Pull kmap conversion updates from David Sterba:
"This contains changes regarding kmap API use and eg conversion from
kmap_atomic to kmap_local_page.
The API belongs to memory management but to save cross-tree
dependency headaches we've agreed to take it through the btrfs tree
because there are some trivial conversions possible, while the rest
will need some time and getting the easy cases out of the way would be
convenient.
The changes can be grouped:
- function exports, new helpers
- new VM_BUG_ON for additional verification; it's been discussed if
it should be VM_BUG_ON or BUG_ON, the former was chosen due to
performance reasons
- code replaced by relevant helpers"
[ This is an updated version of a request that originally came in during
the merge window, but I asked for some updates:
https://lore.kernel.org/lkml/cover.1614090658.git.dsterba@suse.com/
which is why this got merge after the merge window closed. - Linus ]
* 'kmap-conversion-for-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: use copy_highpage() instead of 2 kmaps()
btrfs: use memcpy_[to|from]_page() and kmap_local_page()
mm/highmem: Add VM_BUG_ON() to mem*_page() calls
mm/highmem: Introduce memcpy_page(), memmove_page(), and memset_page()
mm/highmem: Convert memcpy_[to|from]_page() to kmap_local_page()
mm/highmem: Lift memcpy_[to|from]_page to core
There are many places where the pattern kmap/memcpy/kunmap occurs.
This pattern was lifted to the core common functions
memcpy_[to|from]_page().
Use these new functions to reduce the code, eliminate direct uses of
kmap, and leverage the new core functions use of kmap_local_page().
Also, there is 1 place where a kmap/memcpy is followed by an
optional memset. Here we leave the kmap open coded to avoid remapping
the page but use kmap_local_page() directly.
Development of this patch was aided by the coccinelle script:
// <smpl>
// SPDX-License-Identifier: GPL-2.0-only
// Find kmap/memcpy/kunmap pattern and replace with memcpy*page calls
//
// NOTE: Offsets and other expressions may be more complex than what the script
// will automatically generate. Therefore a catchall rule is provided to find
// the pattern which then must be evaluated by hand.
//
// Confidence: Low
// Copyright: (C) 2021 Intel Corporation
// URL: http://coccinelle.lip6.fr/
// Comments:
// Options:
//
// simple memcpy version
//
@ memcpy_rule1 @
expression page, T, F, B, Off;
identifier ptr;
type VP;
@@
(
-VP ptr = kmap(page);
|
-ptr = kmap(page);
|
-VP ptr = kmap_atomic(page);
|
-ptr = kmap_atomic(page);
)
<+...
(
-memcpy(ptr + Off, F, B);
+memcpy_to_page(page, Off, F, B);
|
-memcpy(ptr, F, B);
+memcpy_to_page(page, 0, F, B);
|
-memcpy(T, ptr + Off, B);
+memcpy_from_page(T, page, Off, B);
|
-memcpy(T, ptr, B);
+memcpy_from_page(T, page, 0, B);
)
...+>
(
-kunmap(page);
|
-kunmap_atomic(ptr);
)
// Remove any pointers left unused
@
depends on memcpy_rule1
@
identifier memcpy_rule1.ptr;
type VP, VP1;
@@
-VP ptr;
... when != ptr;
? VP1 ptr;
//
// Some callers kmap without a temp pointer
//
@ memcpy_rule2 @
expression page, T, Off, F, B;
@@
<+...
(
-memcpy(kmap(page) + Off, F, B);
+memcpy_to_page(page, Off, F, B);
|
-memcpy(kmap(page), F, B);
+memcpy_to_page(page, 0, F, B);
|
-memcpy(T, kmap(page) + Off, B);
+memcpy_from_page(T, page, Off, B);
|
-memcpy(T, kmap(page), B);
+memcpy_from_page(T, page, 0, B);
)
...+>
-kunmap(page);
// No need for the ptr variable removal
//
// Catch all
//
@ memcpy_rule3 @
expression page;
expression GenTo, GenFrom, GenSize;
identifier ptr;
type VP;
@@
(
-VP ptr = kmap(page);
|
-ptr = kmap(page);
|
-VP ptr = kmap_atomic(page);
|
-ptr = kmap_atomic(page);
)
<+...
(
//
// Some call sites have complex expressions within the memcpy
// match a catch all to be evaluated by hand.
//
-memcpy(GenTo, GenFrom, GenSize);
+memcpy_to_pageExtra(page, GenTo, GenFrom, GenSize);
+memcpy_from_pageExtra(GenTo, page, GenFrom, GenSize);
)
...+>
(
-kunmap(page);
|
-kunmap_atomic(ptr);
)
// Remove any pointers left unused
@
depends on memcpy_rule3
@
identifier memcpy_rule3.ptr;
type VP, VP1;
@@
-VP ptr;
... when != ptr;
? VP1 ptr;
// <smpl>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_compare_trees and changed_cb use a void *ctx parameter instead of
struct send_ctx *sctx but when used in changed_cb it is immediately
cast to `struct send_ctx *sctx = ctx;`.
changed_cb is only ever called from btrfs_compare_trees and full_send_tree:
- full_send_tree already passes a struct send_ctx *sctx
- btrfs_compare_trees is only called by send_subvol with a struct send_ctx *sctx
- void *ctx in btrfs_compare_trees is only used to be passed to changed_cb
So casting to/from void *ctx seems unnecessary and directly using
struct send_ctx *sctx instead provides better type-safety.
The original reason for using void *ctx in the first place seems to have
been dropped with 1b51d6fce4 ("btrfs: send: remove indirect callback
parameter for changed_cb").
Signed-off-by: Roman Anasal <roman.anasal@bdsu.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After commit 040ee6120c ("Btrfs: send, improve clone range") we do not
use anymore the data_offset field of struct backref_ctx, as after that we
do all the necessary checks for the data offset of file extent items at
clone_range(). Since there are no more users of data_offset from that
structure, remove it.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When an incremental send finds an extent that is shared, it checks which
file extent items in the range refer to that extent, and for those it
emits clone operations, while for others it emits regular write operations
to avoid corruption at the destination (as described and fixed by commit
d906d49fc5 ("Btrfs: send, fix file corruption due to incorrect cloning
operations")).
However when the root we are cloning from is the send root, we are cloning
from the inode currently being processed and the source file range has
several extent items that partially point to the desired extent, with an
offset smaller than the offset in the file extent item for the range we
want to clone into, it can cause the algorithm to issue a clone operation
that starts at the current eof of the file being processed in the receiver
side, in which case the receiver will fail, with EINVAL, when attempting
to execute the clone operation.
Example reproducer:
$ cat test-send-clone.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
mkfs.btrfs -f $DEV >/dev/null
mount $DEV $MNT
# Create our test file with a single and large extent (1M) and with
# different content for different file ranges that will be reflinked
# later.
xfs_io -f \
-c "pwrite -S 0xab 0 128K" \
-c "pwrite -S 0xcd 128K 128K" \
-c "pwrite -S 0xef 256K 256K" \
-c "pwrite -S 0x1a 512K 512K" \
$MNT/foobar
btrfs subvolume snapshot -r $MNT $MNT/snap1
btrfs send -f /tmp/snap1.send $MNT/snap1
# Now do a series of changes to our file such that we end up with
# different parts of the extent reflinked into different file offsets
# and we overwrite a large part of the extent too, so no file extent
# items refer to that part that was overwritten. This used to confuse
# the algorithm used by the kernel to figure out which file ranges to
# clone, making it attempt to clone from a source range starting at
# the current eof of the file, resulting in the receiver to fail since
# it is an invalid clone operation.
#
xfs_io -c "reflink $MNT/foobar 64K 1M 960K" \
-c "reflink $MNT/foobar 0K 512K 256K" \
-c "reflink $MNT/foobar 512K 128K 256K" \
-c "pwrite -S 0x73 384K 640K" \
$MNT/foobar
btrfs subvolume snapshot -r $MNT $MNT/snap2
btrfs send -f /tmp/snap2.send -p $MNT/snap1 $MNT/snap2
echo -e "\nFile digest in the original filesystem:"
md5sum $MNT/snap2/foobar
# Now unmount the filesystem, create a new one, mount it and try to
# apply both send streams to recreate both snapshots.
umount $DEV
mkfs.btrfs -f $DEV >/dev/null
mount $DEV $MNT
btrfs receive -f /tmp/snap1.send $MNT
btrfs receive -f /tmp/snap2.send $MNT
# Must match what we got in the original filesystem of course.
echo -e "\nFile digest in the new filesystem:"
md5sum $MNT/snap2/foobar
umount $MNT
When running the reproducer, the incremental send operation fails due to
an invalid clone operation:
$ ./test-send-clone.sh
wrote 131072/131072 bytes at offset 0
128 KiB, 32 ops; 0.0015 sec (80.906 MiB/sec and 20711.9741 ops/sec)
wrote 131072/131072 bytes at offset 131072
128 KiB, 32 ops; 0.0013 sec (90.514 MiB/sec and 23171.6148 ops/sec)
wrote 262144/262144 bytes at offset 262144
256 KiB, 64 ops; 0.0025 sec (98.270 MiB/sec and 25157.2327 ops/sec)
wrote 524288/524288 bytes at offset 524288
512 KiB, 128 ops; 0.0052 sec (95.730 MiB/sec and 24506.9883 ops/sec)
Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap1'
At subvol /mnt/sdi/snap1
linked 983040/983040 bytes at offset 1048576
960 KiB, 1 ops; 0.0006 sec (1.419 GiB/sec and 1550.3876 ops/sec)
linked 262144/262144 bytes at offset 524288
256 KiB, 1 ops; 0.0020 sec (120.192 MiB/sec and 480.7692 ops/sec)
linked 262144/262144 bytes at offset 131072
256 KiB, 1 ops; 0.0018 sec (133.833 MiB/sec and 535.3319 ops/sec)
wrote 655360/655360 bytes at offset 393216
640 KiB, 160 ops; 0.0093 sec (66.781 MiB/sec and 17095.8436 ops/sec)
Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap2'
At subvol /mnt/sdi/snap2
File digest in the original filesystem:
9c13c61cb0b9f5abf45344375cb04dfa /mnt/sdi/snap2/foobar
At subvol snap1
At snapshot snap2
ERROR: failed to clone extents to foobar: Invalid argument
File digest in the new filesystem:
132f0396da8f48d2e667196bff882cfc /mnt/sdi/snap2/foobar
The clone operation is invalid because its source range starts at the
current eof of the file in the receiver, causing the receiver to get
an EINVAL error from the clone operation when attempting it.
