Rename pr_efi to efi_info and pr_efi_err to efi_err to make it more
obvious that they are part of the EFI stub and not generic printk infra.
Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200430182843.2510180-4-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
In several places 64-bit values need to be split up into two 32-bit
fields, in order to be backward-compatible with the old 32-bit ABIs.
Instead of open-coding this, add a helper function to set a 64-bit value
as two 32-bit fields.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200430182843.2510180-3-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
struct boot_params is only 4096 bytes, not 16384. Fix this by using
sizeof(struct boot_params) instead of hardcoding the incorrect value.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200430182843.2510180-2-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
We no longer need to take special care when using global variables
in the EFI stub, so switch to a simple symbol reference for efi_is64.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The practice of using __pure getter functions to access global
variables in the EFI stub dates back to the time when we had to
carefully prevent GOT entries from being emitted, because we
could not rely on the toolchain to do this for us.
Today, we use the hidden visibility pragma for all EFI stub source
files, which now all live in the same subdirectory, and we apply a
sanity check on the objects, so we can get rid of these getter
functions and simply refer to global data objects directly.
So switch over the remaining boolean variables carrying options set
on the kernel command line.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The practice of using __pure getter functions to access global
variables in the EFI stub dates back to the time when we had to
carefully prevent GOT entries from being emitted, because we
could not rely on the toolchain to do this for us.
Today, we use the hidden visibility pragma for all EFI stub source
files, which now all live in the same subdirectory, and we apply a
sanity check on the objects, so we can get rid of these getter
functions and simply refer to global data objects directly.
Start with efi_system_table(), and convert it into a global variable.
While at it, make it a pointer-to-const, because we can.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Now that both arm and x86 are using the linker script to place the EFI
stub's global variables in the correct section, remove __efistub_global.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20200416151227.3360778-4-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Instead of using __efistub_global to force variables into the .data
section, leave them in the .bss but pull the EFI stub's .bss section
into .data in the linker script for the compressed kernel.
Add relocation checking for x86 as well to catch non-PC-relative
relocations that require runtime processing, since the EFI stub does not
do any runtime relocation processing.
This will catch, for example, data relocations created by static
initializers of pointers.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200416151227.3360778-3-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Instead of using __efistub_global to force variables into the .data
section, leave them in the .bss but pull the EFI stub's .bss section
into .data in the linker script for the compressed kernel.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20200416151227.3360778-2-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Move efi_relocate_kernel() into a separate source file, so that it
only gets pulled into builds for architectures that use it. Since
efi_relocate_kernel() is the only user of efi_low_alloc(), let's
move that over as well.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
It is no longer necessary to locate the kernel as low as possible in
physical memory, and so we can switch from efi_low_alloc() [which is
a rather nasty concoction on top of GetMemoryMap()] to a new helper
called efi_allocate_pages_aligned(), which simply rounds up the size
to account for the alignment, and frees the misaligned pages again.
So considering that the kernel can live anywhere in the physical
address space, as long as its alignment requirements are met, let's
switch to efi_allocate_pages_aligned() to allocate the pages.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Break out the code to create an aligned page allocation from mem.c
and move it into a function efi_allocate_pages_aligned() in alignedmem.c.
Update efi_allocate_pages() to invoke it unless the minimum alignment
equals the EFI page size (4 KB), in which case the ordinary page
allocator is sufficient. This way, efi_allocate_pages_aligned() will
only be pulled into the build if it is actually being used (which will
be on arm64 only in the immediate future)
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The KASLR code path in the arm64 version of the EFI stub incorporates
some overly complicated logic to randomly allocate a region of the right
alignment: there is no need to randomize the placement of the kernel
modulo 2 MiB separately from the placement of the 2 MiB aligned allocation
itself - we can simply follow the same logic used by the non-randomized
placement, which is to allocate at the correct alignment, and only take
TEXT_OFFSET into account if it is not a round multiple of the alignment.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The notion of a 'preferred' load offset for the kernel dates back to the
times when the kernel's primary mapping overlapped with the linear region,
and memory below it could not be used at all.
Today, the arm64 kernel does not really care where it is loaded in physical
memory, as long as the alignment requirements are met, and so there is no
point in unconditionally moving the kernel to a new location in memory at
boot. Instead, we can
- check for a KASLR seed, and randomly reallocate the kernel if one is
provided
- otherwise, check whether the alignment requirements are met for the
current placement of the kernel, and just run it in place if they are
- finally, do an ordinary page allocation and reallocate the kernel to a
suitably aligned buffer anywhere in memory.
By the same reasoning, there is no need to take TEXT_OFFSET into account
if it is a round multiple of the minimum alignment, which is the usual
case for relocatable kernels with TEXT_OFFSET randomization disabled.
