Commit Graph

23 Commits

Author SHA1 Message Date
Yue Hu b3c958c20a fscache: Use wrapper fscache_set_cache_state() directly when relinquishing
We already have the wrapper function to set cache state.

Signed-off-by: Yue Hu <huyue2@coolpad.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeffle Xu <jefflexu@linux.alibaba.com>
cc: linux-cachefs@redhat.com
Link: https://listman.redhat.com/archives/linux-cachefs/2022-April/006648.html # v1
2022-04-08 23:54:37 +01:00
David Howells cdf262f294 fscache: Count data storage objects in a cache
Count the data storage objects that are currently allocated in a cache.
This is used to pin certain cache structures until cache withdrawal is
complete.

Three helpers are provided to manage and make use of the count:

 (1) void fscache_count_object(struct fscache_cache *cache);

     This should be called by the cache backend to note that an object has
     been allocated and attached to the cache.

 (2) void fscache_uncount_object(struct fscache_cache *cache);

     This should be called by the backend to note that an object has been
     destroyed.  This sends a wakeup event that allows cache withdrawal to
     proceed if it was waiting for that object.

 (3) void fscache_wait_for_objects(struct fscache_cache *cache);

     This can be used by the backend to wait for all outstanding cache
     object to be destroyed.

Each cache's counter is displayed as part of /proc/fs/fscache/caches.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819608594.215744.1812706538117388252.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906911646.143852.168184059935530127.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967111846.1823006.9868154941573671255.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021516219.640689.4934796654308958158.stgit@warthog.procyon.org.uk/ # v4
2022-01-07 09:22:19 +00:00
David Howells 29f18e79fe fscache: Add a function for a cache backend to note an I/O error
Add a function to the backend API to note an I/O error in a cache.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819598741.215744.891281275151382095.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906901316.143852.15225412215771586528.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967100721.1823006.16435671567428949398.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021508840.640689.11902836226570620424.stgit@warthog.procyon.org.uk/ # v4
2022-01-07 09:22:19 +00:00
David Howells 2e0c76aee2 fscache: Implement functions add/remove a cache
Implement functions to allow the cache backend to add or remove a cache:

 (1) Declare a cache to be live:

	int fscache_add_cache(struct fscache_cache *cache,
			      const struct fscache_cache_ops *ops,
			      void *cache_priv);

     Take a previously acquired cache cookie, set the operations table and
     private data and mark the cache open for access.

 (2) Withdraw a cache from service:

	void fscache_withdraw_cache(struct fscache_cache *cache);

     This marks the cache as withdrawn and thus prevents further
     cache-level and volume-level accesses.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819596022.215744.8799712491432238827.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906896599.143852.17049208999019262884.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967097870.1823006.3470041000971522030.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021505541.640689.1819714759326331054.stgit@warthog.procyon.org.uk/ # v4
2022-01-07 09:22:19 +00:00
David Howells 23e12e285a fscache: Implement cache-level access helpers
Add a pair of functions to pin/unpin a cache that we're wanting to do a
high-level access to (such as creating or removing a volume):

	bool fscache_begin_cache_access(struct fscache_cache *cache,
					enum fscache_access_trace why);
	void fscache_end_cache_access(struct fscache_cache *cache,
				      enum fscache_access_trace why);

The way the access gate works/will work is:

 (1) If the cache tests as not live (state is not FSCACHE_CACHE_IS_ACTIVE),
     then we return false to indicate access was not permitted.

 (2) If the cache tests as live, then we increment the n_accesses count and
     then recheck the liveness, ending the access if it ceased to be live.

 (3) When we end the access, we decrement n_accesses and wake up the any
     waiters if it reaches 0.

 (4) Whilst the cache is caching, n_accesses is kept artificially
     incremented to prevent wakeups from happening.

 (5) When the cache is taken offline, the state is changed to prevent new
     accesses, n_accesses is decremented and we wait for n_accesses to
     become 0.

Note that some of this is implemented in a later patch.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819593239.215744.7537428720603638088.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906893368.143852.14164004598465617981.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967093977.1823006.6967886507023056409.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021499995.640689.18286203753480287850.stgit@warthog.procyon.org.uk/ # v4
2022-01-07 09:22:19 +00:00
David Howells 9549332df4 fscache: Implement cache registration
Implement a register of caches and provide functions to manage it.

Two functions are provided for the cache backend to use:

 (1) Acquire a cache cookie:

	struct fscache_cache *fscache_acquire_cache(const char *name)

     This gets the cache cookie for a cache of the specified name and moves
     it to the preparation state.  If a nameless cache cookie exists, that
     will be given this name and used.

