VLAN_FILTERING_FULL state, so it doesn't need to have any
retagging rules defined. Great, so it can use more frame memory
(retagging consumes extra memory).
But the built-in low-level static config checker from the sja1105 driver
says "not so fast, you've increased the frame memory to non-retagging
values, but you still kept the retagging rules in the static config".
So we need to rebuild the VLAN table immediately before re-uploading the
static config, operation which will take care, based on the new VLAN
state, of removing the retagging rules.
Fixes: 3f01c91aab ("net: dsa: sja1105: implement VLAN retagging for dsa_8021q sub-VLANs")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
SJA1105, being AVB/TSN switches, provide hardware assist for the
Credit-Based Shaper as described in the IEEE 8021Q-2018 document.
First generation has 10 shapers, freely assignable to any of the 4
external ports and 8 traffic classes, and second generation has 16
shapers.
The Credit-Based Shaper tables are accessed through the dynamic
reconfiguration interface, so we have to restore them manually after a
switch reset. The tables are backed up by the static config only on
P/Q/R/S, and we don't want to add custom code only for that family,
since the procedure that is in place now works for both.
Tested with the following commands:
data_rate_kbps=67000
port_transmit_rate_kbps=1000000
idleslope=$data_rate_kbps
sendslope=$(($idleslope - $port_transmit_rate_kbps))
locredit=$((-0x80000000))
hicredit=$((0x7fffffff))
tc qdisc add dev swp2 root handle 1: mqprio hw 0 num_tc 8 \
map 0 1 2 3 4 5 6 7 \
queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7
tc qdisc replace dev swp2 parent 1:1 cbs \
idleslope $idleslope \
sendslope $sendslope \
hicredit $hicredit \
locredit $locredit \
offload 1
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Expand the delta commit procedure for VLANs with additional logic for
treating bridge_vlans in the newly introduced operating mode,
SJA1105_VLAN_BEST_EFFORT.
For every bridge VLAN on every user port, a sub-VLAN index is calculated
and retagging rules are installed towards a dsa_8021q rx_vid that
encodes that sub-VLAN index. This way, the tagger can identify the
original VLANs.
Extra care is taken for VLANs to still work as intended in cross-chip
scenarios. Retagging may have unintended consequences for these because
a sub-VLAN encoding that works for the CPU does not make any sense for a
front-panel port.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There are 2 different features that require some reserved frame memory
space: VLAN retagging and virtual links. Create a central function that
modifies the static config and ensures frame memory is never
overcommitted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The Retagging Table is an optional feature that allows the switch to
match frames against a {ingress port, egress port, vid} rule and change
their VLAN ID. The retagged frames are by default clones of the original
ones (since the hardware-foreseen use case was to mirror traffic for
debugging purposes and to tag it with a special VLAN for this purpose),
but we can force the original frames to be dropped by removing the
pre-retagging VLAN from the port membership list of the egress port.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This devlink parameter enables the handling of DSA tags when enslaved to
a bridge with vlan_filtering=1. There are very good reasons to want
this, but there are also very good reasons for not enabling it by
default. So a devlink param named best_effort_vlan_filtering, currently
driver-specific and exported only by sja1105, is used to configure this.
In practice, this is perhaps the way that most users are going to use
the switch in. It assumes that no more than 7 VLANs are needed per port.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Create a subvlan_map as part of each port's tagger private structure.
This keeps reverse mappings of bridge-to-dsa_8021q VLAN retagging rules.
Note that as of this patch, this piece of code is never engaged, due to
the fact that the driver hasn't installed any retagging rule, so we'll
always see packets with a subvlan code of 0 (untagged).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In VLAN-unaware mode, sja1105 uses VLAN tags with a custom TPID of
0xdadb. While in the yet-to-be introduced best_effort_vlan_filtering
mode, it needs to work with normal VLAN TPID values.