Otherwise, it suffices to use the relative misaligment of TEXT_OFFSET
when reallocating the kernel.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The implementation of efi_random_alloc() arbitrarily truncates the
provided random seed to 16 bits, which limits the granularity of the
randomly chosen allocation offset in memory. This is currently only
an issue if the size of physical memory exceeds 128 GB, but going
forward, we will reduce the allocation alignment to 64 KB, and this
means we need to increase the granularity to ensure that the random
memory allocations are distributed evenly.
We will need to switch to 64-bit arithmetic for the multiplication,
but this does not result in 64-bit integer intrinsic calls on ARM or
on i386.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The EFI stub uses a per-architecture #define for the minimum base
and size alignment of page allocations, which is set to 4 KB for
all architecures except arm64, which uses 64 KB, to ensure that
allocations can always be (un)mapped efficiently, regardless of
the page size used by the kernel proper, which could be a kexec'ee
The API wrappers around page based allocations assume that this
alignment is always taken into account, and so efi_free() will
also round up its size argument to EFI_ALLOC_ALIGN.
Currently, efi_random_alloc() does not honour this alignment for
the allocated size, and so freeing such an allocation may result
in unrelated memory to be freed, potentially leading to issues
after boot. So let's round up size in efi_random_alloc() as well.
Fixes: 2ddbfc81ea ("efi: stub: add implementation of efi_random_alloc()")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Add the ability to automatically pick the highest resolution video mode
(defined as the product of vertical and horizontal resolution) by using
a command-line argument of the form
video=efifb:auto
If there are multiple modes with the highest resolution, pick one with
the highest color depth.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200328160601.378299-2-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Extend the video mode argument to handle an optional color depth
specification of the form
video=efifb:<xres>x<yres>[-(rgb|bgr|<bpp>)]
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200320020028.1936003-14-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Add the ability to choose a video mode for the selected gop by using a
command-line argument of the form
video=efifb:mode=<n>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200320020028.1936003-12-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
pixel_format must be one of
PIXEL_RGB_RESERVED_8BIT_PER_COLOR
PIXEL_BGR_RESERVED_8BIT_PER_COLOR
PIXEL_BIT_MASK
since we skip PIXEL_BLT_ONLY when finding a gop.
Remove the redundant code and add another check in find_gop to skip any
pixel formats that we don't know about, in case a later version of the
UEFI spec adds one.
Reformat the code a little.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200320020028.1936003-10-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Use the __ffs/__fls macros to calculate the position and size of the
mask.
Correct type of mask to u32 instead of unsigned long.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200320020028.1936003-9-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Move extraction of the mode information parameters outside the loop to
find the gop, and eliminate some redundant variables.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200320020028.1936003-4-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Fix the following sparse warning:
drivers/firmware/efi/libstub/arm-stub.c:68:6: warning:
symbol 'install_memreserve_table' was not declared. Should it be static?
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Zou Wei <zou_wei@huawei.com>
Link: https://lore.kernel.org/r/1587643713-28169-1-git-send-email-zou_wei@huawei.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
We have wrappers around EFI calls so that x86 can define special
versions for mixed mode, while all other architectures can use the
same simple definition that just issues the call directly.
In preparation for the arrival of yet another architecture that doesn't
need anything special here (RISC-V), let's move the default definition
into a shared header.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Loading an initrd passed via the kernel command line is deprecated: it
is limited to files that reside in the same volume as the one the kernel
itself was loaded from, and we have more flexible ways to achieve the
same. So make it configurable so new architectures can decide not to
enable it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Most of the arm-stub code is written in an architecture independent manner.
As a result, RISC-V can reuse most of the arm-stub code.
Rename the arm-stub.c to efi-stub.c so that ARM, ARM64 and RISC-V can use it.
This patch doesn't introduce any functional changes.
Signed-off-by: Atish Patra <atish.patra@wdc.com>
Reviewed-by: Palmer Dabbelt <palmerdabbelt@google.com>
Link: https://lore.kernel.org/r/20200415195422.19866-2-atish.patra@wdc.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Arnd reports that commit
9302c1bb8e ("efi/libstub: Rewrite file I/O routine")
reworks the file I/O routines in a way that triggers the following
warning:
drivers/firmware/efi/libstub/file.c:240:1: warning: the frame size
of 1200 bytes is larger than 1024 bytes [-Wframe-larger-than=]
We can work around this issue dropping an instance of efi_char16_t[256]
from the stack frame, and reusing the 'filename' field of the file info
struct that we use to obtain file information from EFI (which contains
the file name even though we already know it since we used it to open
the file in the first place)
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200409130434.6736-8-ardb@kernel.org
Commit
d5cdf4cfea ("efi/x86: Don't relocate the kernel unless necessary")
tries to avoid relocating the kernel in the EFI stub as far as possible.