 (2) Relinquish a cache cookie:

	void fscache_relinquish_cache(struct fscache_cache *cache);

     This relinquishes a cache cookie, cleans it and makes it available if
     it's still referenced by a network filesystem.

Note that network filesystems don't deal with cache cookies directly, but
rather go straight to the volume registration.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819587157.215744.13523139317322503286.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906889665.143852.10378009165231294456.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967085081.1823006.2218944206363626210.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021494847.640689.10109692261640524343.stgit@warthog.procyon.org.uk/ # v4
2022-01-07 09:22:19 +00:00
David Howells 2cee6fbb7f fscache: Remove the contents of the fscache driver, pending rewrite
Remove the code that comprises the fscache driver as it's going to be
substantially rewritten, with the majority of the code being erased in the
rewrite.

A small piece of linux/fscache.h is left as that is #included by a bunch of
network filesystems.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819578724.215744.18210619052245724238.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906884814.143852.6727245089843862889.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967077097.1823006.1377665951499979089.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021485548.640689.13876080567388696162.stgit@warthog.procyon.org.uk/ # v4
2022-01-07 09:22:19 +00:00
David Howells 20ec197bfa fscache: Use refcount_t for the cookie refcount instead of atomic_t
Use refcount_t for the fscache_cookie refcount instead of atomic_t and
rename the 'usage' member to 'ref' in such cases.  The tracepoints that
reference it change from showing "u=%d" to "r=%d".

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/162431204358.2908479.8006938388213098079.stgit@warthog.procyon.org.uk/
2021-08-27 13:34:03 +01:00
David Howells c97a72ded9 fscache: Change %p in format strings to something else
Change plain %p in format strings in fscache code to something more useful,
since %p is now hashed before printing and thus no longer matches the
contents of an oops register dump.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/160588474843.3465195.5446072310069374803.stgit@warthog.procyon.org.uk/ # rfc
Link: https://lore.kernel.org/r/162431199509.2908479.2950631488219944294.stgit@warthog.procyon.org.uk/
2021-08-27 13:34:02 +01:00
David Howells 58f386a73f fscache: Remove the object list procfile
Remove the object list procfile from fscache as objects will become
entirely internal to the cache.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/162431198332.2908479.5847286163455099669.stgit@warthog.procyon.org.uk/
2021-08-27 13:34:02 +01:00
Mauro Carvalho Chehab 0e822145b5 docs: filesystems: caching/backend-api.txt: convert it to ReST
- Add a SPDX header;
- Adjust document and section titles;
- Some whitespace fixes and new line breaks;
- Mark literal blocks as such;
- Add table markups;
- Add it to filesystems/caching/index.rst.

Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Link: https://lore.kernel.org/r/5d0a61abaa87bfe913b9e2f321e74ef7af0f3dfc.1588021877.git.mchehab+huawei@kernel.org
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2020-05-05 09:22:21 -06:00
Thomas Gleixner 2874c5fd28 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 3029 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:32 -07:00
Kiran Kumar Modukuri f29507ce66 fscache: Fix reference overput in fscache_attach_object() error handling
When a cookie is allocated that causes fscache_object structs to be
allocated, those objects are initialised with the cookie pointer, but
aren't blessed with a ref on that cookie unless the attachment is
successfully completed in fscache_attach_object().

If attachment fails because the parent object was dying or there was a
collision, fscache_attach_object() returns without incrementing the cookie
counter - but upon failure of this function, the object is released which
then puts the cookie, whether or not a ref was taken on the cookie.

Fix this by taking a ref on the cookie when it is assigned in
fscache_object_init(), even when we're creating a root object.


Analysis from Kiran Kumar:

This bug has been seen in 4.4.0-124-generic #148-Ubuntu kernel

BugLink: https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1776277

fscache cookie ref count updated incorrectly during fscache object
allocation resulting in following Oops.

kernel BUG at /build/linux-Y09MKI/linux-4.4.0/fs/fscache/internal.h:321!
kernel BUG at /build/linux-Y09MKI/linux-4.4.0/fs/fscache/cookie.c:639!

[Cause]
Two threads are trying to do operate on a cookie and two objects.