A complication arises when we must transmit a VLAN-tagged packet to the
switch when it's in VLAN-aware mode. We need to construct a packet with
2 VLAN tags, and the switch will use the outer header for routing and
pop it on egress. But sadly, here the 2 hardware generations don't
behave the same:
- E/T switches won't pop an ETH_P_8021AD tag on egress, it seems
(packets will remain double-tagged).
- P/Q/R/S switches will drop a packet with 2 ETH_P_8021Q tags (it looks
like it tries to prevent VLAN hopping).
But looks like the reverse is also true:
- E/T switches have no problem popping the outer tag from packets with
2 ETH_P_8021Q tags.
- P/Q/R/S will have no problem popping a single tag even if that is
ETH_P_8021AD.
So it is clear that if we want the hardware to work with dsa_8021q
tagging in VLAN-aware mode, we need to send different TPIDs depending on
revision. Keep that information in priv->info->qinq_tpid.
The per-port tagger structure will hold an xmit_tpid value that depends
not only upon the qinq_tpid, but also upon the VLAN awareness state
itself (in case we must transmit using 0xdadb).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
VLAN filtering is a global property for sja1105, and that means that we
rely on the DSA core to not call us more than once.
But we need to introduce some per-port state for the tagger, namely the
xmit_tpid, and the best place to do that is where the xmit_tpid changes,
namely in sja1105_vlan_filtering. So at the moment, exit early from the
function to avoid unnecessarily resetting the switch for each port call.
Then we'll change the xmit_tpid prior to the early exit in the next
patch.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Let the DSA core call our .port_vlan_add methods every time the bridge
layer requests so. We will deal internally with saving/restoring VLANs
depending on our VLAN awareness state.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Managing the VLAN table that is present in hardware will become very
difficult once we add a third operating state
(best_effort_vlan_filtering). That is because correct cleanup (not too
little, not too much) becomes virtually impossible, when VLANs can be
added from the bridge layer, from dsa_8021q for basic tagging, for
cross-chip bridging, as well as retagging rules for sub-VLANs and
cross-chip sub-VLANs. So we need to rethink VLAN interaction with the
switch in a more scalable way.
In preparation for that, use the priv->expect_dsa_8021q boolean to
classify any VLAN request received through .port_vlan_add or
.port_vlan_del towards either one of 2 internal lists: bridge VLANs and
dsa_8021q VLANs.
Then, implement a central sja1105_build_vlan_table method that creates a
VLAN configuration from scratch based on the 2 lists of VLANs kept by
the driver, and based on the VLAN awareness state. Currently, if we are
VLAN-unaware, install the dsa_8021q VLANs, otherwise the bridge VLANs.
Then, implement a delta commit procedure that identifies which VLANs
from this new configuration are actually different from the config
previously committed to hardware. We apply the delta through the dynamic
configuration interface (we don't reset the switch). The result is that
the hardware should see the exact sequence of operations as before this
patch.
This also helps remove the "br" argument passed to
dsa_8021q_crosschip_bridge_join, which it was only using to figure out
whether it should commit the configuration back to us or not, based on
the VLAN awareness state of the bridge. We can simplify that, by always
allowing those VLANs inside of our dsa_8021q_vlans list, and committing
those to hardware when necessary.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
At the moment, this can never happen. The 2 modes that we operate in do
not permit that:
- SJA1105_VLAN_UNAWARE: we are guarded from bridge VLANs added by the
user by the DSA core. We will later lift this restriction by setting
ds->vlan_bridge_vtu = true, and that is where we'll need it.
- SJA1105_VLAN_FILTERING_FULL: in this mode, dsa_8021q configuration is
disabled. So the user is free to add these VLANs in the 1024-3071
range.
The reason for the patch is that we'll introduce a third VLAN awareness
state, where both dsa_8021q as well as the bridge are going to call our
.port_vlan_add and .port_vlan_del methods.
For that, we need a good way to discriminate between the 2. The easiest
(and less intrusive way for upper layers) is to recognize the fact that
dsa_8021q configurations are always driven by our driver - we _know_
when a .port_vlan_add method will be called from dsa_8021q because _we_
initiated it.
