Pull cgroup updates from Tejun Heo:
"Documentation updates and the addition of cgroup_parse_float() which
will be used by new controllers including blk-iocost"
* 'for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
docs: cgroup-v1: convert docs to ReST and rename to *.rst
cgroup: Move cgroup_parse_float() implementation out of CONFIG_SYSFS
cgroup: add cgroup_parse_float()
Pull x86 topology updates from Ingo Molnar:
"Implement multi-die topology support on Intel CPUs and expose the die
topology to user-space tooling, by Len Brown, Kan Liang and Zhang Rui.
These changes should have no effect on the kernel's existing
understanding of topologies, i.e. there should be no behavioral impact
on cache, NUMA, scheduler, perf and other topologies and overall
system performance"
* 'x86-topology-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel/rapl: Cosmetic rename internal variables in response to multi-die/pkg support
perf/x86/intel/uncore: Cosmetic renames in response to multi-die/pkg support
hwmon/coretemp: Cosmetic: Rename internal variables to zones from packages
thermal/x86_pkg_temp_thermal: Cosmetic: Rename internal variables to zones from packages
perf/x86/intel/cstate: Support multi-die/package
perf/x86/intel/rapl: Support multi-die/package
perf/x86/intel/uncore: Support multi-die/package
topology: Create core_cpus and die_cpus sysfs attributes
topology: Create package_cpus sysfs attribute
hwmon/coretemp: Support multi-die/package
powercap/intel_rapl: Update RAPL domain name and debug messages
thermal/x86_pkg_temp_thermal: Support multi-die/package
powercap/intel_rapl: Support multi-die/package
powercap/intel_rapl: Simplify rapl_find_package()
x86/topology: Define topology_logical_die_id()
x86/topology: Define topology_die_id()
cpu/topology: Export die_id
x86/topology: Create topology_max_die_per_package()
x86/topology: Add CPUID.1F multi-die/package support
Convert the cgroup-v1 files to ReST format, in order to
allow a later addition to the admin-guide.
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Some new systems have multiple software-visible die within each package.
Update Linux parsing of the Intel CPUID "Extended Topology Leaf" to handle
either CPUID.B, or the new CPUID.1F.
Add cpuinfo_x86.die_id and cpuinfo_x86.max_dies to store the result.
die_id will be non-zero only for multi-die/package systems.
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-doc@vger.kernel.org
Link: https://lkml.kernel.org/r/7b23d2d26d717b8e14ba137c94b70943f1ae4b5c.1557769318.git.len.brown@intel.com
On x86_64, all returns to usermode go through
prepare_exit_to_usermode(), with the sole exception of do_nmi().
This even includes machine checks -- this was added several years
ago to support MCE recovery. Update the documentation.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jon Masters <jcm@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: 04dcbdb805 ("x86/speculation/mds: Clear CPU buffers on exit to user")
Link: http://lkml.kernel.org/r/999fa9e126ba6a48e9d214d2f18dbde5c62ac55c.1557865329.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The double fault ESPFIX path doesn't return to user mode at all --
it returns back to the kernel by simulating a #GP fault.
prepare_exit_to_usermode() will run on the way out of
general_protection before running user code.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jon Masters <jcm@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: 04dcbdb805 ("x86/speculation/mds: Clear CPU buffers on exit to user")
Link: http://lkml.kernel.org/r/ac97612445c0a44ee10374f6ea79c222fe22a5c4.1557865329.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 MDS mitigations from Thomas Gleixner:
"Microarchitectural Data Sampling (MDS) is a hardware vulnerability
which allows unprivileged speculative access to data which is
available in various CPU internal buffers. This new set of misfeatures
has the following CVEs assigned:
CVE-2018-12126 MSBDS Microarchitectural Store Buffer Data Sampling
CVE-2018-12130 MFBDS Microarchitectural Fill Buffer Data Sampling
CVE-2018-12127 MLPDS Microarchitectural Load Port Data Sampling
CVE-2019-11091 MDSUM Microarchitectural Data Sampling Uncacheable Memory
MDS attacks target microarchitectural buffers which speculatively
forward data under certain conditions. Disclosure gadgets can expose
this data via cache side channels.