(1) One thread tries to unmount the filesystem and in process goes over a
    huge list of objects marking them dead and deleting the objects.
    cookie->usage is also decremented in following path:

      nfs_fscache_release_super_cookie
       -> __fscache_relinquish_cookie
        ->__fscache_cookie_put
        ->BUG_ON(atomic_read(&cookie->usage) <= 0);

(2) A second thread tries to lookup an object for reading data in following
    path:

    fscache_alloc_object
    1) cachefiles_alloc_object
        -> fscache_object_init
           -> assign cookie, but usage not bumped.
    2) fscache_attach_object -> fails in cant_attach_object because the
         cookie's backing object or cookie's->parent object are going away
    3) fscache_put_object
        -> cachefiles_put_object
          ->fscache_object_destroy
            ->fscache_cookie_put
               ->BUG_ON(atomic_read(&cookie->usage) <= 0);

[NOTE from dhowells] It's unclear as to the circumstances in which (2) can
take place, given that thread (1) is in nfs_kill_super(), however a
conflicting NFS mount with slightly different parameters that creates a
different superblock would do it.  A backtrace from Kiran seems to show
that this is a possibility:

    kernel BUG at/build/linux-Y09MKI/linux-4.4.0/fs/fscache/cookie.c:639!
    ...
    RIP: __fscache_cookie_put+0x3a/0x40 [fscache]
    Call Trace:
     __fscache_relinquish_cookie+0x87/0x120 [fscache]
     nfs_fscache_release_super_cookie+0x2d/0xb0 [nfs]
     nfs_kill_super+0x29/0x40 [nfs]
     deactivate_locked_super+0x48/0x80
     deactivate_super+0x5c/0x60
     cleanup_mnt+0x3f/0x90
     __cleanup_mnt+0x12/0x20
     task_work_run+0x86/0xb0
     exit_to_usermode_loop+0xc2/0xd0
     syscall_return_slowpath+0x4e/0x60
     int_ret_from_sys_call+0x25/0x9f

[Fix] Bump up the cookie usage in fscache_object_init, when it is first
being assigned a cookie atomically such that the cookie is added and bumped
up if its refcount is not zero.  Remove the assignment in
fscache_attach_object().

[Testcase]
I have run ~100 hours of NFS stress tests and not seen this bug recur.

[Regression Potential]
 - Limited to fscache/cachefiles.

Fixes: ccc4fc3d11 ("FS-Cache: Implement the cookie management part of the netfs API")
Signed-off-by: Kiran Kumar Modukuri <kiran.modukuri@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2018-07-25 14:49:00 +01:00
David Howells 402cb8dda9 fscache: Attach the index key and aux data to the cookie
Attach copies of the index key and auxiliary data to the fscache cookie so
that:

 (1) The callbacks to the netfs for this stuff can be eliminated.  This
     can simplify things in the cache as the information is still
     available, even after the cache has relinquished the cookie.

 (2) Simplifies the locking requirements of accessing the information as we
     don't have to worry about the netfs object going away on us.

 (3) The cache can do lazy updating of the coherency information on disk.
     As long as the cache is flushed before reboot/poweroff, there's no
     need to update the coherency info on disk every time it changes.

 (4) Cookies can be hashed or put in a tree as the index key is easily
     available.  This allows:

     (a) Checks for duplicate cookies can be made at the top fscache layer
     	 rather than down in the bowels of the cache backend.

     (b) Caching can be added to a netfs object that has a cookie if the
     	 cache is brought online after the netfs object is allocated.

A certain amount of space is made in the cookie for inline copies of the
data, but if it won't fit there, extra memory will be allocated for it.

The downside of this is that live cache operation requires more memory.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Anna Schumaker <anna.schumaker@netapp.com>
Tested-by: Steve Dickson <steved@redhat.com>
2018-04-04 13:41:28 +01:00
Fabian Frederick 36dfd116ed fs/fscache: convert printk to pr_foo()
All printk converted to pr_foo() except internal.h: printk(KERN_DEBUG

Coalesce formats.

Add pr_fmt

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:51 -07:00
David Howells caaef6900b FS-Cache: Fix object state machine to have separate work and wait states
Fix object state machine to have separate work and wait states as that makes
it easier to envision.

There are now three kinds of state:

 (1) Work state.  This is an execution state.  No event processing is performed
     by a work state.  The function attached to a work state returns a pointer
     indicating the next state to which the OSM should transition.  Returning
     NO_TRANSIT repeats the current state, but goes back to the scheduler
     first.

 (2) Wait state.  This is an event processing state.  No execution is
     performed by a wait state.  Wait states are just tables of "if event X
     occurs, clear it and transition to state Y".  The dispatcher returns to
     the scheduler if none of the events in which the wait state has an
     interest are currently pending.