So introduce an expect_dsa_8021q boolean which is only used, at the
moment, for blacklisting VLANs in range 1024-3071 in the modes when
dsa_8021q is active.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Soon we'll add a third operating mode to the driver. Introduce a
vlan_state to make things more easy to manage, and use it where
applicable.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
sja1105 uses dsa_8021q for DSA tagging, a format which is VLAN at heart
and which is compatible with cascading. A complete description of this
tagging format is in net/dsa/tag_8021q.c, but a quick summary is that
each external-facing port tags incoming frames with a unique pvid, and
this special VLAN is transmitted as tagged towards the inside of the
system, and as untagged towards the exterior. The tag encodes the switch
id and the source port index.
This means that cross-chip bridging for dsa_8021q only entails adding
the dsa_8021q pvids of one switch to the RX filter of the other
switches. Everything else falls naturally into place, as long as the
bottom-end of ports (the leaves in the tree) is comprised exclusively of
dsa_8021q-compatible (i.e. sja1105 switches). Otherwise, there would be
a chance that a front-panel switch transmits a packet tagged with a
dsa_8021q header, header which it wouldn't be able to remove, and which
would hence "leak" out.
The only use case I tested (due to lack of board availability) was when
the sja1105 switches are part of disjoint trees (however, this doesn't
change the fact that multiple sja1105 switches still need unique switch
identifiers in such a system). But in principle, even "true" single-tree
setups (with DSA links) should work just as fine, except for a small
change which I can't test: dsa_towards_port should be used instead of
dsa_upstream_port (I made the assumption that the routing port that any
sja1105 should use towards its neighbours is the CPU port. That might
not hold true in other setups).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Fixes gcc '-Wunused-but-set-variable' warning:
drivers/net/dsa/sja1105/sja1105_vl.c:468:6: warning: variable ‘prev_time’ set but not used [-Wunused-but-set-variable]
u32 prev_time = 0;
^~~~~~~~~
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Samuel Zou <zou_wei@huawei.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Restrict the TTEthernet hardware support on this switch to operate as
closely as possible to IEEE 802.1Qci as possible. This means that it can
perform PTP-time-based ingress admission control on streams identified
by {DMAC, VID, PCP}, which is useful when trying to ensure the
determinism of traffic scheduled via IEEE 802.1Qbv.
The oddity comes from the fact that in hardware (and in TTEthernet at
large), virtual links always need a full-blown action, including not
only the type of policing, but also the list of destination ports. So in
practice, a single tc-gate action will result in all packets getting
dropped. Additional actions (either "trap" or "redirect") need to be
specified in the same filter rule such that the conforming packets are
actually forwarded somewhere.
Apart from the VL Lookup, Policing and Forwarding tables which need to
be programmed for each flow (virtual link), the Schedule engine also
needs to be told to open/close the admission gates for each individual
virtual link. A fairly accurate (and detailed) description of how that
works is already present in sja1105_tas.c, since it is already used to
trigger the egress gates for the tc-taprio offload (IEEE 802.1Qbv). Key
point here, we remember that the schedule engine supports 8
"subschedules" (execution threads that iterate through the global
schedule in parallel, and that no 2 hardware threads must execute a
schedule entry at the same time). For tc-taprio, each egress port used
one of these 8 subschedules, leaving a total of 4 subschedules unused.
In principle we could have allocated 1 subschedule for the tc-gate
offload of each ingress port, but actually the schedules of all virtual
links installed on each ingress port would have needed to be merged
together, before they could have been programmed to hardware. So
simplify our life and just merge the entire tc-gate configuration, for
all virtual links on all ingress ports, into a single subschedule. Be
sure to check that against the usual hardware scheduling conflicts, and
program it to hardware alongside any tc-taprio subschedule that may be
present.
The following scenarios were tested:
1. Quantitative testing:
tc qdisc add dev swp2 clsact
tc filter add dev swp2 ingress flower skip_sw \
dst_mac 42:be:24:9b:76:20 \
action gate index 1 base-time 0 \
sched-entry OPEN 1200 -1 -1 \
sched-entry CLOSE 1200 -1 -1 \
action trap
ping 192.168.1.2 -f
PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data.