Contrary to other speculation based vulnerabilities the MDS
vulnerability does not allow the attacker to control the memory target
address. As a consequence the attacks are purely sampling based, but
as demonstrated with the TLBleed attack samples can be postprocessed
successfully.
The mitigation is to flush the microarchitectural buffers on return to
user space and before entering a VM. It's bolted on the VERW
instruction and requires a microcode update. As some of the attacks
exploit data structures shared between hyperthreads, full protection
requires to disable hyperthreading. The kernel does not do that by
default to avoid breaking unattended updates.
The mitigation set comes with documentation for administrators and a
deeper technical view"
* 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
x86/speculation/mds: Fix documentation typo
Documentation: Correct the possible MDS sysfs values
x86/mds: Add MDSUM variant to the MDS documentation
x86/speculation/mds: Add 'mitigations=' support for MDS
x86/speculation/mds: Print SMT vulnerable on MSBDS with mitigations off
x86/speculation/mds: Fix comment
x86/speculation/mds: Add SMT warning message
x86/speculation: Move arch_smt_update() call to after mitigation decisions
x86/speculation/mds: Add mds=full,nosmt cmdline option
Documentation: Add MDS vulnerability documentation
Documentation: Move L1TF to separate directory
x86/speculation/mds: Add mitigation mode VMWERV
x86/speculation/mds: Add sysfs reporting for MDS
x86/speculation/mds: Add mitigation control for MDS
x86/speculation/mds: Conditionally clear CPU buffers on idle entry
x86/kvm/vmx: Add MDS protection when L1D Flush is not active
x86/speculation/mds: Clear CPU buffers on exit to user
x86/speculation/mds: Add mds_clear_cpu_buffers()
x86/kvm: Expose X86_FEATURE_MD_CLEAR to guests
x86/speculation/mds: Add BUG_MSBDS_ONLY
...
conversion of the x86 docs to RST, which has been in the works for some
time but needed a couple of final tweaks.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAlzVlVoPHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5YPWgH/1z+HO4QiLZ72kVxLf2U5r6FAo4CtQYLymL/
GiDabC7Jt7hobXdFQmDXhFnLOR/ibMnawJw2JAgWXDo33KenKGbE2OiW8ecsebSb
hd1F3pU6P3gVTYItcuM8dZ6/0C/F98/J/O3O3sOhZ0Uup2WPxW5XdNOp7LjFQScc
ENkgm2C5trs1wGjVswXWztGxSTcYrF7ehhjpWsFr9MUnUOI6ghvXX1akN3cEo7eo
7D8nvG2/HWOkf9Oq87/1uQxF6lERRqOQE+HN1J80XUsNTV5Hn40RP40FeebVv1rr
1GjUu+mKk/5uV+OlRWFqLbt10cU4+TKKfNTqfEchHyDOMpJD+S0=
=hfly
-----END PGP SIGNATURE-----
Merge tag 'docs-5.2a' of git://git.lwn.net/linux
Pull more documentation updates from Jonathan Corbet:
"Some late arriving documentation changes. In particular, this contains
the conversion of the x86 docs to RST, which has been in the works for
some time but needed a couple of final tweaks"
* tag 'docs-5.2a' of git://git.lwn.net/linux: (29 commits)
Documentation: x86: convert x86_64/machinecheck to reST
Documentation: x86: convert x86_64/cpu-hotplug-spec to reST
Documentation: x86: convert x86_64/fake-numa-for-cpusets to reST
Documentation: x86: convert x86_64/5level-paging.txt to reST
Documentation: x86: convert x86_64/mm.txt to reST
Documentation: x86: convert x86_64/uefi.txt to reST
Documentation: x86: convert x86_64/boot-options.txt to reST
Documentation: x86: convert i386/IO-APIC.txt to reST
Documentation: x86: convert usb-legacy-support.txt to reST
Documentation: x86: convert orc-unwinder.txt to reST
Documentation: x86: convert resctrl_ui.txt to reST
Documentation: x86: convert microcode.txt to reST
Documentation: x86: convert pti.txt to reST
Documentation: x86: convert amd-memory-encryption.txt to reST
Documentation: x86: convert intel_mpx.txt to reST
Documentation: x86: convert protection-keys.txt to reST
Documentation: x86: convert pat.txt to reST
Documentation: x86: convert mtrr.txt to reST
Documentation: x86: convert tlb.txt to reST
Documentation: x86: convert zero-page.txt to reST
...
