Add architecture specific implementation details for KFENCE and enable
KFENCE for the x86 architecture. In particular, this implements the
required interface in <asm/kfence.h> for setting up the pool and
providing helper functions for protecting and unprotecting pages.
For x86, we need to ensure that the pool uses 4K pages, which is done
using the set_memory_4k() helper function.
[elver@google.com: add missing copyright and description header]
Link: https://lkml.kernel.org/r/20210118092159.145934-2-elver@google.com
Link: https://lkml.kernel.org/r/20201103175841.3495947-3-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Co-developed-by: Marco Elver <elver@google.com>
Reviewed-by: Jann Horn <jannh@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joern Engel <joern@purestorage.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The irq stack switching was moved out of the ASM entry code in course of
the entry code consolidation. It ended up being suboptimal in various
ways.
- Make the stack switching inline so the stackpointer manipulation is not
longer at an easy to find place.
- Get rid of the unnecessary indirect call.
- Avoid the double stack switching in interrupt return and reuse the
interrupt stack for softirq handling.
- A objtool fix for CONFIG_FRAME_POINTER=y builds where it got confused
about the stack pointer manipulation.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmA21OcTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoaX0D/9S0ud6oqbsIvI8LwhvYub63a2cjKP9
liHAJ7xwMYYVwzf0skwsPb/QE6+onCzdq0upJkgG/gEYm2KbiaMWZ4GgHdj0O7ER
qXKJONDd36AGxSEdaVzLY5kPuD/mkomGk5QdaZaTmjruthkNzg4y/N2wXUBIMZR0
FdpSpp5fGspSZCn/DXDx6FjClwpLI53VclvDs6DcZ2DIBA0K+F/cSLb1UQoDLE1U
hxGeuNa+GhKeeZ5C+q5giho1+ukbwtjMW9WnKHAVNiStjm0uzdqq7ERGi/REvkcB
LY62u5uOSW1zIBMmzUjDDQEqvypB0iFxFCpN8g9sieZjA0zkaUioRTQyR+YIQ8Cp
l8LLir0dVQivR1bHghHDKQJUpdw/4zvDj4mMH10XHqbcOtIxJDOJHC5D00ridsAz
OK0RlbAJBl9FTdLNfdVReBCoehYAO8oefeyMAG12nZeSh5XVUWl238rvzmzIYNhG
cEtkSx2wIUNEA+uSuI+xvfmwpxL7voTGvqmiRDCAFxyO7Bl/GBu9OEBFA1eOvHB+
+wTmPDMswRetQNh4QCRXzk1JzP1Wk5CobUL9iinCWFoTJmnsPPSOWlosN6ewaNXt
kYFpRLy5xt9EP7dlfgBSjiRlthDhTdMrFjD5bsy1vdm1w7HKUo82lHa4O8Hq3PHS
tinKICUqRsbjig==
=Sqr1
-----END PGP SIGNATURE-----
Merge tag 'x86-entry-2021-02-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 irq entry updates from Thomas Gleixner:
"The irq stack switching was moved out of the ASM entry code in course
of the entry code consolidation. It ended up being suboptimal in
various ways.
This reworks the X86 irq stack handling:
- Make the stack switching inline so the stackpointer manipulation is
not longer at an easy to find place.
- Get rid of the unnecessary indirect call.
- Avoid the double stack switching in interrupt return and reuse the
interrupt stack for softirq handling.
- A objtool fix for CONFIG_FRAME_POINTER=y builds where it got
confused about the stack pointer manipulation"
* tag 'x86-entry-2021-02-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
objtool: Fix stack-swizzle for FRAME_POINTER=y
um: Enforce the usage of asm-generic/softirq_stack.h
x86/softirq/64: Inline do_softirq_own_stack()
softirq: Move do_softirq_own_stack() to generic asm header
softirq: Move __ARCH_HAS_DO_SOFTIRQ to Kconfig
x86: Select CONFIG_HAVE_IRQ_EXIT_ON_IRQ_STACK
x86/softirq: Remove indirection in do_softirq_own_stack()
x86/entry: Use run_sysvec_on_irqstack_cond() for XEN upcall
x86/entry: Convert device interrupts to inline stack switching
x86/entry: Convert system vectors to irq stack macro
x86/irq: Provide macro for inlining irq stack switching
x86/apic: Split out spurious handling code
x86/irq/64: Adjust the per CPU irq stack pointer by 8
x86/irq: Sanitize irq stack tracking
x86/entry: Fix instrumentation annotation
Drop support for depercated platforms using SFI, drop the entire
support for SFI that has been long deprecated too and make some
janitorial changes on top of that (Andy Shevchenko).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmA2ZukSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxKcAP/RAkbRVFndhQIZYTCu74O64v86FjTBcS
3vvcKevVkBJiPJL1l10Yo3UMEYAbJIRZY00jkUjX7pq4eurELu6LwdMtJlHwh0p5
ZP5QeSdq1xN+9UGwBGXlnka2ypmD8fjbQyxHKErYgvmOl4ltFm40PyUC9GCVFLnW
/1o83t/dcmTtaOGPYWTW3HuCsbYqANG/x8PYAFeAk5dBxoSaNV69gAEuCYr1JC5N
Nie4x2m2I5v9egJFhy6rmRrpHPBvocCho+FipJFagSKWHPCI2rBSKESVOj23zWt2
eIWhK5T/ZR3OqQb9tZN6uAPJmBAerc3l7ZHZ1oFBP68MjUJJJhduQ+hNxljOyLLw
CVx0UhuancIWZdyJon5f7E9S9STZLIZ/3usx3K+7AZK+PSmH8d/UEIeXfkC0FcAr
eO3gwalB9KuhhXbVvihW79RkfkV5pTaMvVS7l1BffN4WE1dB9PKtJ8/MKFbGaTUF
4Rev6BdAEDqJrw6OIARvNcI6TAEhbKe5yIghzhQWn+fZ7oEm6f6fvFObBzD0KvQP
4RwYJhXU0gtK5yo/Ib1sUqjVQn8Jgqb7Xq46WZsP07Yc6O2Ws/86qCpX1GSCv5FU
1CZEJLGLGTbjDYOyMaUDfO/tI5kXG11e0Ss7Q+snWH4Iyhg0aNEYChKjOAFIxIxg
JJYOH8O5p2IP
=jlPz
-----END PGP SIGNATURE-----
Merge tag 'sfi-removal-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull Simple Firmware Interface (SFI) support removal from Rafael Wysocki:
"Drop support for depercated platforms using SFI, drop the entire
support for SFI that has been long deprecated too and make some
janitorial changes on top of that (Andy Shevchenko)"
* tag 'sfi-removal-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
x86/platform/intel-mid: Update Copyright year and drop file names
x86/platform/intel-mid: Remove unused header inclusion in intel-mid.h
x86/platform/intel-mid: Drop unused __intel_mid_cpu_chip and Co.