.............................
--- 192.168.1.2 ping statistics ---
948 packets transmitted, 467 received, 50.7384% packet loss, time 9671ms
2. Qualitative testing (with a phase-aligned schedule - the clocks are
synchronized by ptp4l, not shown here):
Receiver (sja1105):
tc qdisc add dev swp2 clsact
now=$(phc_ctl /dev/ptp1 get | awk '/clock time is/ {print $5}') && \
sec=$(echo $now | awk -F. '{print $1}') && \
base_time="$(((sec + 2) * 1000000000))" && \
echo "base time ${base_time}"
tc filter add dev swp2 ingress flower skip_sw \
dst_mac 42:be:24:9b:76:20 \
action gate base-time ${base_time} \
sched-entry OPEN 60000 -1 -1 \
sched-entry CLOSE 40000 -1 -1 \
action trap
Sender (enetc):
now=$(phc_ctl /dev/ptp0 get | awk '/clock time is/ {print $5}') && \
sec=$(echo $now | awk -F. '{print $1}') && \
base_time="$(((sec + 2) * 1000000000))" && \
echo "base time ${base_time}"
tc qdisc add dev eno0 parent root taprio \
num_tc 8 \
map 0 1 2 3 4 5 6 7 \
queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
base-time ${base_time} \
sched-entry S 01 50000 \
sched-entry S 00 50000 \
flags 2
ping -A 192.168.1.1
PING 192.168.1.1 (192.168.1.1): 56 data bytes
...
^C
--- 192.168.1.1 ping statistics ---
1425 packets transmitted, 1424 packets received, 0% packet loss
round-trip min/avg/max = 0.322/0.361/0.990 ms
And just for comparison, with the tc-taprio schedule deleted:
ping -A 192.168.1.1
PING 192.168.1.1 (192.168.1.1): 56 data bytes
...
^C
--- 192.168.1.1 ping statistics ---
33 packets transmitted, 19 packets received, 42% packet loss
round-trip min/avg/max = 0.336/0.464/0.597 ms
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Implement tc-flower offloads for redirect, trap and drop using
non-critical virtual links.
Commands which were tested to work are:
# Send frames received on swp2 with a DA of 42:be:24:9b:76:20 to the
# CPU and to swp3. This type of key (DA only) when the port's VLAN
# awareness state is off.
tc qdisc add dev swp2 clsact
tc filter add dev swp2 ingress flower skip_sw dst_mac 42:be:24:9b:76:20 \
action mirred egress redirect dev swp3 \
action trap
# Drop frames received on swp2 with a DA of 42:be:24:9b:76:20, a VID
# of 100 and a PCP of 0.
tc filter add dev swp2 ingress protocol 802.1Q flower skip_sw \
dst_mac 42:be:24:9b:76:20 vlan_id 100 vlan_prio 0 action drop
Under the hood, all rules match on DMAC, VID and PCP, but when VLAN
filtering is disabled, those are set internally by the driver to the
port-based defaults. Because we would be put in an awkward situation if
the user were to change the VLAN filtering state while there are active
rules (packets would no longer match on the specified keys), we simply
deny changing vlan_filtering unless the list of flows offloaded via
virtual links is empty. Then the user can re-add new rules.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Virtual links are a sja1105 hardware concept of executing various flow
actions based on a key extracted from the frame's DMAC, VID and PCP.
Currently the tc-flower offload code supports only parsing the DMAC if
that is the broadcast MAC address, and the VLAN PCP. Extract the key
parsing logic from the L2 policers functionality and move it into its
own function, after adding extra logic for matching on any DMAC and VID.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds the register definitions for the:
- VL Lookup Table
- VL Policing Table
- VL Forwarding Table
- VL Forwarding Parameters Table
These are needed in order to perform TTEthernet operations: QoS
classification, flow-based policing and/or frame redirecting with the
switch.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>