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Add a index.rst for x86 support. More docs will be added later.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
- Lots of work on the Chinese and Italian translations
- Some license-rules clarifications from Christoph
- Various build-script fixes
- A new document on memory models
- RST conversion of the live-patching docs
- The usual collection of typo fixes and corrections.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAlzSBFkPHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5YUDgIAIn+I0Wjv/vkuh5SKwAmz2wZBf46FCICz7Vg
jePmhd1GQ3K9k/xzIKMoaJOipAl+IXT4AnGa9eu+9Xm+D6HejASvtt/uTce4+qPi
9VLu7GmbtQQ0imRi4jjitenrebQXSKudAYbH+/bz7ycH7twWVJWKNLNQ8im9U5Ul
LRXQhRsYc2SwJ4mGOGTrqZkb69qkiOy0dQFGKbSM3ipHs/CQy8XMhlY/7aAh7t9N
SmKyH341s4Z/dRZIpoSx2QOfSp7njwTw7hxrnOq5unB82u2zrYvVFGxp5kzfQIyC
B/q26TG5hVNGH/37/+yOoziyP3Ma8IuF5W0zcg9DbmIi0Gdvg7s=
=4Zhc
-----END PGP SIGNATURE-----
Merge tag 'docs-5.2' of git://git.lwn.net/linux
Pull documentation updates from Jonathan Corbet:
"A reasonably busy cycle for docs, including:
- Lots of work on the Chinese and Italian translations
- Some license-rules clarifications from Christoph
- Various build-script fixes
- A new document on memory models
- RST conversion of the live-patching docs
- The usual collection of typo fixes and corrections"
* tag 'docs-5.2' of git://git.lwn.net/linux: (140 commits)
docs/livepatch: Unify style of livepatch documentation in the ReST format
docs: livepatch: convert docs to ReST and rename to *.rst
scripts/documentation-file-ref-check: detect broken :doc:`foo`
scripts/documentation-file-ref-check: don't parse Next/ dir
LICENSES: Rename other to deprecated
LICENSES: Clearly mark dual license only licenses
docs: Don't reference the ZLib license in license-rules.rst
docs/vm: Minor editorial changes in the THP and hugetlbfs
docs/vm: add documentation of memory models
doc:it_IT: translation alignment
doc: fix typo in PGP guide
dontdiff: update with Kconfig build artifacts
docs/zh_CN: fix typos in 1.Intro.rst file
docs/zh_CN: redirect CoC docs to Chinese version
doc: mm: migration doesn't use FOLL_SPLIT anymore
docs: doc-guide: remove the extension from .rst files
doc: kselftest: Fix KBUILD_OUTPUT usage instructions
docs: trace: fix some Sphinx warnings
docs: speculation.txt: mark example blocks as such
docs: ntb.txt: add blank lines to clean up some Sphinx warnings
...
Fix a minor typo in the MDS documentation: "eanbled" -> "enabled".
Reported-by: Jeff Bastian <jbastian@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Updated the documentation for a new CVE-2019-11091 Microarchitectural Data
Sampling Uncacheable Memory (MDSUM) which is a variant of
Microarchitectural Data Sampling (MDS). MDS is a family of side channel
attacks on internal buffers in Intel CPUs.
MDSUM is a special case of MSBDS, MFBDS and MLPDS. An uncacheable load from
memory that takes a fault or assist can leave data in a microarchitectural
structure that may later be observed using one of the same methods used by
MSBDS, MFBDS or MLPDS. There are no new code changes expected for MDSUM.
The existing mitigation for MDS applies to MDSUM as well.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Jon Masters <jcm@redhat.com>
Pull x86 topology updates from Ingo Molnar:
"Two main changes: preparatory changes for Intel multi-die topology
support, plus a syslog message tweak"
* 'x86-topology-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/topology: Make DEBUG_HOTPLUG_CPU0 pr_info() more descriptive
x86/smpboot: Rename match_die() to match_pkg()
topology: Simplify cputopology.txt formatting and wording
x86/topology: Fix documentation typo
Pull x86 mm updates from Ingo Molnar:
"The changes in here are:
- text_poke() fixes and an extensive set of executability lockdowns,
to (hopefully) eliminate the last residual circumstances under
which we are using W|X mappings even temporarily on x86 kernels.