x86/platform/intel-mid: Get rid of intel_scu_ipc_legacy.h
x86/PCI: Describe @reg for type1_access_ok()
x86/PCI: Get rid of custom x86 model comparison
sfi: Remove framework for deprecated firmware
cpufreq: sfi-cpufreq: Remove driver for deprecated firmware
media: atomisp: Remove unused header
mfd: intel_msic: Remove driver for deprecated platform
x86/apb_timer: Remove driver for deprecated platform
x86/platform/intel-mid: Remove unused leftovers (vRTC)
x86/platform/intel-mid: Remove unused leftovers (msic)
x86/platform/intel-mid: Remove unused leftovers (msic_thermal)
x86/platform/intel-mid: Remove unused leftovers (msic_power_btn)
x86/platform/intel-mid: Remove unused leftovers (msic_gpio)
x86/platform/intel-mid: Remove unused leftovers (msic_battery)
x86/platform/intel-mid: Remove unused leftovers (msic_ocd)
x86/platform/intel-mid: Remove unused leftovers (msic_audio)
platform/x86: intel_scu_wdt: Drop mistakenly added const
- Generate __mcount_loc in objtool (Peter Zijlstra)
- Support running objtool against vmlinux.o (Sami Tolvanen)
- Clang LTO enablement for x86 (Sami Tolvanen)
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmA1fn8ACgkQiXL039xt
wCbswQ//Zmnq912Ubyn5uPe9SOS/kumGDoqtxGzlZwo/pSB3qFArhD6G07sJ49XD
nu/05ZcOda760wubnhcuK91n2fY5i/eGLXMSjfgtdVcco4Q67nPQydc+LGdhuDco
FlhL8TAIwqYN1f2nJK1IggZpZFxz5r/r1Pq8q1S0oQRqDenxDBQwNtBba4B1OIxw
/FE/1Hp3xwRnuJEP2jREBeY1yQ+Y1n859pZcDgSOWlTArcp8EVUi5hIWJ9DwIe73
mqnx6PcFWEYB0zLNZmZz2gpEac+ncGyme6ChayeuQfInbL5dhx97jFGt3S6/+NSY
mF2zyaR/+JsGGuM8dVqH3izKCJXCEAGirrdMO1ndb9HdwS3KnYEiag2ciNWL0wm3
UEM4r0i2B14sU3pkyotKgsJdOSgorMKkQUPb2wW+OUfnkZNEWKLqylMgNXBD80l4
WG5vYQRwwFN9jRBik6Z5YFGnwGsNIoGg1F1GRNMjh6h51adYQeBN/1QJE1FJ5L4D
iKzmZYqimKUINXWfI6TNyqiv9TctOt65pxnRyq+MHxfTDzHGyc3MUeCeCiR1a1yI
S5QhcgfSnC/NjDA0+oYC6yRlcBtfhjtUqFTGoZ4q4q/LF1BVU1bPyIXZrROLc05s
LNMMBcWbJetJxFtm/gYfiVFuNitYtxbBV1krVtsWznCA2nKGJ9w=
=htKJ
-----END PGP SIGNATURE-----
Merge tag 'clang-lto-v5.12-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull more clang LTO updates from Kees Cook:
"Clang LTO x86 enablement.
Full disclosure: while this has _not_ been in linux-next (since it
initially looked like the objtool dependencies weren't going to make
v5.12), it has been under daily build and runtime testing by Sami for
quite some time. These x86 portions have been discussed on lkml, with
Peter, Josh, and others helping nail things down.
The bulk of the changes are to get objtool working happily. The rest
of the x86 enablement is very small.
Summary:
- Generate __mcount_loc in objtool (Peter Zijlstra)
- Support running objtool against vmlinux.o (Sami Tolvanen)
- Clang LTO enablement for x86 (Sami Tolvanen)"
Link: https://lore.kernel.org/lkml/20201013003203.4168817-26-samitolvanen@google.com/
Link: https://lore.kernel.org/lkml/cover.1611263461.git.jpoimboe@redhat.com/
* tag 'clang-lto-v5.12-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
kbuild: lto: force rebuilds when switching CONFIG_LTO
x86, build: allow LTO to be selected
x86, cpu: disable LTO for cpu.c
x86, vdso: disable LTO only for vDSO
kbuild: lto: postpone objtool
objtool: Split noinstr validation from --vmlinux
x86, build: use objtool mcount
tracing: add support for objtool mcount
objtool: Don't autodetect vmlinux.o
objtool: Fix __mcount_loc generation with Clang's assembler
objtool: Add a pass for generating __mcount_loc
Pass code model and stack alignment to the linker as these are not
stored in LLVM bitcode, and allow CONFIG_LTO_CLANG* to be enabled.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Select HAVE_OBJTOOL_MCOUNT if STACK_VALIDATION is selected to use
objtool to generate __mcount_loc sections for dynamic ftrace with
Clang and gcc <5 (later versions of gcc use -mrecord-mcount).
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
[ NOTE: unfortunately this tree had to be freshly rebased today,
it's a same-content tree of 82891be90f3c (-next published)
merged with v5.11.
The main reason for the rebase was an authorship misattribution
problem with a new commit, which we noticed in the last minute,
and which we didn't want to be merged upstream. The offending
commit was deep in the tree, and dependent commits had to be
rebased as well. ]
- Core scheduler updates:
- Add CONFIG_PREEMPT_DYNAMIC: this in its current form adds the
preempt=none/voluntary/full boot options (default: full),
to allow distros to build a PREEMPT kernel but fall back to
close to PREEMPT_VOLUNTARY (or PREEMPT_NONE) runtime scheduling
behavior via a boot time selection.
There's also the /debug/sched_debug switch to do this runtime.
This feature is implemented via runtime patching (a new variant of static calls).
The scope of the runtime patching can be best reviewed by looking
at the sched_dynamic_update() function in kernel/sched/core.c.
( Note that the dynamic none/voluntary mode isn't 100% identical,
for example preempt-RCU is available in all cases, plus the
preempt count is maintained in all models, which has runtime
overhead even with the code patching. )
The PREEMPT_VOLUNTARY/PREEMPT_NONE models, used by the vast majority
of distributions, are supposed to be unaffected.
- Fix ignored rescheduling after rcu_eqs_enter(). This is a bug that
was found via rcutorture triggering a hang. The bug is that
rcu_idle_enter() may wake up a NOCB kthread, but this happens after
the last generic need_resched() check. Some cpuidle drivers fix it
by chance but many others don't.
In true 2020 fashion the original bug fix has grown into a 5-patch
scheduler/RCU fix series plus another 16 RCU patches to address
the underlying issue of missed preemption events. These are the
initial fixes that should fix current incarnations of the bug.
- Clean up rbtree usage in the scheduler, by providing & using the following
consistent set of rbtree APIs:
partial-order; less() based:
- rb_add(): add a new entry to the rbtree
- rb_add_cached(): like rb_add(), but for a rb_root_cached
total-order; cmp() based:
- rb_find(): find an entry in an rbtree
- rb_find_add(): find an entry, and add if not found
- rb_find_first(): find the first (leftmost) matching entry
- rb_next_match(): continue from rb_find_first()
- rb_for_each(): iterate a sub-tree using the previous two
- Improve the SMP/NUMA load-balancer: scan for an idle sibling in a single pass.
This is a 4-commit series where each commit improves one aspect of the idle
sibling scan logic.
- Improve the cpufreq cooling driver by getting the effective CPU utilization
metrics from the scheduler
- Improve the fair scheduler's active load-balancing logic by reducing the number
of active LB attempts & lengthen the load-balancing interval. This improves
stress-ng mmapfork performance.
- Fix CFS's estimated utilization (util_est) calculation bug that can result in
too high utilization values
- Misc updates & fixes:
- Fix the HRTICK reprogramming & optimization feature
- Fix SCHED_SOFTIRQ raising race & warning in the CPU offlining code
- Reduce dl_add_task_root_domain() overhead
- Fix uprobes refcount bug
- Process pending softirqs in flush_smp_call_function_from_idle()
- Clean up task priority related defines, remove *USER_*PRIO and
USER_PRIO()
- Simplify the sched_init_numa() deduplication sort
- Documentation updates
- Fix EAS bug in update_misfit_status(), which degraded the quality
of energy-balancing
- Smaller cleanups
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmAtHBsRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1itgg/+NGed12pgPjYBzesdou60Lvx7LZLGjfOt
M1F1EnmQGn/hEH2fCY6ZoqIZQTVltm7GIcBNabzYTzlaHZsdtyuDUJBZyj19vTlk
zekcj7WVt+qvfjChaNwEJhQ9nnOM/eohMgEOHMAAJd9zlnQvve7NOLQ56UDM+kn/
9taFJ5ZPvb4avP6C5p3KivvKex6Bjof/Tl0m3utpNyPpI/qK3FyGxwdgCxU0yepT
ABWQX5ZQCufFvo1bgnBPfqyzab4MqhoM3bNKBsLQfuAlssG1xRv4KQOev4dRwrt9
pXJikV5C9yez5d2lGe5p0ltH5IZS/l9x2yI/ZQj3OUDTFyV1ic6WfFAqJgDzVF8E
i/vvA4NPQiI241Bkps+ErcCw4aVOgiY6TWli74cHjLUIX0+As6aHrFWXGSxUmiHB
WR+B8KmdfzRTTlhOxMA+cvlpZcKCfxWkJJmXzr/lDZzIuKPqM3QCE2wD9sixkfVo
JNICT0IvZghWOdbMEfZba8Psh/e2LVI9RzdpEiuYJz1ZrVlt1hO0M6jBxY0hMz9n
k54z81xODw0a8P2FHMtpmB1vhAeqCmvwA6DO8z0Oxs0DFi+KM2bLf2efHsCKafI+
Bm5v9YFaOk/55R76hJVh+aYLlyFgFkKd+P/niJTPDnxOk3SqJuXvTrql1HeGHkNr
kYgQa23dsZk=
=pyaG
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2021-02-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"Core scheduler updates:
- Add CONFIG_PREEMPT_DYNAMIC: this in its current form adds the
preempt=none/voluntary/full boot options (default: full), to allow
distros to build a PREEMPT kernel but fall back to close to
PREEMPT_VOLUNTARY (or PREEMPT_NONE) runtime scheduling behavior via
a boot time selection.
