Currently, the trf7970a driver assumes that the Vin voltage is 5V when
it writes to the 'Chip Status Control' register. That may not be correct
so use the regulator facility to get the Vin voltage and set the VRS5_3
bit correctly when writing to that register.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Currently the driver writes the same value to the 'Modulator and SYS_CLK
Control' register no matter what RF technology is being used. That works
for now but new RF technologies (e.g., ISO/IEC 14443-B) will require
different values to be written to that register. To support this, add a
member to the trf7970a structure which is set by the RF technology handling
code and used by the framing code when it writes to that register.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Writing to the 'ISO Control' register may cause the contents of the
'Modulator and SYS_CLK Control' register to change so be sure to write
to 'Modulator and SYS_CLK Control' after writing to 'ISO Control'.
Note that writing to the 'Modulator and SYS_CLK Control' register
shouldn't be necessary at all according to the trf790a manual but testing
shows that it is necessary.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The current code always writes to the 'ISO Control' register when the
RF framing is set. That's not necessary since the register's value
doesn't always change. Instead, only write to it when its value is
actually being changed.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Sometimes after sending a frame there is tx data leftover in the FIFO
which the driver will think is part of the receive frame. That data can
be cleared when an 'End of TX' interrupt is received by issuing the
'FIFO Reset' command.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Due to a trf7970a erratum, the 'NFC Target Detection Level' register
(0x18) must be cleared after power-up.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Only initiate the abort command process when there is an active command.
If the abort process were started and there wasn't an active command
then the next command issued by the digital layer would be incorrectly
aborted.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
After further testing periods of ~16 ms have been observed
between interrupts indicating that there is receive data in
the FIFO. To accomodate that, increase the time the driver
waits before deciding there is no more data to receive to
20 ms. The macro that represents that delay is
'TRF7970A_WAIT_FOR_RX_DATA_TIMEOUT'.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Add support for ISO/IEC 15693 RF technology and Type 5 tags.
Note that Type 5 tags used to be referred to as Type V tags.
CC: Erick Macias <emacias@ti.com>
CC: Felipe Balbi <balbi@ti.com>
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Add support for Type 4A Tags which includes
supporting the underlying ISO/IEC 14443-A
protocol.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Add a driver for the Texas Instruments TRF7970a RFID/NFC/15693
transceiver. The driver currently supports ISO/IEC 14443 Type 2
tags only (MIFARE Ultralight and Ultralight C but not Classic).
CC: Erick Macias <emacias@ti.com>
CC: Felipe Balbi <balbi@ti.com>
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>