For the example above, what happens is the following:
1) When processing the extent at file offset 1M, the algorithm checks that
the extent is shared and can be (fully or partially) found at file
offset 0.
At this point the file has a size (and eof) of 1M at the receiver;
2) It finds that our extent item at file offset 1M has a data offset of
64K and, since the file extent item at file offset 0 has a data offset
of 0, it issues a clone operation, from the same file and root, that
has a source range offset of 64K, destination offset of 1M and a length
of 64K, since the extent item at file offset 0 refers only to the first
128K of the shared extent.
After this clone operation, the file size (and eof) at the receiver is
increased from 1M to 1088K (1M + 64K);
3) Now there's still 896K (960K - 64K) of data left to clone or write, so
it checks for the next file extent item, which starts at file offset
128K. This file extent item has a data offset of 0 and a length of
256K, so a clone operation with a source range offset of 256K, a
destination offset of 1088K (1M + 64K) and length of 128K is issued.
After this operation the file size (and eof) at the receiver increases
from 1088K to 1216K (1088K + 128K);
4) Now there's still 768K (896K - 128K) of data left to clone or write, so
it checks for the next file extent item, located at file offset 384K.
This file extent item points to a different extent, not the one we want
to clone, with a length of 640K. So we issue a write operation into the
file range 1216K (1088K + 128K, end of the last clone operation), with
a length of 640K and with a data matching the one we can find for that
range in send root.
After this operation, the file size (and eof) at the receiver increases
from 1216K to 1856K (1216K + 640K);
5) Now there's still 128K (768K - 640K) of data left to clone or write, so
we look into the file extent item, which is for file offset 1M and it
points to the extent we want to clone, with a data offset of 64K and a
length of 960K.
However this matches the file offset we started with, the start of the
range to clone into. So we can't for sure find any file extent item
from here onwards with the rest of the data we want to clone, yet we
proceed and since the file extent item points to the shared extent,
with a data offset of 64K, we issue a clone operation with a source
range starting at file offset 1856K, which matches the file extent
item's offset, 1M, plus the amount of data cloned and written so far,
which is 64K (step 2) + 128K (step 3) + 640K (step 4). This clone
operation is invalid since the source range offset matches the current
eof of the file in the receiver. We should have stopped looking for
extents to clone at this point and instead fallback to write, which
would simply the contain the data in the file range from 1856K to
1856K + 128K.
So fix this by stopping the loop that looks for file ranges to clone at
clone_range() when we reach the current eof of the file being processed,
if we are cloning from the same file and using the send root as the clone
root. This ensures any data not yet cloned will be sent to the receiver
through a write operation.
A test case for fstests will follow soon.
Reported-by: Massimo B. <massimo.b@gmx.net>
Link: https://lore.kernel.org/linux-btrfs/6ae34776e85912960a253a8327068a892998e685.camel@gmx.net/
Fixes: 11f2069c11 ("Btrfs: send, allow clone operations within the same file")
CC: stable@vger.kernel.org # 5.5+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing an incremental send, if we have a new inode that happens to
have the same number that an old directory inode had in the base snapshot
and that old directory has a pending rmdir operation, we end up computing
a wrong path for the new inode, causing the receiver to fail.
Example reproducer:
$ cat test-send-rmdir.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
mkfs.btrfs -f $DEV >/dev/null
mount $DEV $MNT
mkdir $MNT/dir
touch $MNT/dir/file1
touch $MNT/dir/file2
touch $MNT/dir/file3
# Filesystem looks like:
#
# . (ino 256)
# |----- dir/ (ino 257)
# |----- file1 (ino 258)
# |----- file2 (ino 259)
# |----- file3 (ino 260)
#
btrfs subvolume snapshot -r $MNT $MNT/snap1
btrfs send -f /tmp/snap1.send $MNT/snap1
# Now remove our directory and all its files.
rm -fr $MNT/dir
# Unmount the filesystem and mount it again. This is to ensure that
# the next inode that is created ends up with the same inode number
# that our directory "dir" had, 257, which is the first free "objectid"
# available after mounting again the filesystem.
umount $MNT
mount $DEV $MNT
# Now create a new file (it could be a directory as well).
touch $MNT/newfile
# Filesystem now looks like:
#
# . (ino 256)
# |----- newfile (ino 257)
#
btrfs subvolume snapshot -r $MNT $MNT/snap2
btrfs send -f /tmp/snap2.send -p $MNT/snap1 $MNT/snap2
# Now unmount the filesystem, create a new one, mount it and try to apply
# both send streams to recreate both snapshots.
umount $DEV
mkfs.btrfs -f $DEV >/dev/null
mount $DEV $MNT
btrfs receive -f /tmp/snap1.send $MNT
btrfs receive -f /tmp/snap2.send $MNT
umount $MNT
When running the test, the receive operation for the incremental stream
fails:
$ ./test-send-rmdir.sh
Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap1'
At subvol /mnt/sdi/snap1
Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap2'
At subvol /mnt/sdi/snap2
At subvol snap1
At snapshot snap2
ERROR: chown o257-9-0 failed: No such file or directory
So fix this by tracking directories that have a pending rmdir by inode
number and generation number, instead of only inode number.
A test case for fstests follows soon.
Reported-by: Massimo B. <massimo.b@gmx.net>
Tested-by: Massimo B. <massimo.b@gmx.net>
Link: https://lore.kernel.org/linux-btrfs/6ae34776e85912960a253a8327068a892998e685.camel@gmx.net/
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have helpers to access the on-disk item members, use that for
root_item::ctransid instead of raw le64_to_cpu.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During an incremental send, when an inode has multiple new references we
might end up emitting rename operations for orphanizations that have a
source path that is no longer valid due to a previous orphanization of
some directory inode. This causes the receiver to fail since it tries
to rename a path that does not exists.
Example reproducer:
$ cat reproducer.sh
#!/bin/bash
mkfs.btrfs -f /dev/sdi >/dev/null
mount /dev/sdi /mnt/sdi
touch /mnt/sdi/f1
touch /mnt/sdi/f2
mkdir /mnt/sdi/d1
mkdir /mnt/sdi/d1/d2
# Filesystem looks like:
#
# . (ino 256)
# |----- f1 (ino 257)
# |----- f2 (ino 258)
# |----- d1/ (ino 259)
# |----- d2/ (ino 260)
btrfs subvolume snapshot -r /mnt/sdi /mnt/sdi/snap1
btrfs send -f /tmp/snap1.send /mnt/sdi/snap1
# Now do a series of changes such that:
#
# *) inode 258 has one new hardlink and the previous name changed
#
# *) both names conflict with the old names of two other inodes:
#
# 1) the new name "d1" conflicts with the old name of inode 259,
# under directory inode 256 (root)
#
# 2) the new name "d2" conflicts with the old name of inode 260
# under directory inode 259
#
# *) inodes 259 and 260 now have the old names of inode 258
#
# *) inode 257 is now located under inode 260 - an inode with a number
# smaller than the inode (258) for which we created a second hard
# link and swapped its names with inodes 259 and 260
#
ln /mnt/sdi/f2 /mnt/sdi/d1/f2_link
mv /mnt/sdi/f1 /mnt/sdi/d1/d2/f1
# Swap d1 and f2.
mv /mnt/sdi/d1 /mnt/sdi/tmp
mv /mnt/sdi/f2 /mnt/sdi/d1
mv /mnt/sdi/tmp /mnt/sdi/f2
# Swap d2 and f2_link
mv /mnt/sdi/f2/d2 /mnt/sdi/tmp
mv /mnt/sdi/f2/f2_link /mnt/sdi/f2/d2
mv /mnt/sdi/tmp /mnt/sdi/f2/f2_link
# Filesystem now looks like:
#
# . (ino 256)
# |----- d1 (ino 258)
# |----- f2/ (ino 259)
# |----- f2_link/ (ino 260)
# | |----- f1 (ino 257)
# |
# |----- d2 (ino 258)
btrfs subvolume snapshot -r /mnt/sdi /mnt/sdi/snap2
btrfs send -f /tmp/snap2.send -p /mnt/sdi/snap1 /mnt/sdi/snap2
mkfs.btrfs -f /dev/sdj >/dev/null
mount /dev/sdj /mnt/sdj
btrfs receive -f /tmp/snap1.send /mnt/sdj
btrfs receive -f /tmp/snap2.send /mnt/sdj
umount /mnt/sdi
umount /mnt/sdj
When executed the receive of the incremental stream fails:
$ ./reproducer.sh
Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap1'
At subvol /mnt/sdi/snap1
Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap2'
At subvol /mnt/sdi/snap2
At subvol snap1
At snapshot snap2
ERROR: rename d1/d2 -> o260-6-0 failed: No such file or directory
This happens because:
1) When processing inode 257 we end up computing the name for inode 259
because it is an ancestor in the send snapshot, and at that point it
still has its old name, "d1", from the parent snapshot because inode
259 was not yet processed. We then cache that name, which is valid
until we start processing inode 259 (or set the progress to 260 after
processing its references);
2) Later we start processing inode 258 and collecting all its new
references into the list sctx->new_refs. The first reference in the
list happens to be the reference for name "d1" while the reference for
name "d2" is next (the last element of the list).