There's also the /debug/sched_debug switch to do this runtime.
This feature is implemented via runtime patching (a new variant of
static calls).
The scope of the runtime patching can be best reviewed by looking
at the sched_dynamic_update() function in kernel/sched/core.c.
( Note that the dynamic none/voluntary mode isn't 100% identical,
for example preempt-RCU is available in all cases, plus the
preempt count is maintained in all models, which has runtime
overhead even with the code patching. )
The PREEMPT_VOLUNTARY/PREEMPT_NONE models, used by the vast
majority of distributions, are supposed to be unaffected.
- Fix ignored rescheduling after rcu_eqs_enter(). This is a bug that
was found via rcutorture triggering a hang. The bug is that
rcu_idle_enter() may wake up a NOCB kthread, but this happens after
the last generic need_resched() check. Some cpuidle drivers fix it
by chance but many others don't.
In true 2020 fashion the original bug fix has grown into a 5-patch
scheduler/RCU fix series plus another 16 RCU patches to address the
underlying issue of missed preemption events. These are the initial
fixes that should fix current incarnations of the bug.
- Clean up rbtree usage in the scheduler, by providing & using the
following consistent set of rbtree APIs:
partial-order; less() based:
- rb_add(): add a new entry to the rbtree
- rb_add_cached(): like rb_add(), but for a rb_root_cached
total-order; cmp() based:
- rb_find(): find an entry in an rbtree
- rb_find_add(): find an entry, and add if not found
- rb_find_first(): find the first (leftmost) matching entry
- rb_next_match(): continue from rb_find_first()
- rb_for_each(): iterate a sub-tree using the previous two
- Improve the SMP/NUMA load-balancer: scan for an idle sibling in a
single pass. This is a 4-commit series where each commit improves
one aspect of the idle sibling scan logic.
- Improve the cpufreq cooling driver by getting the effective CPU
utilization metrics from the scheduler
- Improve the fair scheduler's active load-balancing logic by
reducing the number of active LB attempts & lengthen the
load-balancing interval. This improves stress-ng mmapfork
performance.
- Fix CFS's estimated utilization (util_est) calculation bug that can
result in too high utilization values
Misc updates & fixes:
- Fix the HRTICK reprogramming & optimization feature
- Fix SCHED_SOFTIRQ raising race & warning in the CPU offlining code
- Reduce dl_add_task_root_domain() overhead
- Fix uprobes refcount bug
- Process pending softirqs in flush_smp_call_function_from_idle()
- Clean up task priority related defines, remove *USER_*PRIO and
USER_PRIO()
- Simplify the sched_init_numa() deduplication sort
- Documentation updates
- Fix EAS bug in update_misfit_status(), which degraded the quality
of energy-balancing
- Smaller cleanups"
* tag 'sched-core-2021-02-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (51 commits)
sched,x86: Allow !PREEMPT_DYNAMIC
entry/kvm: Explicitly flush pending rcuog wakeup before last rescheduling point
entry: Explicitly flush pending rcuog wakeup before last rescheduling point
rcu/nocb: Trigger self-IPI on late deferred wake up before user resume
rcu/nocb: Perform deferred wake up before last idle's need_resched() check
rcu: Pull deferred rcuog wake up to rcu_eqs_enter() callers
sched/features: Distinguish between NORMAL and DEADLINE hrtick
sched/features: Fix hrtick reprogramming
sched/deadline: Reduce rq lock contention in dl_add_task_root_domain()
uprobes: (Re)add missing get_uprobe() in __find_uprobe()
smp: Process pending softirqs in flush_smp_call_function_from_idle()
sched: Harden PREEMPT_DYNAMIC
static_call: Allow module use without exposing static_call_key
sched: Add /debug/sched_preempt
preempt/dynamic: Support dynamic preempt with preempt= boot option
preempt/dynamic: Provide irqentry_exit_cond_resched() static call
preempt/dynamic: Provide preempt_schedule[_notrace]() static calls
preempt/dynamic: Provide cond_resched() and might_resched() static calls
preempt: Introduce CONFIG_PREEMPT_DYNAMIC
static_call: Provide DEFINE_STATIC_CALL_RET0()
...
The "oprofile" user-space tools don't use the kernel OPROFILE support any more,
and haven't in a long time. User-space has been converted to the perf
interfaces.
The dcookies stuff is only used by the oprofile code. Now that oprofile's
support is getting removed from the kernel, there is no need for dcookies as
well.
Remove kernel's old oprofile and dcookies support.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJgJMEVAAoJENK5HDyugRIcL8YP/jkmXH5CZT80ntcqrJGWKcG7
lWbach7uNeQteht7B1ZPKvojxizTkmfrN2sClX0B2hbGkc5TiWUQ2ZSnvnfWDZ8+
z2qQcEB11G/ReL2vvRk1fJlWdAOyUfrPee/44AkemnLRv+Niw/8PqnGd87yDQGsK
qy5E1XXfbjUq6Y/uMiLOX3+21I6w6o2Q6I3NNXC93s0wS3awqnft8n0XBC7iAPBj
eowRJxpdRU2Vcuj8UOzzOI7gQlwdjwYImyLPbRy/V8NawC8a+FHrPrf5/GCYlVzl
7TGFBsDQSmzvrBChUfoGz1Rq/VZ1a357p5rhRqemfUrdkjW+vyzelnD8I1W/hb2o
SmBXoPoyl3+UkFHNyJI0mI7obaV+2PzyXMV0JIQUj+IiX/mfeFv0nF4XfZD2IkRt
6xhaYj775Zrx32iBdGZIvvLg5Gh9ZkZmR5vJ7Fi/EIZFe6Z+bZnPKUROnAgS/o0z
+UkSygOhgo/1XbqrzZVk1iweWeu+EUMbY4YQv2qVnFhpvsq4ieThcUGQpWcxGjjH
WP8O0n1yq1slsnpUtxhiTsm46ENajx9zZp6Iv6Ws+NM0RUqjND8BdF1co9WGD3LS
cnZMFBs4Bg/V1HICL/D4s6L7t1ofrEXIgJH1y3iF0HeECq03mU4CgA/qly9Aebqg
UxPF3oNlVOPlds9FzsU2
=I2Ac
-----END PGP SIGNATURE-----
Merge tag 'oprofile-removal-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/vireshk/linux
Pull oprofile and dcookies removal from Viresh Kumar:
"Remove oprofile and dcookies support
The 'oprofile' user-space tools don't use the kernel OPROFILE support
any more, and haven't in a long time. User-space has been converted to
the perf interfaces.
The dcookies stuff is only used by the oprofile code. Now that
oprofile's support is getting removed from the kernel, there is no
need for dcookies as well.