This required a broad range of surgery in text patching facilities,
module loading, trampoline handling and other bits.
- tweak page fault messages to be more informative and more
structured.
- remove DISCONTIGMEM support on x86-32 and make SPARSEMEM the
default.
- reduce KASLR granularity on 5-level paging kernels from 512 GB to
1 GB.
- misc other changes and updates"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/mm: Initialize PGD cache during mm initialization
x86/alternatives: Add comment about module removal races
x86/kprobes: Use vmalloc special flag
x86/ftrace: Use vmalloc special flag
bpf: Use vmalloc special flag
modules: Use vmalloc special flag
mm/vmalloc: Add flag for freeing of special permsissions
mm/hibernation: Make hibernation handle unmapped pages
x86/mm/cpa: Add set_direct_map_*() functions
x86/alternatives: Remove the return value of text_poke_*()
x86/jump-label: Remove support for custom text poker
x86/modules: Avoid breaking W^X while loading modules
x86/kprobes: Set instruction page as executable
x86/ftrace: Set trampoline pages as executable
x86/kgdb: Avoid redundant comparison of patched code
x86/alternatives: Use temporary mm for text poking
x86/alternatives: Initialize temporary mm for patching
fork: Provide a function for copying init_mm
uprobes: Initialize uprobes earlier
x86/mm: Save debug registers when loading a temporary mm
...
Syntax only, no functional or semantic change.
reflect actual cpuinfo_x86 field name:
s/logical_id/logical_proc_id/
Signed-off-by: Len Brown <len.brown@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-doc@vger.kernel.org
Link: http://lkml.kernel.org/r/e2810a5317d3a109a98204e883fd1461f77b9339.1551160674.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The debug IST stack is actually two separate debug stacks to handle #DB
recursion. This is required because the CPU starts always at top of stack
on exception entry, which means on #DB recursion the second #DB would
overwrite the stack of the first.
The low level entry code therefore adjusts the top of stack on entry so a
secondary #DB starts from a different stack page. But the stack pages are
adjacent without a guard page between them.
Split the debug stack into 3 stacks which are separated by guard pages. The
3rd stack is never mapped into the cpu_entry_area and is only there to
catch triple #DB nesting:
--- top of DB_stack <- Initial stack
--- end of DB_stack
guard page
--- top of DB1_stack <- Top of stack after entering first #DB
--- end of DB1_stack
guard page
--- top of DB2_stack <- Top of stack after entering second #DB
--- end of DB2_stack
guard page
If DB2 would not act as the final guard hole, a second #DB would point the
top of #DB stack to the stack below #DB1 which would be valid and not catch
the not so desired triple nesting.
The backing store does not allocate any memory for DB2 and its guard page
as it is not going to be mapped into the cpu_entry_area.
- Adjust the low level entry code so it adjusts top of #DB with the offset
between the stacks instead of exception stack size.
- Make the dumpstack code aware of the new stacks.
- Adjust the in_debug_stack() implementation and move it into the NMI code
where it belongs. As this is NMI hotpath code, it just checks the full
area between top of DB_stack and bottom of DB1_stack without checking
for the guard page. That's correct because the NMI cannot hit a
stackpointer pointing to the guard page between DB and DB1 stack. Even
if it would, then the NMI operation still is unaffected, but the resume
of the debug exception on the topmost DB stack will crash by touching
the guard page.
[ bp: Make exception_stack_names static const char * const ]
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: linux-doc@vger.kernel.org
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160145.439944544@linutronix.de
The defines for the exception stack (IST) array in the TSS are using the
SDM convention IST1 - IST7. That causes all sorts of code to subtract 1 for
array indices related to IST. That's confusing at best and does not provide
any value.