We compute the full path "d1/d2" for this second reference and store
it in the reference (its ->full_path member). The path used for the
new parent directory was "d1" and not "f2" because inode 259, the
new parent, was not yet processed;
3) When we start processing the new references at process_recorded_refs()
we start with the first reference in the list, for the new name "d1".
Because there is a conflicting inode that was not yet processed, which
is directory inode 259, we orphanize it, renaming it from "d1" to
"o259-6-0";
4) Then we start processing the new reference for name "d2", and we
realize it conflicts with the reference of inode 260 in the parent
snapshot. So we issue an orphanization operation for inode 260 by
emitting a rename operation with a destination path of "o260-6-0"
and a source path of "d1/d2" - this source path is the value we
stored in the reference earlier at step 2), corresponding to the
->full_path member of the reference, however that path is no longer
valid due to the orphanization of the directory inode 259 in step 3).
This makes the receiver fail since the path does not exists, it should
have been "o259-6-0/d2".
Fix this by recomputing the full path of a reference before emitting an
orphanization if we previously orphanized any directory, since that
directory could be a parent in the new path. This is a rare scenario so
keeping it simple and not checking if that previously orphanized directory
is in fact an ancestor of the inode we are trying to orphanize.
A test case for fstests follows soon.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing an incremental send it is possible that when processing the new
references for an inode we end up issuing rename or link operations that
have an invalid path, which contains the orphanized name of a directory
before we actually orphanized it, causing the receiver to fail.
The following reproducer triggers such scenario:
$ cat reproducer.sh
#!/bin/bash
mkfs.btrfs -f /dev/sdi >/dev/null
mount /dev/sdi /mnt/sdi
touch /mnt/sdi/a
touch /mnt/sdi/b
mkdir /mnt/sdi/testdir
# We want "a" to have a lower inode number then "testdir" (257 vs 259).
mv /mnt/sdi/a /mnt/sdi/testdir/a
# Filesystem looks like:
#
# . (ino 256)
# |----- testdir/ (ino 259)
# | |----- a (ino 257)
# |
# |----- b (ino 258)
btrfs subvolume snapshot -r /mnt/sdi /mnt/sdi/snap1
btrfs send -f /tmp/snap1.send /mnt/sdi/snap1
# Now rename 259 to "testdir_2", then change the name of 257 to
# "testdir" and make it a direct descendant of the root inode (256).
# Also create a new link for inode 257 with the old name of inode 258.
# By swapping the names and location of several inodes and create a
# nasty dependency chain of rename and link operations.
mv /mnt/sdi/testdir/a /mnt/sdi/a2
touch /mnt/sdi/testdir/a
mv /mnt/sdi/b /mnt/sdi/b2
ln /mnt/sdi/a2 /mnt/sdi/b
mv /mnt/sdi/testdir /mnt/sdi/testdir_2
mv /mnt/sdi/a2 /mnt/sdi/testdir
# Filesystem now looks like:
#
# . (ino 256)
# |----- testdir_2/ (ino 259)
# | |----- a (ino 260)
# |
# |----- testdir (ino 257)
# |----- b (ino 257)
# |----- b2 (ino 258)
btrfs subvolume snapshot -r /mnt/sdi /mnt/sdi/snap2
btrfs send -f /tmp/snap2.send -p /mnt/sdi/snap1 /mnt/sdi/snap2
mkfs.btrfs -f /dev/sdj >/dev/null
mount /dev/sdj /mnt/sdj
btrfs receive -f /tmp/snap1.send /mnt/sdj
btrfs receive -f /tmp/snap2.send /mnt/sdj
umount /mnt/sdi
umount /mnt/sdj
When running the reproducer, the receive of the incremental send stream
fails:
$ ./reproducer.sh
Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap1'
At subvol /mnt/sdi/snap1
Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap2'
At subvol /mnt/sdi/snap2
At subvol snap1
At snapshot snap2
ERROR: link b -> o259-6-0/a failed: No such file or directory
The problem happens because of the following:
1) Before we start iterating the list of new references for inode 257,
we generate its current path and store it at @valid_path, done at
the very beginning of process_recorded_refs(). The generated path
is "o259-6-0/a", containing the orphanized name for inode 259;
2) Then we iterate over the list of new references, which has the
references "b" and "testdir" in that specific order;
3) We process reference "b" first, because it is in the list before
reference "testdir". We then issue a link operation to create
the new reference "b" using a target path corresponding to the
content at @valid_path, which corresponds to "o259-6-0/a".
However we haven't yet orphanized inode 259, its name is still
"testdir", and not "o259-6-0". The orphanization of 259 did not
happen yet because we will process the reference named "testdir"
for inode 257 only in the next iteration of the loop that goes
over the list of new references.
Fix the issue by having a preliminar iteration over all the new references
at process_recorded_refs(). This iteration is responsible only for doing
the orphanization of other inodes that have and old reference that
conflicts with one of the new references of the inode we are currently
processing. The emission of rename and link operations happen now in the
next iteration of the new references.
A test case for fstests will follow soon.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The header is mapped onto the send buffer and thus its members may be
potentially unaligned so use the helpers instead of directly assigning
the pointers. This has worked so far but let's use the helpers to make
that clear.
Signed-off-by: David Sterba <dsterba@suse.com>
Replace kvzalloc() call with kvcalloc() that also checks the size
internally. There's a standalone overflow check in the function so we
can return invalid parameter combination. Use array_size() helper to
compute the memory size for clone_sources_tmp.
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Denis Efremov <efremov@linux.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_ioctl_send() used open-coded kvzalloc implementation earlier.
The code was accidentally replaced with kzalloc() call [1]. Restore
the original code by using kvzalloc() to allocate sctx->clone_roots.
[1] https://patchwork.kernel.org/patch/9757891/#20529627
Fixes: 818e010bf9 ("btrfs: replace opencoded kvzalloc with the helper")
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Denis Efremov <efremov@linux.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
send_write_or_clone() basically has an open-coded copy of
btrfs_file_extent_end() except that it (incorrectly) aligns to PAGE_SIZE
instead of sectorsize. Fix and simplify the code by using
btrfs_file_extent_end().
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
send_write() currently copies from the page cache to sctx->read_buf, and
then from sctx->read_buf to sctx->send_buf. Similarly, send_hole()
zeroes sctx->read_buf and then copies from sctx->read_buf to
sctx->send_buf. However, if we write the TLV header manually, we can
copy to sctx->send_buf directly and get rid of sctx->read_buf.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
send_write()/fill_read_buf() have some logic for avoiding reading past
i_size. However, everywhere that we call
send_write()/send_extent_data(), we've already clamped the length down
to i_size. Get rid of the i_size handling, which simplifies the next
change.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a custom callback passed to btrfs_compare_trees which happens to
be named exactly same as the existing function implementing it. This is
confusing and the indirection is not necessary for our needs. Compiler
is clever enough to call it directly so there's effectively no change.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl7U50AACgkQxWXV+ddt
WDtK1g//RXeNsTguYQr1N9R5eUPThjLEI0+4J0l4SYfCPU8Ou3C7nqpOEJJQgm8F
ezZE+16cWi9U5uGueOc+w0rfyz4AuIXKgzoz+c0/GG2+yV5jp6DsAMbWqojAb96L
V/N3HxEzR66jqwgVUBE/x5okb2SyY7//B1l/O0amc66XDO7KTMImpIwThere6zWZ
o2SNpYpHAPQeUYJQx8h+FAW3w1CxrCZmnifazU9Jqe9J7QeQLg7rbUlJDV38jySm
ZOA8ohKN9U1gPZy+dTU3kdyyuBIq1etkIaSPJANyTo5TczPKiC0IMg75cXtS4ae/
NSxhccMpSIjVMcIHARzSFGYKNP3sGNRsmaTUg/2Cx/9GoHOhYMiCAVc8qtBBpwJO
UI0siexrCe64RuTBMRRc128GdFv7IjmSImcdi8xaR62bCcUiNdEa3zvjRe/9tOEH
ET7Z85oBnKpSzpC3MdhSUU4dtHY5XLawP8z3oUU1VSzSWM2DVjlHf79/VzbOfp18
miCVpt94lCn/gUX7el6qcnbuvMAjDyeC6HmfD+TwzQgGwyV6TLgKN9lRXeH/Oy6/
VgjGQSavGHMll3zIGURmrBCXKudjJg0J+IP4wN1TimmSEMfwKH+7tnekQd8y5qlF
eXEIqlWNykKeDzEnmV9QJy+/cV83hVWM/mUslcTx39tLN/3B/Us=
=qTt8
-----END PGP SIGNATURE-----
Merge tag 'for-5.8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"Highlights:
- speedup dead root detection during orphan cleanup, eg. when there
are many deleted subvolumes waiting to be cleaned, the trees are
now looked up in radix tree instead of a O(N^2) search
- snapshot creation with inherited qgroup will mark the qgroup
inconsistent, requires a rescan
- send will emit file capabilities after chown, this produces a
stream that does not need postprocessing to set the capabilities
again
- direct io ported to iomap infrastructure, cleaned up and simplified
code, notably removing last use of struct buffer_head in btrfs code
Core changes:
- factor out backreference iteration, to be used by ordinary
backreferences and relocation code
- improved global block reserve utilization
* better logic to serialize requests
* increased maximum available for unlink
* improved handling on large pages (64K)
- direct io cleanups and fixes
* simplify layering, where cloned bios were unnecessarily created
for some cases
* error handling fixes (submit, endio)
* remove repair worker thread, used to avoid deadlocks during
repair
- refactored block group reading code, preparatory work for new type
of block group storage that should improve mount time on large
filesystems
Cleanups:
- cleaned up (and slightly sped up) set/get helpers for metadata data
structure members
- root bit REF_COWS got renamed to SHAREABLE to reflect the that the
blocks of the tree get shared either among subvolumes or with the
relocation trees
Fixes:
- when subvolume deletion fails due to ENOSPC, the filesystem is not
turned read-only
- device scan deals with devices from other filesystems that changed
ownership due to overwrite (mkfs)
- fix a race between scrub and block group removal/allocation
- fix long standing bug of a runaway balance operation, printing the
same line to the syslog, caused by a stale status bit on a reloc
tree that prevented progress
- fix corrupt log due to concurrent fsync of inodes with shared
extents
- fix space underflow for NODATACOW and buffered writes when it for
some reason needs to fallback to COW mode"
* tag 'for-5.8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (133 commits)
btrfs: fix space_info bytes_may_use underflow during space cache writeout
btrfs: fix space_info bytes_may_use underflow after nocow buffered write
btrfs: fix wrong file range cleanup after an error filling dealloc range
btrfs: remove redundant local variable in read_block_for_search
btrfs: open code key_search
btrfs: split btrfs_direct_IO to read and write part
btrfs: remove BTRFS_INODE_READDIO_NEED_LOCK
fs: remove dio_end_io()
btrfs: switch to iomap_dio_rw() for dio
iomap: remove lockdep_assert_held()
iomap: add a filesystem hook for direct I/O bio submission
fs: export generic_file_buffered_read()
btrfs: turn space cache writeout failure messages into debug messages
btrfs: include error on messages about failure to write space/inode caches
btrfs: remove useless 'fail_unlock' label from btrfs_csum_file_blocks()
btrfs: do not ignore error from btrfs_next_leaf() when inserting checksums
btrfs: make checksum item extension more efficient
btrfs: fix corrupt log due to concurrent fsync of inodes with shared extents
btrfs: unexport btrfs_compress_set_level()
btrfs: simplify iget helpers
...