Remove kernel's old oprofile and dcookies support"
* tag 'oprofile-removal-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/vireshk/linux:
fs: Remove dcookies support
drivers: Remove CONFIG_OPROFILE support
arch: xtensa: Remove CONFIG_OPROFILE support
arch: x86: Remove CONFIG_OPROFILE support
arch: sparc: Remove CONFIG_OPROFILE support
arch: sh: Remove CONFIG_OPROFILE support
arch: s390: Remove CONFIG_OPROFILE support
arch: powerpc: Remove oprofile
arch: powerpc: Stop building and using oprofile
arch: parisc: Remove CONFIG_OPROFILE support
arch: mips: Remove CONFIG_OPROFILE support
arch: microblaze: Remove CONFIG_OPROFILE support
arch: ia64: Remove rest of perfmon support
arch: ia64: Remove CONFIG_OPROFILE support
arch: hexagon: Don't select HAVE_OPROFILE
arch: arc: Remove CONFIG_OPROFILE support
arch: arm: Remove CONFIG_OPROFILE support
arch: alpha: Remove CONFIG_OPROFILE support
Pull ELF compat updates from Al Viro:
"Sanitizing ELF compat support, especially for triarch architectures:
- X32 handling cleaned up
- MIPS64 uses compat_binfmt_elf.c both for O32 and N32 now
- Kconfig side of things regularized
Eventually I hope to have compat_binfmt_elf.c killed, with both native
and compat built from fs/binfmt_elf.c, with -DELF_BITS={64,32} passed
by kbuild, but that's a separate story - not included here"
* 'work.elf-compat' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
get rid of COMPAT_ELF_EXEC_PAGESIZE
compat_binfmt_elf: don't bother with undef of ELF_ARCH
Kconfig: regularize selection of CONFIG_BINFMT_ELF
mips compat: switch to compat_binfmt_elf.c
mips: don't bother with ELF_CORE_EFLAGS
mips compat: don't bother with ELF_ET_DYN_BASE
mips: KVM_GUEST makes no sense for 64bit builds...
mips: kill unused definitions in binfmt_elf[on]32.c
mips binfmt_elf*32.c: use elfcore-compat.h
x32: make X32, !IA32_EMULATION setups able to execute x32 binaries
[amd64] clean PRSTATUS_SIZE/SET_PR_FPVALID up properly
elf_prstatus: collect the common part (everything before pr_reg) into a struct
binfmt_elf: partially sanitize PRSTATUS_SIZE and SET_PR_FPVALID
- Another initial cleanup - more to follow - to the fault handling code.
- Other minor cleanups and corrections.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmAqU0oACgkQEsHwGGHe
VUruWw//VA+/K7Ykd8tjZdmJPWdfsdqBtOrolh4hiajM6iYckTip/FdwHpeEQwM9
ff0iNMrxICG3gbQxCX6WNzPeJatYsnjtF67whfat2SEzNHSDtZDb1Bm20s2/1fbY
OurRBTEBzuYMolpEJ2XABpu7LQ+6TV3LJ6yUBungILMOjP7KvrCK0SUrWj253VDU
XljK5XBZnmYlEjPU6dlhn64Wsl/GD7AWCAeZGq47EgjH2cR6gxNmu9kYAArGbdiJ
WjF8MWE7qVwCPUTiCBv+P1CjsQawvlcUY54wtG65dBYAZvpjmN82T2ypguzAt8KT
12A38vFlBuEUAWC0rUymNouh8Q20AElpdw/odLElHkpNxbHhf/7RyZ1E00LjsFtn
MF9Gp9aSIQbfYWK+Hin9oRvqXckV08u3KtzUNeyMbdCmpyqHh6prj8JEZaxKZZUp
zCaX8Qasn+Q9zL0DO51WI9EPOwpvSpifUYHmd5RHGbQDW9DjYK4mkBCHhjVfYXd/
NcxRO5rrMLmMG+XuNPg9vuHMi2HJnClJ6odD6b80xGvBodTZxZnqnYO9tUImbYnW
pdmt73YDvakei8XY7cAdNWcsTi0kQYZGfInna6z43Ri2l+I1TZaoKGDqn7TbzNbb
9RB0lrD0tfW0PvvDbVwco0Q+8/ykIbvPkHPvjQGWioxHi6yI49s=
=uVEk
-----END PGP SIGNATURE-----
Merge tag 'x86_mm_for_v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm cleanups from Borislav Petkov:
- PTRACE_GETREGS/PTRACE_PUTREGS regset selection cleanup
- Another initial cleanup - more to follow - to the fault handling
code.
- Other minor cleanups and corrections.
* tag 'x86_mm_for_v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
x86/{fault,efi}: Fix and rename efi_recover_from_page_fault()
x86/fault: Don't run fixups for SMAP violations
x86/fault: Don't look for extable entries for SMEP violations
x86/fault: Rename no_context() to kernelmode_fixup_or_oops()
x86/fault: Bypass no_context() for implicit kernel faults from usermode
x86/fault: Split the OOPS code out from no_context()
x86/fault: Improve kernel-executing-user-memory handling
x86/fault: Correct a few user vs kernel checks wrt WRUSS
x86/fault: Document the locking in the fault_signal_pending() path
x86/fault/32: Move is_f00f_bug() to do_kern_addr_fault()
x86/fault: Fold mm_fault_error() into do_user_addr_fault()
x86/fault: Skip the AMD erratum #91 workaround on unaffected CPUs
x86/fault: Fix AMD erratum #91 errata fixup for user code
x86/Kconfig: Remove HPET_EMULATE_RTC depends on RTC
x86/asm: Fixup TASK_SIZE_MAX comment
x86/ptrace: Clean up PTRACE_GETREGS/PTRACE_PUTREGS regset selection
x86/vm86/32: Remove VM86_SCREEN_BITMAP support
x86: Remove definition of DEBUG
x86/entry: Remove now unused do_IRQ() declaration
x86/mm: Remove duplicate definition of _PAGE_PAT_LARGE
...
- Identify CPUs which miss to enter the broadcast handler, as an
additional debugging aid.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmAqRVgACgkQEsHwGGHe
VUo8Pw/+NtY3+2n07bosm5EXeyjdE5+rexcZRTnkbfwjGekxIF4Sk2Q5Ryq93vpo
KSBfVAPcfhRa/rd0CiqEAaE+OybAkICNNpI7MOyaYAmLNbZJaToy2g2BBl8aFjwS
YrCeq/2iIAjYXm93p1ZzD5iPPT3VWfUq5hs52RJ7xt5vzLt+j3NSVdh/ILPFSDIZ
F+uC4MlK1CTfxPInxGi8tIkRiXnifEHcN27G769nC3GSpBmeXG5cqItI/r0vwloC
KXGrqUK6w+2n/eNYwlw1akp2eedjIHwE3/CzEecEZZ42h11FMnkLq1H0GhPkBDCE
xiiujlwR9P6UE3MpIFayt1SK0ARmlTeq0m4yT1pdT/cT0qGnYGOYv6+HWZ4KC0bn
0xLIwPXAElddAZXbgww3FwAFiBPDJ1OuVh1+amzCYL5fxfqONg3E2G1wk/T8yht5
/WhGdiZOXqeDN04sy+lFB/0RiHbXVYSq4gVi7P+ql341rufLerb1U36HRQAwZIkZ
Nk/E2Mcou++tzLJO836z4co92Sl/Bt2nNqSCbdg/mwSZahUURgxzMwdLv/7REQ/n
SpO5890+FObETlRS6N125ONzCCAru+lTNTidHdIV5U4UtzPqDJfD3QYOa2m4wekD
EJq3epSP9R9Mks54BR0Mn/EJMStT1KAD7p07NQWuZrbOdGxHNy8=
=EOJc
-----END PGP SIGNATURE-----
Merge tag 'ras_updates_for_v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS updates from Borislav Petkov:
- move therm_throt.c to the thermal framework, where it belongs.
- identify CPUs which miss to enter the broadcast handler, as an
additional debugging aid.
* tag 'ras_updates_for_v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
thermal: Move therm_throt there from x86/mce
x86/mce: Get rid of mcheck_intel_therm_init()
x86/mce: Make mce_timed_out() identify holdout CPUs
Preemption mode selection is currently hardcoded on Kconfig choices.
Introduce a dedicated option to tune preemption flavour at boot time,
This will be only available on architectures efficiently supporting
static calls in order not to tempt with the feature against additional
overhead that might be prohibitive or undesirable.
CONFIG_PREEMPT_DYNAMIC is automatically selected by CONFIG_PREEMPT if
the architecture provides the necessary support (CONFIG_STATIC_CALL_INLINE,
CONFIG_GENERIC_ENTRY, and provide with __preempt_schedule_function() /
__preempt_schedule_notrace_function()).
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
[peterz: relax requirement to HAVE_STATIC_CALL]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210118141223.123667-5-frederic@kernel.org
SFI-based platforms are gone. So does this framework.
This removes mention of SFI through the drivers and other code as well.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
To prepare for inlining do_softirq_own_stack() replace
__ARCH_HAS_DO_SOFTIRQ with a Kconfig switch and select it in the affected
architectures.