However, when systemd-boot is used to boot a unified kernel image [1],
the image is constructed by embedding the bzImage as a .linux section in
a PE executable that contains a small stub loader from systemd that will
call the EFI stub handover entry, together with additional sections and
potentially an initrd. When this image is constructed, by for example
dracut, the initrd is placed after the bzImage without ensuring that at
least init_size bytes are available for the bzImage. If the kernel is
not relocated by the EFI stub, this could result in the compressed
kernel's startup code in head_{32,64}.S overwriting the initrd.
To prevent this, unconditionally relocate the kernel if the EFI stub was
entered via the handover entry point.
[1] https://systemd.io/BOOT_LOADER_SPECIFICATION/#type-2-efi-unified-kernel-images
Fixes: d5cdf4cfea ("efi/x86: Don't relocate the kernel unless necessary")
Reported-by: Sergey Shatunov <me@prok.pw>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200406180614.429454-2-nivedita@alum.mit.edu
Link: https://lore.kernel.org/r/20200409130434.6736-5-ardb@kernel.org
Commit
3ee372ccce ("x86/boot/compressed/64: Remove .bss/.pgtable from bzImage")
removed the .bss section from the bzImage.
However, while a PE loader is required to zero-initialize the .bss
section before calling the PE entry point, the EFI handover protocol
does not currently document any requirement that .bss be initialized by
the bootloader prior to calling the handover entry.
When systemd-boot is used to boot a unified kernel image [1], the image
is constructed by embedding the bzImage as a .linux section in a PE
executable that contains a small stub loader from systemd together with
additional sections and potentially an initrd. As the .bss section
within the bzImage is no longer explicitly present as part of the file,
it is not initialized before calling the EFI handover entry.
Furthermore, as the size of the embedded .linux section is only the size
of the bzImage file itself, the .bss section's memory may not even have
been allocated.
In particular, this can result in efi_disable_pci_dma being true even
when it was not specified via the command line or configuration option,
which in turn causes crashes while booting on some systems.
To avoid issues, place all EFI stub global variables into the .data
section instead of .bss. As of this writing, only boolean flags for a
few command line arguments and the sys_table pointer were in .bss and
will now move into the .data section.
[1] https://systemd.io/BOOT_LOADER_SPECIFICATION/#type-2-efi-unified-kernel-images
Fixes: 3ee372ccce ("x86/boot/compressed/64: Remove .bss/.pgtable from bzImage")
Reported-by: Sergey Shatunov <me@prok.pw>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200406180614.429454-1-nivedita@alum.mit.edu
Link: https://lore.kernel.org/r/20200409130434.6736-4-ardb@kernel.org
- Ensure that the compiler and linker versions are aligned so that ld
doesn't complain about not understanding a .note.gnu.property section
(emitted when pointer authentication is enabled).
- Force -mbranch-protection=none when the feature is not enabled, in
case a compiler may choose a different default value.
- Remove CONFIG_DEBUG_ALIGN_RODATA. It was never in defconfig and rarely
enabled.
- Fix checking 16-bit Thumb-2 instructions checking mask in the
emulation of the SETEND instruction (it could match the bottom half of
a 32-bit Thumb-2 instruction).
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl6PUYAACgkQa9axLQDI
XvH83g/7B5v0RFqjqVW4/cQKoN1rii7qSA8pBfNgGiCMJKtoGvliAlp3xWEtlW0h
nYJ4gCvey946r5kvZrjdBXC/Ulo2CcGYtX0n8d+8IB6wXAnGcQ0DUBUFZ4+fAU9Z
F7+R7its24dma9R1wIFHFmQUdlO+EgQTfQFvhQKYMSNVaFQF73Sp/vk3oKhJ2E0x
QevgDBQSmmcX3DFxhUW7BdcdboBgtTDUGdhcImdorgp7QmI1r40espJKX4VMKvmb
pfzwg+i7KM6N1RDhRfA2oFMegXwI3rvM3XesqYaua8+xWD5vJuIQfq+ysEq9F9x/
Hnu+W9nbcN8RKQ9JToiqkE7ifuOBTvaIJaqsgIXYSqtYjatuPAh85MkrorHi9Ji2
9i7fc0GMTgtgYDo/93++l8SmmRJMX+h+9KtGtxx39+UqGjToJMCnPGjwBSwe4wdK
lKOAgj488HHsNwTlrRUnq1hXjNjd1w+ON7JM2L3IyRNX/eWN60VxwzwHkZMByCOj
jlcY4ISWquigW4w9Sp4nxEhLF9dWT1+OrE33Xh3CUxPU94jSEvgcDHcxuGeGOlrA
QjN1B2APZFox8XbOsLgeG2kKe5C3Fui90SEn0GyA0ncVLsXDI78VnVJR9uz5+6Pd
ALVQKkJxswhSDPQFlH+7CmQAcr8jWyLEEvyXXaZsoJmewzCpEPM=
=pHRG
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Catalin Marinas:
- Ensure that the compiler and linker versions are aligned so that ld
doesn't complain about not understanding a .note.gnu.property section
(emitted when pointer authentication is enabled).