 (3) Out-of-band state.  This is a special work state.  Transitions to normal
     states can be overridden when an unexpected event occurs (eg. I/O error).
     Instead the dispatcher disables and clears the OOB event and transits to
     the specified work state.  This then acts as an ordinary work state,
     though object->state points to the overridden destination.  Returning
     NO_TRANSIT resumes the overridden transition.

In addition, the states have names in their definitions, so there's no need for
tables of state names.  Further, the EV_REQUEUE event is no longer necessary as
that is automatic for work states.

Since the states are now separate structs rather than values in an enum, it's
not possible to use comparisons other than (non-)equality between them, so use
some object->flags to indicate what phase an object is in.

The EV_RELEASE, EV_RETIRE and EV_WITHDRAW events have been squished into one
(EV_KILL).  An object flag now carries the information about retirement.

Similarly, the RELEASING, RECYCLING and WITHDRAWING states have been merged
into an KILL_OBJECT state and additional states have been added for handling
waiting dependent objects (JUMPSTART_DEPS and KILL_DEPENDENTS).

A state has also been added for synchronising with parent object initialisation
(WAIT_FOR_PARENT) and another for initiating look up (PARENT_READY).

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-By: Milosz Tanski <milosz@adfin.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
2013-06-19 14:16:47 +01:00
David Howells 493f7bc114 FS-Cache: Wrap checks on object state
Wrap checks on object state (mostly outside of fs/fscache/object.c) with
inline functions so that the mechanism can be replaced.

Some of the state checks within object.c are left as-is as they will be
replaced.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-By: Milosz Tanski <milosz@adfin.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
2013-06-19 14:16:47 +01:00
David Howells 75bc411388 FS-Cache: Limit the number of I/O error reports for a cache
Limit the number of I/O error reports for a cache to 1 to prevent massive
amounts of noise.  After the first I/O error the cache is taken off line
automatically, so must be restarted to resume caching.

Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20 22:10:44 +00:00
David Howells 52bd75fdb1 FS-Cache: Add counters for entry/exit to/from cache operation functions
Count entries to and exits from cache operation table functions.  Maintain
these as a single counter that's added to or removed from as appropriate.

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:08 +00:00
David Howells 4fbf4291aa FS-Cache: Allow the current state of all objects to be dumped
Allow the current state of all fscache objects to be dumped by doing:

	cat /proc/fs/fscache/objects

By default, all objects and all fields will be shown.  This can be restricted
by adding a suitable key to one of the caller's keyrings (such as the session
keyring):

	keyctl add user fscache:objlist "<restrictions>" @s

The <restrictions> are:

	K	Show hexdump of object key (don't show if not given)
	A	Show hexdump of object aux data (don't show if not given)

And paired restrictions:

	C	Show objects that have a cookie
	c	Show objects that don't have a cookie
	B	Show objects that are busy
	b	Show objects that aren't busy
	W	Show objects that have pending writes
	w	Show objects that don't have pending writes
	R	Show objects that have outstanding reads
	r	Show objects that don't have outstanding reads
	S	Show objects that have slow work queued
	s	Show objects that don't have slow work queued

If neither side of a restriction pair is given, then both are implied.  For
example:

	keyctl add user fscache:objlist KB @s

shows objects that are busy, and lists their object keys, but does not dump
their auxiliary data.  It also implies "CcWwRrSs", but as 'B' is given, 'b' is
not implied.

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:04 +00:00
David Howells 952efe7b78 FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.

The following documentation is added to:

	Documentation/filesystems/caching/operations.txt

		       ================================
		       ASYNCHRONOUS OPERATIONS HANDLING
		       ================================

========
OVERVIEW
========

FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines.  Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.

This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.

To make use of this facility, <linux/fscache-cache.h> should be #included.

===============================
OPERATION RECORD INITIALISATION
===============================

An operation is recorded in an fscache_operation struct:

	struct fscache_operation {
		union {
			struct work_struct fast_work;
			struct slow_work slow_work;
		};
		unsigned long		flags;
		fscache_operation_processor_t processor;
		...
	};

Someone wanting to issue an operation should allocate something with this
struct embedded in it.  They should initialise it by calling:

	void fscache_operation_init(struct fscache_operation *op,
				    fscache_operation_release_t release);

with the operation to be initialised and the release function to use.

The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).

The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).

FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.

==========
PARAMETERS
==========

There are a number of parameters that can be set in the operation record's flag
parameter.  There are three options for the provision of CPU time in these
operations:

 (1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD).  A thread
     may decide it wants to handle an operation itself without deferring it to
     another thread.