This allows in the next step to move the function prototype and the inline
stub into a seperate asm-generic header file which is required to avoid
include recursion.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210210002513.181713427@linutronix.de
Now that all invocations of irq_exit_rcu() happen on the irq stack, turn on
CONFIG_HAVE_IRQ_EXIT_ON_IRQ_STACK which causes the core code to invoke
__do_softirq() directly without going through do_softirq_own_stack().
That means do_softirq_own_stack() is only invoked from task context which
means it can't be on the irq stack. Remove the conditional from
run_softirq_on_irqstack_cond() and rename the function accordingly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210210002513.068033456@linutronix.de
Intel Moorestown and Medfield are quite old Intel Atom based
32-bit platforms, which were in limited use in some Android phones,
tablets and consumer electronics more than eight years ago.
There are no bugs or problems ever reported outside from Intel
for breaking any of that platforms for years. It seems no real
users exists who run more or less fresh kernel on it. Commit
05f4434bc1 ("ASoC: Intel: remove mfld_machine") is also in align
with this theory.
Due to above and to reduce a burden of supporting outdated drivers,
remove the support for outdated platforms completely.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This functionality has nothing to do with MCE, move it to the thermal
framework and untangle it from MCE.
Requested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Link: https://lkml.kernel.org/r/20210202121003.GD18075@zn.tnic
The "oprofile" user-space tools don't use the kernel OPROFILE support
any more, and haven't in a long time. User-space has been converted to
the perf interfaces.
Remove the old oprofile's architecture specific support.
Suggested-by: Christoph Hellwig <hch@infradead.org>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Robert Richter <rric@kernel.org>
Acked-by: William Cohen <wcohen@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
with mips converted to use of fs/config_binfmt_elf.c, there's no
need to keep selects of that thing all over arch/* - we can simply
turn into def_bool y if COMPAT && BINFMT_ELF (in fs/Kconfig.binfmt)
and get rid of all selects.
Several architectures got those selects wrong (e.g. you could
end up with sparc64 sans BINFMT_ELF, with select violating
dependencies, etc.)
Randy Dunlap has spotted some of those; IMO this is simpler than
his fix, but it depends upon the stuff that would need to be
backported, so we might end up using his variant for -stable.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
It's really trivial - the only wrinkle is making sure that
compiler knows that ia32-related side of COMPAT_ARCH_DLINFO
is dead code on such configs (we don't get there without
having passed compat_elf_check_arch(), and on such configs
that'll fail for ia32 binary).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
To get rid of hardcoded size/offset in those macros we need to have
a definition of i386 variant of struct elf_prstatus. However, we can't
do that in asm/compat.h - the types needed for that are not there and
adding an include of asm/user32.h into asm/compat.h would cause a lot
of mess.
That could be conveniently done in elfcore-compat.h, but currently there
is nowhere to put arch-dependent parts of it - no asm/elfcore-compat.h.
So we introduce a new file (asm/elfcore-compat.h, present on architectures
that have CONFIG_ARCH_HAS_ELFCORE_COMPAT set, currently only on x86),
have it pulled by linux/elfcore-compat.h and move the definitions there.
As a side benefit, we don't need to worry about accidental inclusion of
that file into binfmt_elf.c itself, so we don't need the dance with
COMPAT_PRSTATUS_SIZE, etc. - only fs/compat_binfmt_elf.c will see
that header.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Commit
121b32a58a ("x86/entry/32: Use IA32-specific wrappers for syscalls taking 64-bit arguments")
converted native x86-32 which take 64-bit arguments to use the
compat handlers to allow conversion to passing args via pt_regs.
sys_fanotify_mark() was however missed, as it has a general compat
handler. Add a config option that will use the syscall wrapper that
takes the split args for native 32-bit.
[ bp: Fix typo in Kconfig help text. ]
Fixes: 121b32a58a ("x86/entry/32: Use IA32-specific wrappers for syscalls taking 64-bit arguments")
Reported-by: Paweł Jasiak <pawel@jasiak.xyz>
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20201130223059.101286-1-brgerst@gmail.com
The major update to this release is that there's a new arch config option called:
CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS. Currently, only x86_64 enables it.
All the ftrace callbacks now take a struct ftrace_regs instead of a struct
pt_regs. If the architecture has HAVE_DYNAMIC_FTRACE_WITH_ARGS enabled, then
the ftrace_regs will have enough information to read the arguments of the
function being traced, as well as access to the stack pointer. This way, if
a user (like live kernel patching) only cares about the arguments, then it
can avoid using the heavier weight "regs" callback, that puts in enough
information in the struct ftrace_regs to simulate a breakpoint exception
(needed for kprobes).
New config option that audits the timestamps of the ftrace ring buffer at
most every event recorded. The "check_buffer()" calls will conflict with
mainline, because I purposely added the check without including the fix that
it caught, which is in mainline. Running a kernel built from the commit of
the added check will trigger it.
Ftrace recursion protection has been cleaned up to move the protection to
the callback itself (this saves on an extra function call for those
callbacks).
Perf now handles its own RCU protection and does not depend on ftrace to do
it for it (saving on that extra function call).
New debug option to add "recursed_functions" file to tracefs that lists all
the places that triggered the recursion protection of the function tracer.
This will show where things need to be fixed as recursion slows down the
function tracer.
The eval enum mapping updates done at boot up are now offloaded to a work
queue, as it caused a noticeable pause on slow embedded boards.
Various clean ups and last minute fixes.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCX9uq8xQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qtrwAQCHevqWMjKc1Q76bnCgwB0AbFKB6vqy
5b6g/co5+ihv8wD/eJPWlZMAt97zTVW7bdp5qj/GTiCDbAsODMZ597LsxA0=
=rZEz
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"The major update to this release is that there's a new arch config
option called CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS.
Currently, only x86_64 enables it. All the ftrace callbacks now take a
struct ftrace_regs instead of a struct pt_regs. If the architecture
has HAVE_DYNAMIC_FTRACE_WITH_ARGS enabled, then the ftrace_regs will
have enough information to read the arguments of the function being
traced, as well as access to the stack pointer.
This way, if a user (like live kernel patching) only cares about the
arguments, then it can avoid using the heavier weight "regs" callback,
that puts in enough information in the struct ftrace_regs to simulate
a breakpoint exception (needed for kprobes).
A new config option that audits the timestamps of the ftrace ring
buffer at most every event recorded.
Ftrace recursion protection has been cleaned up to move the protection
to the callback itself (this saves on an extra function call for those
callbacks).
Perf now handles its own RCU protection and does not depend on ftrace
to do it for it (saving on that extra function call).
New debug option to add "recursed_functions" file to tracefs that
lists all the places that triggered the recursion protection of the
function tracer. This will show where things need to be fixed as
recursion slows down the function tracer.
The eval enum mapping updates done at boot up are now offloaded to a
work queue, as it caused a noticeable pause on slow embedded boards.
Various clean ups and last minute fixes"
* tag 'trace-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (33 commits)
tracing: Offload eval map updates to a work queue
Revert: "ring-buffer: Remove HAVE_64BIT_ALIGNED_ACCESS"
ring-buffer: Add rb_check_bpage in __rb_allocate_pages
ring-buffer: Fix two typos in comments
tracing: Drop unneeded assignment in ring_buffer_resize()
tracing: Disable ftrace selftests when any tracer is running
seq_buf: Avoid type mismatch for seq_buf_init
ring-buffer: Fix a typo in function description
ring-buffer: Remove obsolete rb_event_is_commit()
ring-buffer: Add test to validate the time stamp deltas
ftrace/documentation: Fix RST C code blocks
tracing: Clean up after filter logic rewriting
tracing: Remove the useless value assignment in test_create_synth_event()
livepatch: Use the default ftrace_ops instead of REGS when ARGS is available
ftrace/x86: Allow for arguments to be passed in to ftrace_regs by default
ftrace: Have the callbacks receive a struct ftrace_regs instead of pt_regs
MAINTAINERS: assign ./fs/tracefs to TRACING
tracing: Fix some typos in comments
ftrace: Remove unused varible 'ret'
ring-buffer: Add recording of ring buffer recursion into recursed_functions
...
This cleans up two ancient timer features that were never completed in
the past, CONFIG_GENERIC_CLOCKEVENTS and CONFIG_ARCH_USES_GETTIMEOFFSET.