Make the indices zero based and fixup the usage sites. The only code which
needs to adjust the 0 based index is the interrupt descriptor setup which
needs to add 1 now.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: linux-doc@vger.kernel.org
Cc: Nicolai Stange <nstange@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.331772825@linutronix.de
This fixes a PT typo, and the following 56-bit address-space
addresses:
* the hole extends from 0100000000000000 to feffffffffffffff
* the KASAN shadow memory area stops at fffffbffffffffff (see kasan.h)
Signed-off-by: Stephen Kitt <steve@sk2.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: alex.popov@linux.com
Cc: bhe@redhat.com
Cc: corbet@lwn.net
Cc: kirill.shutemov@linux.intel.com
Cc: linux-doc@vger.kernel.org
Link: http://lkml.kernel.org/r/20190415150853.10354-1-steve@sk2.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Documentation/x86/boot.txt is missing protocol 2.13 description.
Reported-by: Ross Philipson <ross.philipson@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
In virtualized environments it can happen that the host has the microcode
update which utilizes the VERW instruction to clear CPU buffers, but the
hypervisor is not yet updated to expose the X86_FEATURE_MD_CLEAR CPUID bit
to guests.
Introduce an internal mitigation mode VMWERV which enables the invocation
of the CPU buffer clearing even if X86_FEATURE_MD_CLEAR is not set. If the
system has no updated microcode this results in a pointless execution of
the VERW instruction wasting a few CPU cycles. If the microcode is updated,
but not exposed to a guest then the CPU buffers will be cleared.
That said: Virtual Machines Will Eventually Receive Vaccine
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Add a static key which controls the invocation of the CPU buffer clear
mechanism on idle entry. This is independent of other MDS mitigations
because the idle entry invocation to mitigate the potential leakage due to
store buffer repartitioning is only necessary on SMT systems.
Add the actual invocations to the different halt/mwait variants which
covers all usage sites. mwaitx is not patched as it's not available on
Intel CPUs.
The buffer clear is only invoked before entering the C-State to prevent
that stale data from the idling CPU is spilled to the Hyper-Thread sibling
after the Store buffer got repartitioned and all entries are available to
the non idle sibling.
When coming out of idle the store buffer is partitioned again so each
sibling has half of it available. Now CPU which returned from idle could be
speculatively exposed to contents of the sibling, but the buffers are
flushed either on exit to user space or on VMENTER.
When later on conditional buffer clearing is implemented on top of this,
then there is no action required either because before returning to user
space the context switch will set the condition flag which causes a flush
on the return to user path.
Note, that the buffer clearing on idle is only sensible on CPUs which are
solely affected by MSBDS and not any other variant of MDS because the other
MDS variants cannot be mitigated when SMT is enabled, so the buffer
clearing on idle would be a window dressing exercise.
This intentionally does not handle the case in the acpi/processor_idle
driver which uses the legacy IO port interface for C-State transitions for
two reasons:
- The acpi/processor_idle driver was replaced by the intel_idle driver
almost a decade ago. Anything Nehalem upwards supports it and defaults
to that new driver.
- The legacy IO port interface is likely to be used on older and therefore
unaffected CPUs or on systems which do not receive microcode updates
anymore, so there is no point in adding that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Add a static key which controls the invocation of the CPU buffer clear
mechanism on exit to user space and add the call into
prepare_exit_to_usermode() and do_nmi() right before actually returning.
Add documentation which kernel to user space transition this covers and
explain why some corner cases are not mitigated.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
The Microarchitectural Data Sampling (MDS) vulernabilities are mitigated by
clearing the affected CPU buffers. The mechanism for clearing the buffers
uses the unused and obsolete VERW instruction in combination with a
microcode update which triggers a CPU buffer clear when VERW is executed.
Provide a inline function with the assembly magic. The argument of the VERW
instruction must be a memory operand as documented:
"MD_CLEAR enumerates that the memory-operand variant of VERW (for
example, VERW m16) has been extended to also overwrite buffers affected
by MDS. This buffer overwriting functionality is not guaranteed for the
register operand variant of VERW."
Documentation also recommends to use a writable data segment selector:
"The buffer overwriting occurs regardless of the result of the VERW
permission check, as well as when the selector is null or causes a
descriptor load segment violation. However, for lowest latency we
recommend using a selector that indicates a valid writable data
segment."
Add x86 specific documentation about MDS and the internal workings of the
mitigation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>