The inode lookup starting at btrfs_iget takes the full location key,
while only the objectid is used to match the inode, because the lookup
happens inside the given root thus the inode number is unique.
The entire location key is properly set up in btrfs_init_locked_inode.
Simplify the helpers and pass only inode number, renaming it to 'ino'
instead of 'objectid'. This allows to remove temporary variables key,
saving some stack space.
Signed-off-by: David Sterba <dsterba@suse.com>
The main function to lookup a root by its id btrfs_get_fs_root takes the
whole key, while only using the objectid. The value of offset is preset
to (u64)-1 but not actually used until btrfs_find_root that does the
actual search.
Switch btrfs_get_fs_root to use only objectid and remove all local
variables that existed just for the lookup. The actual key for search is
set up in btrfs_get_fs_root, reusing another key variable.
Signed-off-by: David Sterba <dsterba@suse.com>
Whenever a chown is executed, all capabilities of the file being touched
are lost. When doing incremental send with a file with capabilities,
there is a situation where the capability can be lost on the receiving
side. The sequence of actions bellow shows the problem:
$ mount /dev/sda fs1
$ mount /dev/sdb fs2
$ touch fs1/foo.bar
$ setcap cap_sys_nice+ep fs1/foo.bar
$ btrfs subvolume snapshot -r fs1 fs1/snap_init
$ btrfs send fs1/snap_init | btrfs receive fs2
$ chgrp adm fs1/foo.bar
$ setcap cap_sys_nice+ep fs1/foo.bar
$ btrfs subvolume snapshot -r fs1 fs1/snap_complete
$ btrfs subvolume snapshot -r fs1 fs1/snap_incremental
$ btrfs send fs1/snap_complete | btrfs receive fs2
$ btrfs send -p fs1/snap_init fs1/snap_incremental | btrfs receive fs2
At this point, only a chown was emitted by "btrfs send" since only the
group was changed. This makes the cap_sys_nice capability to be dropped
from fs2/snap_incremental/foo.bar
To fix that, only emit capabilities after chown is emitted. The current
code first checks for xattrs that are new/changed, emits them, and later
emit the chown. Now, __process_new_xattr skips capabilities, letting
only finish_inode_if_needed to emit them, if they exist, for the inode
being processed.
This behavior was being worked around in "btrfs receive" side by caching
the capability and only applying it after chown. Now, xattrs are only
emmited _after_ chown, making that workaround not needed anymore.
Link: https://github.com/kdave/btrfs-progs/issues/202
CC: stable@vger.kernel.org # 4.4+
Suggested-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have proper root ref counting everywhere we can kill the
subvol_srcu.
* removal of fs_info::subvol_srcu reduces size of fs_info by 1176 bytes
* the refcount_t used for the references checks for accidental 0->1
in cases where the root lifetime would not be properly protected
* there's a leak detector for roots to catch unfreed roots at umount
time
* SRCU served us well over the years but is was not a proper
synchronization mechanism for some cases
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Getting the end offset for a file extent item requires a bit of code since
the extent can be either inline or regular/prealloc. There are some places
all over the code base that open code this logic and in another patch
later in this series it will be needed again. Therefore encapsulate this
logic in a helper function and use it.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are now using these for all roots, rename them to btrfs_put_root()
and btrfs_grab_root();
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all callers of btrfs_get_fs_root are subsequently calling
btrfs_grab_fs_root and handling dropping the ref when they are done
appropriately, go ahead and push btrfs_grab_fs_root up into
btrfs_get_fs_root.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We lookup all the clone roots and the parent root for send, so we need
to hold refs on all of these roots while we're processing them.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All this does is call btrfs_get_fs_root() with check_ref == true. Just
use btrfs_get_fs_root() so we don't have a bunch of different helpers
that do the same thing.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing an incremental send and a file has extents shared with itself
at different file offsets, it's possible for send to emit clone operations
that will fail at the destination because the source range goes beyond the
file's current size. This happens when the file size has increased in the
send snapshot, there is a hole between the shared extents and both shared
extents are at file offsets which are greater the file's size in the
parent snapshot.
Example:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt/sdb
$ xfs_io -f -c "pwrite -S 0xf1 0 64K" /mnt/sdb/foobar
$ btrfs subvolume snapshot -r /mnt/sdb /mnt/sdb/base
$ btrfs send -f /tmp/1.snap /mnt/sdb/base
# Create a 320K extent at file offset 512K.
$ xfs_io -c "pwrite -S 0xab 512K 64K" /mnt/sdb/foobar
$ xfs_io -c "pwrite -S 0xcd 576K 64K" /mnt/sdb/foobar
$ xfs_io -c "pwrite -S 0xef 640K 64K" /mnt/sdb/foobar
$ xfs_io -c "pwrite -S 0x64 704K 64K" /mnt/sdb/foobar
$ xfs_io -c "pwrite -S 0x73 768K 64K" /mnt/sdb/foobar
# Clone part of that 320K extent into a lower file offset (192K).
# This file offset is greater than the file's size in the parent
# snapshot (64K). Also the clone range is a bit behind the offset of
# the 320K extent so that we leave a hole between the shared extents.
$ xfs_io -c "reflink /mnt/sdb/foobar 448K 192K 192K" /mnt/sdb/foobar
$ btrfs subvolume snapshot -r /mnt/sdb /mnt/sdb/incr
$ btrfs send -p /mnt/sdb/base -f /tmp/2.snap /mnt/sdb/incr
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt/sdc
$ btrfs receive -f /tmp/1.snap /mnt/sdc
$ btrfs receive -f /tmp/2.snap /mnt/sdc
ERROR: failed to clone extents to foobar: Invalid argument
The problem is that after processing the extent at file offset 256K, which
refers to the first 128K of the 320K extent created by the buffered write
operations, we have 'cur_inode_next_write_offset' set to 384K, which
corresponds to the end offset of the partially shared extent (256K + 128K)
and to the current file size in the receiver. Then when we process the
extent at offset 512K, we do extent backreference iteration to figure out
if we can clone the extent from some other inode or from the same inode,
and we consider the extent at offset 256K of the same inode as a valid
source for a clone operation, which is not correct because at that point
the current file size in the receiver is 384K, which corresponds to the
end of last processed extent (at file offset 256K), so using a clone
source range from 256K to 256K + 320K is invalid because that goes past
the current size of the file (384K) - this makes the receiver get an
-EINVAL error when attempting the clone operation.
So fix this by excluding clone sources that have a range that goes beyond
the current file size in the receiver when iterating extent backreferences.
A test case for fstests follows soon.
Fixes: 11f2069c11 ("Btrfs: send, allow clone operations within the same file")
CC: stable@vger.kernel.org # 5.5+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We log warning if root::orphan_cleanup_state is not set to
ORPHAN_CLEANUP_DONE in btrfs_ioctl_send(). However if the filesystem is
mounted as readonly we skip the orphan item cleanup during the lookup
and root::orphan_cleanup_state remains at the init state 0 instead of
ORPHAN_CLEANUP_DONE (2). So during send in btrfs_ioctl_send() we hit the
warning as below.
WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
WARNING: CPU: 0 PID: 2616 at /Volumes/ws/btrfs-devel/fs/btrfs/send.c:7090 btrfs_ioctl_send+0xb2f/0x18c0 [btrfs]
::
RIP: 0010:btrfs_ioctl_send+0xb2f/0x18c0 [btrfs]
::
Call Trace:
::
_btrfs_ioctl_send+0x7b/0x110 [btrfs]
btrfs_ioctl+0x150a/0x2b00 [btrfs]
::
do_vfs_ioctl+0xa9/0x620
? __fget+0xac/0xe0
ksys_ioctl+0x60/0x90
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x49/0x130
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Reproducer:
mkfs.btrfs -fq /dev/sdb
mount /dev/sdb /btrfs
btrfs subvolume create /btrfs/sv1
btrfs subvolume snapshot -r /btrfs/sv1 /btrfs/ss1
umount /btrfs
mount -o ro /dev/sdb /btrfs
btrfs send /btrfs/ss1 -f /tmp/f
The warning exists because having orphan inodes could confuse send and
cause it to fail or produce incorrect streams. The two cases that would
cause such send failures, which are already fixed are:
1) Inodes that were unlinked - these are orphanized and remain with a
link count of 0. These caused send operations to fail because it
expected to always find at least one path for an inode. However this
is no longer a problem since send is now able to deal with such
inodes since commit 46b2f4590a ("Btrfs: fix send failure when root
has deleted files still open") and treats them as having been
completely removed (the state after an orphan cleanup is performed).
2) Inodes that were in the process of being truncated. These resulted in
send not knowing about the truncation and potentially issue write
operations full of zeroes for the range from the new file size to the
old file size. This is no longer a problem because we no longer
create orphan items for truncation since commit f7e9e8fc79 ("Btrfs:
stop creating orphan items for truncate").
As such before these commits, the WARN_ON here provided a clue in case
something went wrong. Instead of being a warning against the
root::orphan_cleanup_state value, it could have been more accurate by
checking if there were actually any orphan items, and then issue a
warning only if any exists, but that would be more expensive to check.
Since orphanized inodes no longer cause problems for send, just remove
the warning.
Reported-by: Christoph Anton Mitterer <calestyo@scientia.net>
Link: https://lore.kernel.org/linux-btrfs/21cb5e8d059f6e1496a903fa7bfc0a297e2f5370.camel@scientia.net/
CC: stable@vger.kernel.org # 4.19+
Suggested-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Backreference walking, which is used by send to figure if it can issue
clone operations instead of write operations, can be very slow and use
too much memory when extents have many references. This change simply
skips backreference walking when an extent has more than 64 references,
in which case we fallback to a write operation instead of a clone
operation. This limit is conservative and in practice I observed no
signicant slowdown with up to 100 references and still low memory usage
up to that limit.
This is a temporary workaround until there are speedups in the backref
walking code, and as such it does not attempt to add extra interfaces or
knobs to tweak the threshold.
Reported-by: Atemu <atemu.main@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CAE4GHgkvqVADtS4AzcQJxo0Q1jKQgKaW3JGp3SGdoinVo=C9eQ@mail.gmail.com/T/#me55dc0987f9cc2acaa54372ce0492c65782be3fa
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For send we currently skip clone operations when the source and
destination files are the same. This is so because clone didn't support
this case in its early days, but support for it was added back in May
2013 by commit a96fbc7288 ("Btrfs: allow file data clone within a
file"). This change adds support for it.
Example:
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt/sdd
$ xfs_io -f -c "pwrite -S 0xab -b 64K 0 64K" /mnt/sdd/foobar
$ xfs_io -c "reflink /mnt/sdd/foobar 0 64K 64K" /mnt/sdd/foobar
$ btrfs subvolume snapshot -r /mnt/sdd /mnt/sdd/snap
$ mkfs.btrfs -f /dev/sde
$ mount /dev/sde /mnt/sde
$ btrfs send /mnt/sdd/snap | btrfs receive /mnt/sde
Without this change file foobar at the destination has a single 128Kb
extent:
$ filefrag -v /mnt/sde/snap/foobar
Filesystem type is: 9123683e
File size of /mnt/sde/snap/foobar is 131072 (32 blocks of 4096 bytes)
ext: logical_offset: physical_offset: length: expected: flags:
0: 0.. 31: 0.. 31: 32: last,unknown_loc,delalloc,eof
/mnt/sde/snap/foobar: 1 extent found
With this we get a single 64Kb extent that is shared at file offsets 0
and 64K, just like in the source filesystem:
$ filefrag -v /mnt/sde/snap/foobar
Filesystem type is: 9123683e
File size of /mnt/sde/snap/foobar is 131072 (32 blocks of 4096 bytes)
ext: logical_offset: physical_offset: length: expected: flags:
0: 0.. 15: 3328.. 3343: 16: shared
1: 16.. 31: 3328.. 3343: 16: 3344: last,shared,eof
/mnt/sde/snap/foobar: 2 extents found
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter is now always set to NULL and could be dropped. The last
user was get_default_root but that got reworked in 05dbe6837b ("Btrfs:
unify subvol= and subvolid= mounting") and the parameter became unused.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
GCC throws warning message as below:
‘clone_src_i_size’ may be used uninitialized in this function
[-Wmaybe-uninitialized]
#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
^
fs/btrfs/send.c:5088:6: note: ‘clone_src_i_size’ was declared here
u64 clone_src_i_size;
^
The clone_src_i_size is only used as call-by-reference
in a call to get_inode_info().
Silence the warning by initializing clone_src_i_size to 0.
Note that the warning is a false positive and reported by older versions
of GCC (eg. 7.x) but not eg 9.x. As there have been numerous people, the
patch is applied. Setting clone_src_i_size to 0 does not otherwise make
sense and would not do any action in case the code changes in the future.
Signed-off-by: Austin Kim <austindh.kim@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add note ]
Signed-off-by: David Sterba <dsterba@suse.com>
When doing any form of incremental send the parent and the child trees
need to be compared via btrfs_compare_trees. This can result in long
loop chains without ever relinquishing the CPU. This causes softlockup
detector to trigger when comparing trees with a lot of items. Example
report:
watchdog: BUG: soft lockup - CPU#0 stuck for 24s! [snapperd:16153]
CPU: 0 PID: 16153 Comm: snapperd Not tainted 5.2.9-1-default #1 openSUSE Tumbleweed (unreleased)
Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
pstate: 40000005 (nZcv daif -PAN -UAO)
pc : __ll_sc_arch_atomic_sub_return+0x14/0x20
lr : btrfs_release_extent_buffer_pages+0xe0/0x1e8 [btrfs]
sp : ffff00001273b7e0
Call trace:
__ll_sc_arch_atomic_sub_return+0x14/0x20
release_extent_buffer+0xdc/0x120 [btrfs]
free_extent_buffer.part.0+0xb0/0x118 [btrfs]
free_extent_buffer+0x24/0x30 [btrfs]
btrfs_release_path+0x4c/0xa0 [btrfs]
btrfs_free_path.part.0+0x20/0x40 [btrfs]
btrfs_free_path+0x24/0x30 [btrfs]
get_inode_info+0xa8/0xf8 [btrfs]
finish_inode_if_needed+0xe0/0x6d8 [btrfs]
changed_cb+0x9c/0x410 [btrfs]
btrfs_compare_trees+0x284/0x648 [btrfs]
send_subvol+0x33c/0x520 [btrfs]
btrfs_ioctl_send+0x8a0/0xaf0 [btrfs]
btrfs_ioctl+0x199c/0x2288 [btrfs]
do_vfs_ioctl+0x4b0/0x820
ksys_ioctl+0x84/0xb8
__arm64_sys_ioctl+0x28/0x38
el0_svc_common.constprop.0+0x7c/0x188
el0_svc_handler+0x34/0x90
el0_svc+0x8/0xc
Fix this by adding a call to cond_resched at the beginning of the main
loop in btrfs_compare_trees.
Fixes: 7069830a9e ("Btrfs: add btrfs_compare_trees function")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Send is the only user of tree_compare, we can move it there along with
the other helpers and definitions.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing an incremental send operation we can fail if we previously did
deduplication operations against a file that exists in both snapshots. In
that case we will fail the send operation with -EIO and print a message
to dmesg/syslog like the following:
BTRFS error (device sdc): Send: inconsistent snapshot, found updated \
extent for inode 257 without updated inode item, send root is 258, \
parent root is 257
This requires that we deduplicate to the same file in both snapshots for
the same amount of times on each snapshot. The issue happens because a
deduplication only updates the iversion of an inode and does not update
any other field of the inode, therefore if we deduplicate the file on
each snapshot for the same amount of time, the inode will have the same
iversion value (stored as the "sequence" field on the inode item) on both
snapshots, therefore it will be seen as unchanged between in the send
snapshot while there are new/updated/deleted extent items when comparing
to the parent snapshot. This makes the send operation return -EIO and
print an error message.
Example reproducer:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
# Create our first file. The first half of the file has several 64Kb
# extents while the second half as a single 512Kb extent.
$ xfs_io -f -s -c "pwrite -S 0xb8 -b 64K 0 512K" /mnt/foo
$ xfs_io -c "pwrite -S 0xb8 512K 512K" /mnt/foo
# Create the base snapshot and the parent send stream from it.
$ btrfs subvolume snapshot -r /mnt /mnt/mysnap1
$ btrfs send -f /tmp/1.snap /mnt/mysnap1
# Create our second file, that has exactly the same data as the first
# file.
$ xfs_io -f -c "pwrite -S 0xb8 0 1M" /mnt/bar
# Create the second snapshot, used for the incremental send, before
# doing the file deduplication.
$ btrfs subvolume snapshot -r /mnt /mnt/mysnap2
# Now before creating the incremental send stream:
#
# 1) Deduplicate into a subrange of file foo in snapshot mysnap1. This
# will drop several extent items and add a new one, also updating
# the inode's iversion (sequence field in inode item) by 1, but not
# any other field of the inode;
#
# 2) Deduplicate into a different subrange of file foo in snapshot
# mysnap2. This will replace an extent item with a new one, also
# updating the inode's iversion by 1 but not any other field of the
# inode.
#
# After these two deduplication operations, the inode items, for file
# foo, are identical in both snapshots, but we have different extent
# items for this inode in both snapshots. We want to check this doesn't
# cause send to fail with an error or produce an incorrect stream.
$ xfs_io -r -c "dedupe /mnt/bar 0 0 512K" /mnt/mysnap1/foo
$ xfs_io -r -c "dedupe /mnt/bar 512K 512K 512K" /mnt/mysnap2/foo
# Create the incremental send stream.
$ btrfs send -p /mnt/mysnap1 -f /tmp/2.snap /mnt/mysnap2
ERROR: send ioctl failed with -5: Input/output error
This issue started happening back in 2015 when deduplication was updated
to not update the inode's ctime and mtime and update only the iversion.