There was only one user left for the ARCH_USES_GETTIMEOFFSET variant
of clocksource implementations, the ARM EBSA110 platform. Rather than
changing to use modern timekeeping, we remove the platform entirely as
Russell no longer uses his machine and nobody else seems to have one
any more.
The conditional code for using arch_gettimeoffset() is removed as
a result.
For CONFIG_GENERIC_CLOCKEVENTS, there are still a couple of platforms
not using clockevent drivers: parisc, ia64, most of m68k, and one
Arm platform. These all do timer ticks slighly differently, and this
gets cleaned up to the point they at least all call the same helper
function. Instead of most platforms using 'select GENERIC_CLOCKEVENTS'
in Kconfig, the polarity is now reversed, with the few remaining ones
selecting LEGACY_TIMER_TICK instead.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEo6/YBQwIrVS28WGKmmx57+YAGNkFAl/Y1v8ACgkQmmx57+YA
GNmCvQ/9EDlgCt92r8SB+LGafDtgB8TUQZeIrs9S2mByzdxwnw0lxObIXFCnhQgh
RpG3dR+ONRDnC5eI149B377JOEFMZWe2+BtYHUHkFARtUEWatslQcz7yAGvVRK/l
TS/qReb6piKltlzuanF1bMZbjy2OhlaDRcm+OlC3y5mALR33M4emb+rJ6cSdfk3K
v1iZhrxtfQT77ztesh/oPkPiyQ6kNcz7SfpyYOb6f5VLlml2BZ7YwBSVyGY7urHk
RL3XqOUP4KKlMEAI8w0E2nvft6Fk+luziBhrMYWK0GvbmI1OESENuX/c6tgT2OQ1
DRaVHvcPG/EAY8adOKxxVyHhEJDSoz5GJV/EtjlOegsJk6RomczR1uuiT3Kvm7Ah
PktMKv4xQht1E15KPSKbOvNIEP18w2s5z6gw+jVDv8pw42pVEQManm1D+BICqrhl
fcpw6T1drf9UxAjwX4+zXtmNs+a+mqiFG8puU4VVgT4GpQ8umHvunXz2WUjZO0jc
3m8ErJHBvtJwW5TOHGyXnjl9SkwPzHOfF6IcXTYWEDU4/gQIK9TwUvCjLc0lE27t
FMCV2ds7/K1CXwRgpa5IrefSkb8yOXSbRZ56NqqF7Ekxw4J5bYRSaY7jb+qD/e+3
5O1y+iPxFrpH+16hSahvzrtcdFNbLQvBBuRtEQOYuHLt2UJrNoU=
=QpNs
-----END PGP SIGNATURE-----
Merge tag 'asm-generic-timers-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull asm-generic cross-architecture timer cleanup from Arnd Bergmann:
"This cleans up two ancient timer features that were never completed in
the past, CONFIG_GENERIC_CLOCKEVENTS and CONFIG_ARCH_USES_GETTIMEOFFSET.
There was only one user left for the ARCH_USES_GETTIMEOFFSET variant
of clocksource implementations, the ARM EBSA110 platform. Rather than
changing to use modern timekeeping, we remove the platform entirely as
Russell no longer uses his machine and nobody else seems to have one
any more.
The conditional code for using arch_gettimeoffset() is removed as a
result.
For CONFIG_GENERIC_CLOCKEVENTS, there are still a couple of platforms
not using clockevent drivers: parisc, ia64, most of m68k, and one Arm
platform. These all do timer ticks slighly differently, and this gets
cleaned up to the point they at least all call the same helper
function.
Instead of most platforms using 'select GENERIC_CLOCKEVENTS' in
Kconfig, the polarity is now reversed, with the few remaining ones
selecting LEGACY_TIMER_TICK instead"
* tag 'asm-generic-timers-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
timekeeping: default GENERIC_CLOCKEVENTS to enabled
timekeeping: remove xtime_update
m68k: remove timer_interrupt() function
m68k: change remaining timers to legacy_timer_tick
m68k: m68328: use legacy_timer_tick()
m68k: sun3/sun3c: use legacy_timer_tick
m68k: split heartbeat out of timer function
m68k: coldfire: use legacy_timer_tick()
parisc: use legacy_timer_tick
ARM: rpc: use legacy_timer_tick
ia64: convert to legacy_timer_tick
timekeeping: add CONFIG_LEGACY_TIMER_TICK
timekeeping: remove arch_gettimeoffset
net: remove am79c961a driver
ARM: remove ebsa110 platform
Merge misc updates from Andrew Morton:
- a few random little subsystems
- almost all of the MM patches which are staged ahead of linux-next
material. I'll trickle to post-linux-next work in as the dependents
get merged up.
Subsystems affected by this patch series: kthread, kbuild, ide, ntfs,
ocfs2, arch, and mm (slab-generic, slab, slub, dax, debug, pagecache,
gup, swap, shmem, memcg, pagemap, mremap, hmm, vmalloc, documentation,
kasan, pagealloc, memory-failure, hugetlb, vmscan, z3fold, compaction,
oom-kill, migration, cma, page-poison, userfaultfd, zswap, zsmalloc,
uaccess, zram, and cleanups).
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (200 commits)
mm: cleanup kstrto*() usage
mm: fix fall-through warnings for Clang
mm: slub: convert sysfs sprintf family to sysfs_emit/sysfs_emit_at
mm: shmem: convert shmem_enabled_show to use sysfs_emit_at
mm:backing-dev: use sysfs_emit in macro defining functions
mm: huge_memory: convert remaining use of sprintf to sysfs_emit and neatening
mm: use sysfs_emit for struct kobject * uses
mm: fix kernel-doc markups
zram: break the strict dependency from lzo
zram: add stat to gather incompressible pages since zram set up
zram: support page writeback
mm/process_vm_access: remove redundant initialization of iov_r
mm/zsmalloc.c: rework the list_add code in insert_zspage()
mm/zswap: move to use crypto_acomp API for hardware acceleration
mm/zswap: fix passing zero to 'PTR_ERR' warning
mm/zswap: make struct kernel_param_ops definitions const
userfaultfd/selftests: hint the test runner on required privilege
userfaultfd/selftests: fix retval check for userfaultfd_open()
userfaultfd/selftests: always dump something in modes
userfaultfd: selftests: make __{s,u}64 format specifiers portable
...
The design of DEBUG_PAGEALLOC presumes that __kernel_map_pages() must
never fail. With this assumption is wouldn't be safe to allow general
usage of this function.
Moreover, some architectures that implement __kernel_map_pages() have this
function guarded by #ifdef DEBUG_PAGEALLOC and some refuse to map/unmap
pages when page allocation debugging is disabled at runtime.
As all the users of __kernel_map_pages() were converted to use
debug_pagealloc_map_pages() it is safe to make it available only when
DEBUG_PAGEALLOC is set.
Link: https://lkml.kernel.org/r/20201109192128.960-4-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "Edgecombe, Rick P" <rick.p.edgecombe@intel.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
HAVE_MOVE_PUD enables remapping pages at the PUD level if both the
source and destination addresses are PUD-aligned.
With HAVE_MOVE_PUD enabled it can be inferred that there is
approximately a 13x improvement in performance on x86. (See data
below).
------- Test Results ---------
The following results were obtained using a 5.4 kernel, by remapping
a PUD-aligned, 1GB sized region to a PUD-aligned destination.
The results from 10 iterations of the test are given below:
Total mremap times for 1GB data on x86. All times are in nanoseconds.
Control HAVE_MOVE_PUD
180394 15089
235728 14056
238931 25741
187330 13838
241742 14187
177925 14778
182758 14728
160872 14418
205813 15107
245722 13998
205721.5 15594 <-- Mean time in nanoseconds
A 1GB mremap completion time drops from ~205 microseconds
to ~15 microseconds on x86. (~13x speed up).
Link: https://lkml.kernel.org/r/20201014005320.2233162-6-kaleshsingh@google.com
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Gavin Shan <gshan@redhat.com>
Cc: Hassan Naveed <hnaveed@wavecomp.com>
Cc: Jia He <justin.he@arm.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Consolidate all kmap_atomic() internals into a generic implementation
which builds the base for the kmap_local() API and make the
kmap_atomic() interface wrappers which handle the disabling/enabling of
preemption and pagefaults.