     This is, for example, used in read operations for calling readpages() on
     the backing filesystem in CacheFiles.  Although readpages() does an
     asynchronous data fetch, the determination of whether pages exist is done
     synchronously - and the netfs does not proceed until this has been
     determined.

     If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
     before submitting the operation, and the operating thread must wait for it
     to be cleared before proceeding:

		wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
			    fscache_wait_bit, TASK_UNINTERRUPTIBLE);

 (2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
     will be given to keventd to process.  Such an operation is not permitted
     to sleep on I/O.

     This is, for example, used by CacheFiles to copy data from a backing fs
     page to a netfs page after the backing fs has read the page in.

     If this option is used, op->fast_work and op->processor must be
     initialised before submitting the operation:

		INIT_WORK(&op->fast_work, do_some_work);

 (3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
     will be given to the slow work facility to process.  Such an operation is
     permitted to sleep on I/O.

     This is, for example, used by FS-Cache to handle background writes of
     pages that have just been fetched from a remote server.

     If this option is used, op->slow_work and op->processor must be
     initialised before submitting the operation:

		fscache_operation_init_slow(op, processor)

Furthermore, operations may be one of two types:

 (1) Exclusive (FSCACHE_OP_EXCLUSIVE).  Operations of this type may not run in
     conjunction with any other operation on the object being operated upon.

     An example of this is the attribute change operation, in which the file
     being written to may need truncation.

 (2) Shareable.  Operations of this type may be running simultaneously.  It's
     up to the operation implementation to prevent interference between other
     operations running at the same time.

=========
PROCEDURE
=========

Operations are used through the following procedure:

 (1) The submitting thread must allocate the operation and initialise it
     itself.  Normally this would be part of a more specific structure with the
     generic op embedded within.

 (2) The submitting thread must then submit the operation for processing using
     one of the following two functions:

	int fscache_submit_op(struct fscache_object *object,
			      struct fscache_operation *op);

	int fscache_submit_exclusive_op(struct fscache_object *object,
					struct fscache_operation *op);

     The first function should be used to submit non-exclusive ops and the
     second to submit exclusive ones.  The caller must still set the
     FSCACHE_OP_EXCLUSIVE flag.

     If successful, both functions will assign the operation to the specified
     object and return 0.  -ENOBUFS will be returned if the object specified is
     permanently unavailable.

     The operation manager will defer operations on an object that is still
     undergoing lookup or creation.  The operation will also be deferred if an
     operation of conflicting exclusivity is in progress on the object.

     If the operation is asynchronous, the manager will retain a reference to
     it, so the caller should put their reference to it by passing it to:

	void fscache_put_operation(struct fscache_operation *op);

 (3) If the submitting thread wants to do the work itself, and has marked the
     operation with FSCACHE_OP_MYTHREAD, then it should monitor
     FSCACHE_OP_WAITING as described above and check the state of the object if
     necessary (the object might have died whilst the thread was waiting).

     When it has finished doing its processing, it should call
     fscache_put_operation() on it.

 (4) The operation holds an effective lock upon the object, preventing other
     exclusive ops conflicting until it is released.  The operation can be
     enqueued for further immediate asynchronous processing by adjusting the
     CPU time provisioning option if necessary, eg:

	op->flags &= ~FSCACHE_OP_TYPE;
	op->flags |= ~FSCACHE_OP_FAST;

     and calling:

	void fscache_enqueue_operation(struct fscache_operation *op)

     This can be used to allow other things to have use of the worker thread
     pools.

=====================
ASYNCHRONOUS CALLBACK
=====================

When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation.  This should then get at the
container struct by using container_of():

	static void fscache_write_op(struct fscache_operation *_op)
	{
		struct fscache_storage *op =
			container_of(_op, struct fscache_storage, op);
	...
	}

The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns.  The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:39 +01:00
David Howells 4c515dd47a FS-Cache: Add cache management
Implement the entry points by which a cache backend may initialise, add,
declare an error upon and withdraw a cache.

Further, an object is created in sysfs under which each cache added will get
an object created:

	/sys/fs/fscache/<cachetag>/

All of this is described in Documentation/filesystems/caching/backend-api.txt
added by a previous patch.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:37 +01:00
David Howells 0e04d4cefc FS-Cache: Add cache tag handling
Implement two features of FS-Cache:

 (1) The ability to request and release cache tags - names by which a cache may
     be known to a netfs, and thus selected for use.

 (2) An internal function by which a cache is selected by consulting the netfs,
     if the netfs wishes to be consulted.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:37 +01:00