Back then we would hit a BUG_ON() in send, but later in 2016 send was
updated to return -EIO and print the error message instead of doing the
BUG_ON().
A test case for fstests follows soon.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=203933
Fixes: 1c919a5e13 ("btrfs: don't update mtime/ctime on deduped inodes")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Send always operates on read-only trees and always expected that while it
is in progress, nothing changes in those trees. Due to that expectation
and the fact that send is a read-only operation, it operates on commit
roots and does not hold transaction handles. However relocation can COW
nodes and leafs from read-only trees, which can cause unexpected failures
and crashes (hitting BUG_ONs). while send using a node/leaf, it gets
COWed, the transaction used to COW it is committed, a new transaction
starts, the extent previously used for that node/leaf gets allocated,
possibly for another tree, and the respective extent buffer' content
changes while send is still using it. When this happens send normally
fails with EIO being returned to user space and messages like the
following are found in dmesg/syslog:
[ 3408.699121] BTRFS error (device sdc): parent transid verify failed on 58703872 wanted 250 found 253
[ 3441.523123] BTRFS error (device sdc): did not find backref in send_root. inode=63211, offset=0, disk_byte=5222825984 found extent=5222825984
Other times, less often, we hit a BUG_ON() because an extent buffer that
send is using used to be a node, and while send is still using it, it
got COWed and got reused as a leaf while send is still using, producing
the following trace:
[ 3478.466280] ------------[ cut here ]------------
[ 3478.466282] kernel BUG at fs/btrfs/ctree.c:1806!
[ 3478.466965] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC PTI
[ 3478.467635] CPU: 0 PID: 2165 Comm: btrfs Not tainted 5.0.0-btrfs-next-46 #1
[ 3478.468311] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014
[ 3478.469681] RIP: 0010:read_node_slot+0x122/0x130 [btrfs]
(...)
[ 3478.471758] RSP: 0018:ffffa437826bfaa0 EFLAGS: 00010246
[ 3478.472457] RAX: ffff961416ed7000 RBX: 000000000000003d RCX: 0000000000000002
[ 3478.473151] RDX: 000000000000003d RSI: ffff96141e387408 RDI: ffff961599b30000
[ 3478.473837] RBP: ffffa437826bfb8e R08: 0000000000000001 R09: ffffa437826bfb8e
[ 3478.474515] R10: ffffa437826bfa70 R11: 0000000000000000 R12: ffff9614385c8708
[ 3478.475186] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
[ 3478.475840] FS: 00007f8e0e9cc8c0(0000) GS:ffff9615b6a00000(0000) knlGS:0000000000000000
[ 3478.476489] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 3478.477127] CR2: 00007f98b67a056e CR3: 0000000005df6005 CR4: 00000000003606f0
[ 3478.477762] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 3478.478385] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 3478.479003] Call Trace:
[ 3478.479600] ? do_raw_spin_unlock+0x49/0xc0
[ 3478.480202] tree_advance+0x173/0x1d0 [btrfs]
[ 3478.480810] btrfs_compare_trees+0x30c/0x690 [btrfs]
[ 3478.481388] ? process_extent+0x1280/0x1280 [btrfs]
[ 3478.481954] btrfs_ioctl_send+0x1037/0x1270 [btrfs]
[ 3478.482510] _btrfs_ioctl_send+0x80/0x110 [btrfs]
[ 3478.483062] btrfs_ioctl+0x13fe/0x3120 [btrfs]
[ 3478.483581] ? rq_clock_task+0x2e/0x60
[ 3478.484086] ? wake_up_new_task+0x1f3/0x370
[ 3478.484582] ? do_vfs_ioctl+0xa2/0x6f0
[ 3478.485075] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
[ 3478.485552] do_vfs_ioctl+0xa2/0x6f0
[ 3478.486016] ? __fget+0x113/0x200
[ 3478.486467] ksys_ioctl+0x70/0x80
[ 3478.486911] __x64_sys_ioctl+0x16/0x20
[ 3478.487337] do_syscall_64+0x60/0x1b0
[ 3478.487751] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 3478.488159] RIP: 0033:0x7f8e0d7d4dd7
(...)
[ 3478.489349] RSP: 002b:00007ffcf6fb4908 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[ 3478.489742] RAX: ffffffffffffffda RBX: 0000000000000105 RCX: 00007f8e0d7d4dd7
[ 3478.490142] RDX: 00007ffcf6fb4990 RSI: 0000000040489426 RDI: 0000000000000005
[ 3478.490548] RBP: 0000000000000005 R08: 00007f8e0d6f3700 R09: 00007f8e0d6f3700
[ 3478.490953] R10: 00007f8e0d6f39d0 R11: 0000000000000202 R12: 0000000000000005
[ 3478.491343] R13: 00005624e0780020 R14: 0000000000000000 R15: 0000000000000001
(...)
[ 3478.493352] ---[ end trace d5f537302be4f8c8 ]---
Another possibility, much less likely to happen, is that send will not
fail but the contents of the stream it produces may not be correct.
To avoid this, do not allow send and relocation (balance) to run in
parallel. In the long term the goal is to allow for both to be able to
run concurrently without any problems, but that will take a significant
effort in development and testing.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 9678c54388 ("btrfs: Remove custom crc32c init code") removed
the btrfs_crc32c() function, because it was a duplicate of the crc32c()
library function we already have in the kernel.
Resurrect it as a shim wrapper over crc32c() to make following
transformations of the checksumming code in btrfs easier.
Also provide a btrfs_crc32_final() to ease following transformations.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing an incremental send we can now issue clone operations with a
source range that ends at the source's file eof and with a destination
range that ends at an offset smaller then the destination's file eof.
If the eof of the source file is not aligned to the sector size of the
filesystem, the receiver will get a -EINVAL error when trying to do the
operation or, on older kernels, silently corrupt the destination file.
The corruption happens on kernels without commit ac765f83f1
("Btrfs: fix data corruption due to cloning of eof block"), while the
failure to clone happens on kernels with that commit.
Example reproducer:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt/sdb
$ xfs_io -f -c "pwrite -S 0xb1 0 2M" /mnt/sdb/foo
$ xfs_io -f -c "pwrite -S 0xc7 0 2M" /mnt/sdb/bar
$ xfs_io -f -c "pwrite -S 0x4d 0 2M" /mnt/sdb/baz
$ xfs_io -f -c "pwrite -S 0xe2 0 2M" /mnt/sdb/zoo
$ btrfs subvolume snapshot -r /mnt/sdb /mnt/sdb/base
$ btrfs send -f /tmp/base.send /mnt/sdb/base
$ xfs_io -c "reflink /mnt/sdb/bar 1560K 500K 100K" /mnt/sdb/bar
$ xfs_io -c "reflink /mnt/sdb/bar 1560K 0 100K" /mnt/sdb/zoo
$ xfs_io -c "truncate 550K" /mnt/sdb/bar
$ btrfs subvolume snapshot -r /mnt/sdb /mnt/sdb/incr
$ btrfs send -f /tmp/incr.send -p /mnt/sdb/base /mnt/sdb/incr
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt/sdc
$ btrfs receive -f /tmp/base.send /mnt/sdc
$ btrfs receive -vv -f /tmp/incr.send /mnt/sdc
(...)
truncate bar size=563200
utimes bar
clone zoo - source=bar source offset=512000 offset=0 length=51200
ERROR: failed to clone extents to zoo
Invalid argument
The failure happens because the clone source range ends at the eof of file
bar, 563200, which is not aligned to the filesystems sector size (4Kb in
this case), and the destination range ends at offset 0 + 51200, which is
less then the size of the file zoo (2Mb).
So fix this by detecting such case and instead of issuing a clone
operation for the whole range, do a clone operation for smaller range
that is sector size aligned followed by a write operation for the block
containing the eof. Here we will always be pessimistic and assume the
destination filesystem of the send stream has the largest possible sector
size (64Kb), since we have no way of determining it.
This fixes a recent regression introduced in kernel 5.2-rc1.
Fixes: 040ee6120c ("Btrfs: send, improve clone range")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When using the no-holes feature, if we have a file with prealloc extents
with a start offset beyond the file's eof, doing an incremental send can
cause corruption of the file due to incorrect hole detection. Such case
requires that the prealloc extent(s) exist in both the parent and send
snapshots, and that a hole is punched into the file that covers all its
extents that do not cross the eof boundary.