- Switch the storage from per-CPU to per task and provide scheduler
support for clearing mapping when scheduling out and restoring them
when scheduling back in.
- Merge the migrate_disable/enable() code, which is also part of the
scheduler pull request. This was required to make the kmap_local()
interface available which does not disable preemption when a mapping
is established. It has to disable migration instead to guarantee that
the virtual address of the mapped slot is the same accross preemption.
- Provide better debug facilities: guard pages and enforced utilization
of the mapping mechanics on 64bit systems when the architecture allows
it.
- Provide the new kmap_local() API which can now be used to cleanup the
kmap_atomic() usage sites all over the place. Most of the usage sites
do not require the implicit disabling of preemption and pagefaults so
the penalty on 64bit and 32bit non-highmem systems is removed and quite
some of the code can be simplified. A wholesale conversion is not
possible because some usage depends on the implicit side effects and
some need to be cleaned up because they work around these side effects.
The migrate disable side effect is only effective on highmem systems
and when enforced debugging is enabled. On 64bit and 32bit non-highmem
systems the overhead is completely avoided.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XyQwTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUolD/9+R+BX96fGir+I8rG9dc3cbLw5meSi
0I/Nq3PToZMs2Iqv50DsoaPYHHz/M6fcAO9LRIgsE9jRbnY93GnsBM0wU9Y8yQaT
4wUzOG5WHaLDfqIkx/CN9coUl458oEiwOEbn79A2FmPXFzr7IpkufnV3ybGDwzwP
p73bjMJMPPFrsa9ig87YiYfV/5IAZHi82PN8Cq1v4yNzgXRP3Tg6QoAuCO84ZnWF
RYlrfKjcJ2xPdn+RuYyXolPtxr1hJQ0bOUpe4xu/UfeZjxZ7i1wtwLN9kWZe8CKH
+x4Lz8HZZ5QMTQ9sCHOLtKzu2MceMcpISzoQH4/aFQCNMgLn1zLbS790XkYiQCuR
ne9Cua+IqgYfGMG8cq8+bkU9HCNKaXqIBgPEKE/iHYVmqzCOqhW5Cogu4KFekf6V
Wi7pyyUdX2en8BAWpk5NHc8de9cGcc+HXMq2NIcgXjVWvPaqRP6DeITERTZLJOmz
XPxq5oPLGl7wdm7z+ICIaNApy8zuxpzb6sPLNcn7l5OeorViORlUu08AN8587wAj
FiVjp6ZYomg+gyMkiNkDqFOGDH5TMENpOFoB0hNNEyJwwS0xh6CgWuwZcv+N8aPO
HuS/P+tNANbD8ggT4UparXYce7YCtgOf3IG4GA3JJYvYmJ6pU+AZOWRoDScWq4o+
+jlfoJhMbtx5Gg==
=n71I
-----END PGP SIGNATURE-----
Merge tag 'core-mm-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull kmap updates from Thomas Gleixner:
"The new preemtible kmap_local() implementation:
- Consolidate all kmap_atomic() internals into a generic
implementation which builds the base for the kmap_local() API and
make the kmap_atomic() interface wrappers which handle the
disabling/enabling of preemption and pagefaults.
- Switch the storage from per-CPU to per task and provide scheduler
support for clearing mapping when scheduling out and restoring them
when scheduling back in.
- Merge the migrate_disable/enable() code, which is also part of the
scheduler pull request. This was required to make the kmap_local()
interface available which does not disable preemption when a
mapping is established. It has to disable migration instead to
guarantee that the virtual address of the mapped slot is the same
across preemption.
- Provide better debug facilities: guard pages and enforced
utilization of the mapping mechanics on 64bit systems when the
architecture allows it.
- Provide the new kmap_local() API which can now be used to cleanup
the kmap_atomic() usage sites all over the place. Most of the usage
sites do not require the implicit disabling of preemption and
pagefaults so the penalty on 64bit and 32bit non-highmem systems is
removed and quite some of the code can be simplified. A wholesale
conversion is not possible because some usage depends on the
implicit side effects and some need to be cleaned up because they
work around these side effects.
The migrate disable side effect is only effective on highmem
systems and when enforced debugging is enabled. On 64bit and 32bit
non-highmem systems the overhead is completely avoided"
* tag 'core-mm-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
ARM: highmem: Fix cache_is_vivt() reference
x86/crashdump/32: Simplify copy_oldmem_page()
io-mapping: Provide iomap_local variant
mm/highmem: Provide kmap_local*
sched: highmem: Store local kmaps in task struct
x86: Support kmap_local() forced debugging
mm/highmem: Provide CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP
mm/highmem: Provide and use CONFIG_DEBUG_KMAP_LOCAL
microblaze/mm/highmem: Add dropped #ifdef back
xtensa/mm/highmem: Make generic kmap_atomic() work correctly
mm/highmem: Take kmap_high_get() properly into account
highmem: High implementation details and document API
Documentation/io-mapping: Remove outdated blurb
io-mapping: Cleanup atomic iomap
mm/highmem: Remove the old kmap_atomic cruft
highmem: Get rid of kmap_types.h
xtensa/mm/highmem: Switch to generic kmap atomic
sparc/mm/highmem: Switch to generic kmap atomic
powerpc/mm/highmem: Switch to generic kmap atomic
nds32/mm/highmem: Switch to generic kmap atomic
...
- More generalization of entry/exit functionality
- The consolidation work to reclaim TIF flags on x86 and also for non-x86
specific TIF flags which are solely relevant for syscall related work
and have been moved into their own storage space. The x86 specific part
had to be merged in to avoid a major conflict.
- The TIF_NOTIFY_SIGNAL work which replaces the inefficient signal
delivery mode of task work and results in an impressive performance
improvement for io_uring. The non-x86 consolidation of this is going to
come seperate via Jens.
- The selective syscall redirection facility which provides a clean and
efficient way to support the non-Linux syscalls of WINE by catching them
at syscall entry and redirecting them to the user space emulation. This
can be utilized for other purposes as well and has been designed
carefully to avoid overhead for the regular fastpath. This includes the
core changes and the x86 support code.
- Simplification of the context tracking entry/exit handling for the users
of the generic entry code which guarantee the proper ordering and
protection.
- Preparatory changes to make the generic entry code accomodate S390
specific requirements which are mostly related to their syscall restart
mechanism.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XoPoTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoe0tD/4jSKHIogVM9kVpiYfwjDGS1NluaBXn
71ZoASbX9GZebyGandMyF2QP1iJ24ZO0RztBwHEVH6fyomKB2iFNedssCpO9yfWV
3eFRpOvMpbszY2W2bd0QG3GrqaTttjVfB4ahkGLzqeSbchdob6hZpNDYtBZnujA6
GSnrrurfJkCGoQny+yJQYdQJXQU+BIX90B2a2Q+jW123Luy/iHXC1f/krZSA1m14
fC9xYLSUjPphTzh2ZOW+C3DgdjOL5PfAm/6F+DArt4GtLgrEGD7R74aLSFhvetky
dn5QtG+yAsz1i0cc5Wu/JBcT9tOkY92rPYSyLI9bYQUSQ/bMyuprz6oYKj3dubsu
ZSsKPdkNFPIniL4fLdCMWZcIXX5xgnrxKjdgXZXW3gtrcxSns8w8uED3Sh7dgE08
pgIeq67E5g/OB8kJXH1VxdewmeQb9cOmnzzHwNO7TrrGbBKjDTYHNdYOKf1dUTTK
ZX1UjLfGwxTkMYAbQD1k0JGZ2OLRshzSaH5BW/ZKa3bvJW6yYOq+/YT8B8hbJ8U3
vThlO75/55IJxS5r5Y3vZd/IHdsYbPuETD+TA8tNYtPqNZasW8nnk4TYctWqzDuO
/Ka1wvWYid3c6ySznQn4zSyRjr968AfHeZ9YTUMhWufy5waXVmdBMG41u3IKfsVt
osyzNc4EK19/Mg==
=hsjV
-----END PGP SIGNATURE-----
Merge tag 'core-entry-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core entry/exit updates from Thomas Gleixner:
"A set of updates for entry/exit handling:
- More generalization of entry/exit functionality
- The consolidation work to reclaim TIF flags on x86 and also for
non-x86 specific TIF flags which are solely relevant for syscall
related work and have been moved into their own storage space. The
x86 specific part had to be merged in to avoid a major conflict.