- Force -mbranch-protection=none when the feature is not enabled, in
case a compiler may choose a different default value.
- Remove CONFIG_DEBUG_ALIGN_RODATA. It was never in defconfig and
rarely enabled.
- Fix checking 16-bit Thumb-2 instructions checking mask in the
emulation of the SETEND instruction (it could match the bottom half
of a 32-bit Thumb-2 instruction).
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: armv8_deprecated: Fix undef_hook mask for thumb setend
arm64: remove CONFIG_DEBUG_ALIGN_RODATA feature
arm64: Always force a branch protection mode when the compiler has one
arm64: Kconfig: ptrauth: Add binutils version check to fix mismatch
init/kconfig: Add LD_VERSION Kconfig
When CONFIG_DEBUG_ALIGN_RODATA is enabled, kernel segments mapped with
different permissions (r-x for .text, r-- for .rodata, rw- for .data,
etc) are rounded up to 2 MiB so they can be mapped more efficiently.
In particular, it permits the segments to be mapped using level 2
block entries when using 4k pages, which is expected to result in less
TLB pressure.
However, the mappings for the bulk of the kernel will use level 2
entries anyway, and the misaligned fringes are organized such that they
can take advantage of the contiguous bit, and use far fewer level 3
entries than would be needed otherwise.
This makes the value of this feature dubious at best, and since it is not
enabled in defconfig or in the distro configs, it does not appear to be
in wide use either. So let's just remove it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Laura Abbott <labbott@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Pull x86 boot updates from Ingo Molnar:
"Misc cleanups and small enhancements all around the map"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/compressed: Fix debug_puthex() parameter type
x86/setup: Fix static memory detection
x86/vmlinux: Drop unneeded linker script discard of .eh_frame
x86/*/Makefile: Use -fno-asynchronous-unwind-tables to suppress .eh_frame sections
x86/boot/compressed: Remove .eh_frame section from bzImage
x86/boot/compressed/64: Remove .bss/.pgtable from bzImage
x86/boot/compressed/64: Use 32-bit (zero-extended) MOV for z_output_len
x86/boot/compressed/64: Use LEA to initialize boot stack pointer
Commit:
ec93fc371f ("efi/libstub: Add support for loading the initrd from a device path")
added a diagnostic print to the ARM version of the EFI stub that
reports whether an initrd has been loaded that was passed
via the command line using initrd=.
However, it failed to take into account that, for historical reasons,
the file loading routines return EFI_SUCCESS when no file was found,
and the only way to decide whether a file was loaded is to inspect
the 'size' argument that is passed by reference. So let's inspect
this returned size, to prevent the print from being emitted even if
no initrd was loaded at all.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-efi@vger.kernel.org
Commit:
9f9223778e ("efi/libstub/arm: Make efi_entry() an ordinary PE/COFF entrypoint")
did some code refactoring to get rid of the EFI entry point assembler
code, and in the process, it got rid of the assignment of image_addr
to the value of _text. Instead, it switched to using the image_base
field of the efi_loaded_image struct provided by UEFI, which should
contain the same value.
However, Michael reports that this is not the case: older GRUB builds
corrupt this value in some way, and since we can easily switch back to
referring to _text to discover this value, let's simply do that.
While at it, fix another issue in commit 9f9223778e, which may result
in the unassigned image_addr to be misidentified as the preferred load
offset of the kernel, which is unlikely but will cause a boot crash if
it does occur.
Finally, let's add a warning if the _text vs. image_base discrepancy is
detected, so we can tell more easily how widespread this issue actually
is.
Reported-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-efi@vger.kernel.org
The header flag XLF_CAN_BE_LOADED_ABOVE_4G will inform us whether
allocations above 4 GiB for kernel, command line, etc are permitted,
so we take it into account when calling efi_allocate_pages() etc.
However, CONFIG_EFI_STUB implies CONFIG_RELOCATABLE, and so the flag
is guaranteed to be set on x86_64 builds, whereas i386 builds are
guaranteed to run under firmware that will not allocate above 4 GB
in the first place.
So drop the check, and just pass ULONG_MAX as the upper bound for
all allocations.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200303225054.28741-1-ardb@kernel.org
Link: https://lore.kernel.org/r/20200308080859.21568-27-ardb@kernel.org