Example reproducer:
$ mkfs.btrfs -f -O no-holes /dev/sdb
$ mount /dev/sdb /mnt/sdb
$ xfs_io -f -c "pwrite -S 0xab 0 500K" /mnt/sdb/foobar
$ xfs_io -c "falloc -k 1200K 800K" /mnt/sdb/foobar
$ btrfs subvolume snapshot -r /mnt/sdb /mnt/sdb/base
$ btrfs send -f /tmp/base.snap /mnt/sdb/base
$ xfs_io -c "fpunch 0 500K" /mnt/sdb/foobar
$ btrfs subvolume snapshot -r /mnt/sdb /mnt/sdb/incr
$ btrfs send -p /mnt/sdb/base -f /tmp/incr.snap /mnt/sdb/incr
$ md5sum /mnt/sdb/incr/foobar
816df6f64deba63b029ca19d880ee10a /mnt/sdb/incr/foobar
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt/sdc
$ btrfs receive -f /tmp/base.snap /mnt/sdc
$ btrfs receive -f /tmp/incr.snap /mnt/sdc
$ md5sum /mnt/sdc/incr/foobar
cf2ef71f4a9e90c2f6013ba3b2257ed2 /mnt/sdc/incr/foobar
--> Different checksum, because the prealloc extent beyond the
file's eof confused the hole detection code and it assumed
a hole starting at offset 0 and ending at the offset of the
prealloc extent (1200Kb) instead of ending at the offset
500Kb (the file's size).
Fix this by ensuring we never cross the file's size when issuing the
write operations for a hole.
Fixes: 16e7549f04 ("Btrfs: incompatible format change to remove hole extents")
CC: stable@vger.kernel.org # 3.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Send operates on read only trees and expects them to never change while it
is using them. This is part of its initial design, and this expection is
due to two different reasons:
1) When it was introduced, no operations were allowed to modifiy read-only
subvolumes/snapshots (including defrag for example).
2) It keeps send from having an impact on other filesystem operations.
Namely send does not need to keep locks on the trees nor needs to hold on
to transaction handles and delay transaction commits. This ends up being
a consequence of the former reason.
However the deduplication feature was introduced later (on September 2013,
while send was introduced in July 2012) and it allowed for deduplication
with destination files that belong to read-only trees (subvolumes and
snapshots).
That means that having a send operation (either full or incremental) running
in parallel with a deduplication that has the destination inode in one of
the trees used by the send operation, can result in tree nodes and leaves
getting freed and reused while send is using them. This problem is similar
to the problem solved for the root nodes getting freed and reused when a
snapshot is made against one tree that is currenly being used by a send
operation, fixed in commits [1] and [2]. These commits explain in detail
how the problem happens and the explanation is valid for any node or leaf
that is not the root of a tree as well. This problem was also discussed
and explained recently in a thread [3].
The problem is very easy to reproduce when using send with large trees
(snapshots) and just a few concurrent deduplication operations that target
files in the trees used by send. A stress test case is being sent for
fstests that triggers the issue easily. The most common error to hit is
the send ioctl return -EIO with the following messages in dmesg/syslog:
[1631617.204075] BTRFS error (device sdc): did not find backref in send_root. inode=63292, offset=0, disk_byte=5228134400 found extent=5228134400
[1631633.251754] BTRFS error (device sdc): parent transid verify failed on 32243712 wanted 24 found 27
The first one is very easy to hit while the second one happens much less
frequently, except for very large trees (in that test case, snapshots
with 100000 files having large xattrs to get deep and wide trees).
Less frequently, at least one BUG_ON can be hit:
[1631742.130080] ------------[ cut here ]------------
[1631742.130625] kernel BUG at fs/btrfs/ctree.c:1806!
[1631742.131188] invalid opcode: 0000 [#6] SMP DEBUG_PAGEALLOC PTI
[1631742.131726] CPU: 1 PID: 13394 Comm: btrfs Tainted: G B D W 5.0.0-rc8-btrfs-next-45 #1
[1631742.132265] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014
[1631742.133399] RIP: 0010:read_node_slot+0x122/0x130 [btrfs]
(...)
[1631742.135061] RSP: 0018:ffffb530021ebaa0 EFLAGS: 00010246
[1631742.135615] RAX: ffff93ac8912e000 RBX: 000000000000009d RCX: 0000000000000002
[1631742.136173] RDX: 000000000000009d RSI: ffff93ac564b0d08 RDI: ffff93ad5b48c000
[1631742.136759] RBP: ffffb530021ebb7d R08: 0000000000000001 R09: ffffb530021ebb7d
[1631742.137324] R10: ffffb530021eba70 R11: 0000000000000000 R12: ffff93ac87d0a708
[1631742.137900] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000001
[1631742.138455] FS: 00007f4cdb1528c0(0000) GS:ffff93ad76a80000(0000) knlGS:0000000000000000
[1631742.139010] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[1631742.139568] CR2: 00007f5acb3d0420 CR3: 000000012be3e006 CR4: 00000000003606e0
[1631742.140131] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[1631742.140719] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[1631742.141272] Call Trace:
[1631742.141826] ? do_raw_spin_unlock+0x49/0xc0
[1631742.142390] tree_advance+0x173/0x1d0 [btrfs]
[1631742.142948] btrfs_compare_trees+0x268/0x690 [btrfs]
[1631742.143533] ? process_extent+0x1070/0x1070 [btrfs]
[1631742.144088] btrfs_ioctl_send+0x1037/0x1270 [btrfs]
[1631742.144645] _btrfs_ioctl_send+0x80/0x110 [btrfs]
[1631742.145161] ? trace_sched_stick_numa+0xe0/0xe0
[1631742.145685] btrfs_ioctl+0x13fe/0x3120 [btrfs]
[1631742.146179] ? account_entity_enqueue+0xd3/0x100
[1631742.146662] ? reweight_entity+0x154/0x1a0
[1631742.147135] ? update_curr+0x20/0x2a0
[1631742.147593] ? check_preempt_wakeup+0x103/0x250
[1631742.148053] ? do_vfs_ioctl+0xa2/0x6f0
[1631742.148510] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
[1631742.148942] do_vfs_ioctl+0xa2/0x6f0
[1631742.149361] ? __fget+0x113/0x200
[1631742.149767] ksys_ioctl+0x70/0x80
[1631742.150159] __x64_sys_ioctl+0x16/0x20
[1631742.150543] do_syscall_64+0x60/0x1b0
[1631742.150931] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[1631742.151326] RIP: 0033:0x7f4cd9f5add7
(...)
[1631742.152509] RSP: 002b:00007ffe91017708 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[1631742.152892] RAX: ffffffffffffffda RBX: 0000000000000105 RCX: 00007f4cd9f5add7
[1631742.153268] RDX: 00007ffe91017790 RSI: 0000000040489426 RDI: 0000000000000007
[1631742.153633] RBP: 0000000000000007 R08: 00007f4cd9e79700 R09: 00007f4cd9e79700
[1631742.153999] R10: 00007f4cd9e799d0 R11: 0000000000000202 R12: 0000000000000003
[1631742.154365] R13: 0000555dfae53020 R14: 0000000000000000 R15: 0000000000000001
(...)
[1631742.156696] ---[ end trace 5dac9f96dcc3fd6b ]---
That BUG_ON happens because while send is using a node, that node is COWed
by a concurrent deduplication, gets freed and gets reused as a leaf (because
a transaction commit happened in between), so when it attempts to read a
slot from the extent buffer, at ctree.c:read_node_slot(), the extent buffer
contents were wiped out and it now matches a leaf (which can even belong to
some other tree now), hitting the BUG_ON(level == 0).
Fix this concurrency issue by not allowing send and deduplication to run
in parallel if both operate on the same readonly trees, returning EAGAIN
to user space and logging an exlicit warning in dmesg/syslog.
[1] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=be6821f82c3cc36e026f5afd10249988852b35ea
[2] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6f2f0b394b54e2b159ef969a0b5274e9bbf82ff2
[3] https://lore.kernel.org/linux-btrfs/CAL3q7H7iqSEEyFaEtpRZw3cp613y+4k2Q8b4W7mweR3tZA05bQ@mail.gmail.com/
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we set a subvolume to read-only mode we do not flush dellaloc for any
of its inodes (except if the filesystem is mounted with -o flushoncommit),
since it does not affect correctness for any subsequent operations - except
for a future send operation. The send operation will not be able to see the
delalloc data since the respective file extent items, inode item updates,
backreferences, etc, have not hit yet the subvolume and extent trees.
Effectively this means data loss, since the send stream will not contain
any data from existing delalloc. Another problem from this is that if the
writeback starts and finishes while the send operation is in progress, we
have the subvolume tree being being modified concurrently which can result
in send failing unexpectedly with EIO or hitting runtime errors, assertion
failures or hitting BUG_ONs, etc.
Simple reproducer:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ btrfs subvolume create /mnt/sv
$ xfs_io -f -c "pwrite -S 0xea 0 108K" /mnt/sv/foo
$ btrfs property set /mnt/sv ro true
$ btrfs send -f /tmp/send.stream /mnt/sv
$ od -t x1 -A d /mnt/sv/foo
0000000 ea ea ea ea ea ea ea ea ea ea ea ea ea ea ea ea
*
0110592
$ umount /mnt
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
$ btrfs receive -f /tmp/send.stream /mnt
$ echo $?
0
$ od -t x1 -A d /mnt/sv/foo
0000000
# ---> empty file
Since this a problem that affects send only, fix it in send by flushing
dellaloc for all the roots used by the send operation before send starts
to process the commit roots.
This is a problem that affects send since it was introduced (commit
31db9f7c23 ("Btrfs: introduce BTRFS_IOC_SEND for btrfs send/receive"))
but backporting it to older kernels has some dependencies:
- For kernels between 3.19 and 4.20, it depends on commit 3cd24c6980
("btrfs: use tagged writepage to mitigate livelock of snapshot") because
the function btrfs_start_delalloc_snapshot() does not exist before that
commit. So one has to either pick that commit or replace the calls to
btrfs_start_delalloc_snapshot() in this patch with calls to
btrfs_start_delalloc_inodes().
- For kernels older than 3.19 it also requires commit e5fa8f865b
("Btrfs: ensure send always works on roots without orphans") because
it depends on the function ensure_commit_roots_uptodate() which that
commits introduced.
- No dependencies for 5.0+ kernels.
A test case for fstests follows soon.
CC: stable@vger.kernel.org # 3.19+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Improve clone_range in two scenarios.
1. Remove the limit of inode size when find clone inodes We can do
partial clone, so there is no need to limit the size of the candidate
inode. When clone a range, we clone the legal range only by bytenr,
offset, len, inode size.
2. In the scenarios of rewrite or clone_range, data_offset rarely
matches exactly, so the chance of a clone is missed.
e.g.
1. Write a 1M file
dd if=/dev/zero of=1M bs=1M count=1
2. Clone 1M file
cp --reflink 1M clone
3. Rewrite 4k on the clone file
dd if=/dev/zero of=clone bs=4k count=1 conv=notrunc
The disk layout is as follows:
item 16 key (257 EXTENT_DATA 0) itemoff 15353 itemsize 53
extent data disk byte 1103101952 nr 1048576
extent data offset 0 nr 1048576 ram 1048576
extent compression(none)
...
item 22 key (258 EXTENT_DATA 0) itemoff 14959 itemsize 53
extent data disk byte 1104150528 nr 4096
extent data offset 0 nr 4096 ram 4096
extent compression(none)
item 23 key (258 EXTENT_DATA 4096) itemoff 14906 itemsize 53
extent data disk byte 1103101952 nr 1048576
extent data offset 4096 nr 1044480 ram 1048576
extent compression(none)
When send, inode 258 file offset 4096~1048576 (item 23) has a chance to
clone_range, but because data_offset does not match inode 257 (item 16),
it causes missed clone and can only transfer actual data.
Improve the problem by judging whether the current data_offset has
overlap with the file extent item, and if so, adjusting offset and
extent_len so that we can clone correctly.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Robbie Ko <robbieko@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.
It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access. But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.
A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model. And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.
This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.
There were a couple of notable cases:
- csky still had the old "verify_area()" name as an alias.
- the iter_iov code had magical hardcoded knowledge of the actual
values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
really used it)
- microblaze used the type argument for a debug printout
but other than those oddities this should be a total no-op patch.
I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something. Any missed conversion should be trivially fixable, though.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The typos accumulate over time so once in a while time they get fixed in
a large patch.
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Constructs like 'var & (PAGE_SIZE - 1)' or 'var & ~PAGE_MASK' can denote an
offset into a page.
So replace them by the offset_in_page() macro instead of open-coding it if
they're not used as an alignment check.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing an incremental send, due to the need of delaying directory move
(rename) operations we can end up in infinite loop at
apply_children_dir_moves().
An example scenario that triggers this problem is described below, where
directory names correspond to the numbers of their respective inodes.
Parent snapshot:
.
|--- 261/
|--- 271/
|--- 266/
|--- 259/
|--- 260/
| |--- 267
|
|--- 264/
| |--- 258/
| |--- 257/
|
|--- 265/
|--- 268/
|--- 269/
| |--- 262/
|
|--- 270/
|--- 272/
| |--- 263/
| |--- 275/
|
|--- 274/
|--- 273/
Send snapshot:
.
|-- 275/
|-- 274/
|-- 273/
|-- 262/
|-- 269/
|-- 258/
|-- 271/
|-- 268/
|-- 267/
|-- 270/
|-- 259/
| |-- 265/
|
|-- 272/
|-- 257/
|-- 260/
|-- 264/
|-- 263/
|-- 261/
|-- 266/
When processing inode 257 we delay its move (rename) operation because its
new parent in the send snapshot, inode 272, was not yet processed. Then
when processing inode 272, we delay the move operation for that inode
because inode 274 is its ancestor in the send snapshot. Finally we delay
the move operation for inode 274 when processing it because inode 275 is
its new parent in the send snapshot and was not yet moved.
When finishing processing inode 275, we start to do the move operations
that were previously delayed (at apply_children_dir_moves()), resulting in
the following iterations:
1) We issue the move operation for inode 274;
2) Because inode 262 depended on the move operation of inode 274 (it was
delayed because 274 is its ancestor in the send snapshot), we issue the
move operation for inode 262;
3) We issue the move operation for inode 272, because it was delayed by
inode 274 too (ancestor of 272 in the send snapshot);
4) We issue the move operation for inode 269 (it was delayed by 262);
5) We issue the move operation for inode 257 (it was delayed by 272);
6) We issue the move operation for inode 260 (it was delayed by 272);
7) We issue the move operation for inode 258 (it was delayed by 269);
8) We issue the move operation for inode 264 (it was delayed by 257);
9) We issue the move operation for inode 271 (it was delayed by 258);
10) We issue the move operation for inode 263 (it was delayed by 264);
11) We issue the move operation for inode 268 (it was delayed by 271);
12) We verify if we can issue the move operation for inode 270 (it was
delayed by 271). We detect a path loop in the current state, because
inode 267 needs to be moved first before we can issue the move
operation for inode 270. So we delay again the move operation for
inode 270, this time we will attempt to do it after inode 267 is
moved;
13) We issue the move operation for inode 261 (it was delayed by 263);
14) We verify if we can issue the move operation for inode 266 (it was
delayed by 263). We detect a path loop in the current state, because
inode 270 needs to be moved first before we can issue the move
operation for inode 266. So we delay again the move operation for
inode 266, this time we will attempt to do it after inode 270 is
moved (its move operation was delayed in step 12);
15) We issue the move operation for inode 267 (it was delayed by 268);
16) We verify if we can issue the move operation for inode 266 (it was
delayed by 270). We detect a path loop in the current state, because
inode 270 needs to be moved first before we can issue the move
operation for inode 266. So we delay again the move operation for
inode 266, this time we will attempt to do it after inode 270 is
moved (its move operation was delayed in step 12). So here we added
again the same delayed move operation that we added in step 14;
17) We attempt again to see if we can issue the move operation for inode
266, and as in step 16, we realize we can not due to a path loop in
the current state due to a dependency on inode 270. Again we delay
inode's 266 rename to happen after inode's 270 move operation, adding
the same dependency to the empty stack that we did in steps 14 and 16.
The next iteration will pick the same move dependency on the stack
(the only entry) and realize again there is still a path loop and then
again the same dependency to the stack, over and over, resulting in
an infinite loop.
So fix this by preventing adding the same move dependency entries to the
stack by removing each pending move record from the red black tree of
pending moves. This way the next call to get_pending_dir_moves() will
not return anything for the current parent inode.
A test case for fstests, with this reproducer, follows soon.
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
[Wrote changelog with example and more clear explanation]
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unify the error handling of directory item lookups using IS_ERR_OR_NULL.
No functional changes.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are two members in struct btrfs_root which indicate root's
objectid: objectid and root_key.objectid.
They are both set to the same value in __setup_root():
static void __setup_root(struct btrfs_root *root,
struct btrfs_fs_info *fs_info,
u64 objectid)
{
...
root->objectid = objectid;
...
root->root_key.objectid = objecitd;
...
}
and not changed to other value after initialization.
grep in btrfs directory shows both are used in many places:
$ grep -rI "root->root_key.objectid" | wc -l
133
$ grep -rI "root->objectid" | wc -l
55
(4.17, inc. some noise)
It is confusing to have two similar variable names and it seems
that there is no rule about which should be used in a certain case.
Since ->root_key itself is needed for tree reloc tree, let's remove
'objecitd' member and unify code to use ->root_key.objectid in all places.
Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing an incremental send, if we have a file in the parent snapshot
that has prealloc extents beyond EOF and in the send snapshot it got a
hole punch that partially covers the prealloc extents, the send stream,
when replayed by a receiver, can result in a file that has a size bigger
than it should and filled with zeroes past the correct EOF.
For example:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ xfs_io -f -c "falloc -k 0 4M" /mnt/foobar
$ xfs_io -c "pwrite -S 0xea 0 1M" /mnt/foobar
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ btrfs send -f /tmp/1.send /mnt/snap1
$ xfs_io -c "fpunch 1M 2M" /mnt/foobar
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send -f /tmp/2.send -p /mnt/snap1 /mnt/snap2
$ stat --format %s /mnt/snap2/foobar
1048576
$ md5sum /mnt/snap2/foobar
d31659e82e87798acd4669a1e0a19d4f /mnt/snap2/foobar
$ umount /mnt
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
$ btrfs receive -f /mnt/1.snap /mnt
$ btrfs receive -f /mnt/2.snap /mnt
$ stat --format %s /mnt/snap2/foobar
3145728
# --> should be 1Mb and not 3Mb (which was the end offset of hole
# punch operation)
$ md5sum /mnt/snap2/foobar
117baf295297c2a995f92da725b0b651 /mnt/snap2/foobar
# --> should be d31659e82e87798acd4669a1e0a19d4f as in the original fs
This issue actually happens only since commit ffa7c4296e ("Btrfs: send,
do not issue unnecessary truncate operations"), but before that commit we
were issuing a write operation full of zeroes (to "punch" a hole) which
was extending the file size beyond the correct value and then immediately
issue a truncate operation to the correct size and undoing the previous
write operation. Since the send protocol does not support fallocate, for
extent preallocation and hole punching, fix this by not even attempting
to send a "hole" (regular write full of zeroes) if it starts at an offset
greater then or equals to the file's size. This approach, besides being
much more simple then making send issue the truncate operation, adds the
benefit of avoiding the useless pair of write of zeroes and truncate
operations, saving time and IO at the receiver and reducing the size of
the send stream.
A test case for fstests follows soon.
Fixes: ffa7c4296e ("Btrfs: send, do not issue unnecessary truncate operations")
CC: stable@vger.kernel.org # 4.17+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>