- The TIF_NOTIFY_SIGNAL work which replaces the inefficient signal
delivery mode of task work and results in an impressive performance
improvement for io_uring. The non-x86 consolidation of this is
going to come seperate via Jens.
- The selective syscall redirection facility which provides a clean
and efficient way to support the non-Linux syscalls of WINE by
catching them at syscall entry and redirecting them to the user
space emulation. This can be utilized for other purposes as well
and has been designed carefully to avoid overhead for the regular
fastpath. This includes the core changes and the x86 support code.
- Simplification of the context tracking entry/exit handling for the
users of the generic entry code which guarantee the proper ordering
and protection.
- Preparatory changes to make the generic entry code accomodate S390
specific requirements which are mostly related to their syscall
restart mechanism"
* tag 'core-entry-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
entry: Add syscall_exit_to_user_mode_work()
entry: Add exit_to_user_mode() wrapper
entry_Add_enter_from_user_mode_wrapper
entry: Rename exit_to_user_mode()
entry: Rename enter_from_user_mode()
docs: Document Syscall User Dispatch
selftests: Add benchmark for syscall user dispatch
selftests: Add kselftest for syscall user dispatch
entry: Support Syscall User Dispatch on common syscall entry
kernel: Implement selective syscall userspace redirection
signal: Expose SYS_USER_DISPATCH si_code type
x86: vdso: Expose sigreturn address on vdso to the kernel
MAINTAINERS: Add entry for common entry code
entry: Fix boot for !CONFIG_GENERIC_ENTRY
x86: Support HAVE_CONTEXT_TRACKING_OFFSTACK
context_tracking: Only define schedule_user() on !HAVE_CONTEXT_TRACKING_OFFSTACK archs
sched: Detect call to schedule from critical entry code
context_tracking: Don't implement exception_enter/exit() on CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK
context_tracking: Introduce HAVE_CONTEXT_TRACKING_OFFSTACK
x86: Reclaim unused x86 TI flags
...
applications to populate protected regions of user code and data called
enclaves. Once activated, the new hardware protects enclave code and
data from outside access and modification.
Enclaves provide a place to store secrets and process data with those
secrets. SGX has been used, for example, to decrypt video without
exposing the decryption keys to nosy debuggers that might be used to
subvert DRM. Software has generally been rewritten specifically to
run in enclaves, but there are also projects that try to run limited
unmodified software in enclaves."
Most of the functionality is concentrated into arch/x86/kernel/cpu/sgx/
except the addition of a new mprotect() hook to control enclave page
permissions and support for vDSO exceptions fixup which will is used by
SGX enclaves.
All this work by Sean Christopherson, Jarkko Sakkinen and many others.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl/XTtMACgkQEsHwGGHe
VUqxFw/+NZGf2b3CWPcrvwXCpkvSpIrqh1jQwyvkZyJ1gen7Vy8dkvf99h8+zQPI
4wSArEyjhYJKAAmBNefLKi/Cs/bdkGzLlZyDGqtM641XRjf0xXIpQkOBb6UBa+Pv
to8veQmVH2bBTM49qnd+H1wM6FzYvhTYCD8xr4HlLXtIfpP2CK2GvCb8s/4LifgD
fTucZX9TFwLgVkWOHWHN0n8XMR2Fjb2YCrwjFMKyr/M2W+pPoOCTIt4PWDuXiOeG
rFP7R4DT9jDg8ht5j2dHQT/Bo8TvTCB4Oj98MrX1TTgkSjLJySSMfyQg5EwNfSIa
HC0lg/6qwAxnhWX7cCCBETNZ4aYDmz/dxcCSsLbomGP9nMaUgUy7qn5nNuNbJilb
oCBsr8LDMzu1LJzmkduM8Uw6OINh+J8ICoVXaR5pS7gSZz/+vqIP/rK691AiqhJL
QeMkI9gQ83jEXpr/AV7ABCjGCAeqELOkgravUyTDev24eEc0LyU0qENpgxqWSTca
OvwSWSwNuhCKd2IyKZBnOmjXGwvncwX0gp1KxL9WuLkR6O8XldLAYmVCwVAOrIh7
snRot8+3qNjELa65Nh5DapwLJrU24TRoKLHLgfWK8dlqrMejNtXKucQ574Np0feR
p2hrNisOrtCwxAt7OAgWygw8agN6cJiY18onIsr4wSBm5H7Syb0=
=k7tj
-----END PGP SIGNATURE-----
Merge tag 'x86_sgx_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SGC support from Borislav Petkov:
"Intel Software Guard eXtensions enablement. This has been long in the
making, we were one revision number short of 42. :)
Intel SGX is new hardware functionality that can be used by
applications to populate protected regions of user code and data
called enclaves. Once activated, the new hardware protects enclave
code and data from outside access and modification.
Enclaves provide a place to store secrets and process data with those
secrets. SGX has been used, for example, to decrypt video without
exposing the decryption keys to nosy debuggers that might be used to
subvert DRM. Software has generally been rewritten specifically to run
in enclaves, but there are also projects that try to run limited
unmodified software in enclaves.
Most of the functionality is concentrated into arch/x86/kernel/cpu/sgx/
except the addition of a new mprotect() hook to control enclave page
permissions and support for vDSO exceptions fixup which will is used
by SGX enclaves.
All this work by Sean Christopherson, Jarkko Sakkinen and many others"
* tag 'x86_sgx_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (30 commits)
x86/sgx: Return -EINVAL on a zero length buffer in sgx_ioc_enclave_add_pages()
x86/sgx: Fix a typo in kernel-doc markup
x86/sgx: Fix sgx_ioc_enclave_provision() kernel-doc comment
x86/sgx: Return -ERESTARTSYS in sgx_ioc_enclave_add_pages()
selftests/sgx: Use a statically generated 3072-bit RSA key
x86/sgx: Clarify 'laundry_list' locking
x86/sgx: Update MAINTAINERS
Documentation/x86: Document SGX kernel architecture
x86/sgx: Add ptrace() support for the SGX driver
x86/sgx: Add a page reclaimer
selftests/x86: Add a selftest for SGX
x86/vdso: Implement a vDSO for Intel SGX enclave call
x86/traps: Attempt to fixup exceptions in vDSO before signaling
x86/fault: Add a helper function to sanitize error code
x86/vdso: Add support for exception fixup in vDSO functions
x86/sgx: Add SGX_IOC_ENCLAVE_PROVISION
x86/sgx: Add SGX_IOC_ENCLAVE_INIT
x86/sgx: Add SGX_IOC_ENCLAVE_ADD_PAGES
x86/sgx: Add SGX_IOC_ENCLAVE_CREATE
x86/sgx: Add an SGX misc driver interface
...
Currently, '--orphan-handling=warn' is spread out across four different
architectures in their respective Makefiles, which makes it a little
unruly to deal with in case it needs to be disabled for a specific
linker version (in this case, ld.lld 10.0.1).
To make it easier to control this, hoist this warning into Kconfig and
the main Makefile so that disabling it is simpler, as the warning will
only be enabled in a couple places (main Makefile and a couple of
compressed boot folders that blow away LDFLAGS_vmlinx) and making it
conditional is easier due to Kconfig syntax. One small additional
benefit of this is saving a call to ld-option on incremental builds
because we will have already evaluated it for CONFIG_LD_ORPHAN_WARN.
To keep the list of supported architectures the same, introduce
CONFIG_ARCH_WANT_LD_ORPHAN_WARN, which an architecture can select to
gain this automatically after all of the sections are specified and size
asserted. A special thanks to Kees Cook for the help text on this
config.
Link: https://github.com/ClangBuiltLinux/linux/issues/1187
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
kmap_local() and related interfaces are NOOPs on 64bit and only create
temporary fixmaps for highmem pages on 32bit. That means the test coverage
for this code is pretty small.
CONFIG_KMAP_LOCAL can be enabled independent from CONFIG_HIGHMEM, which
allows to provide support for enforced kmap_local() debugging even on
64bit.
For 32bit the support is unconditional, for 64bit it's only supported when
CONFIG_NR_CPUS <= 4096 as supporting it for 8192 CPUs would require to set
up yet another fixmap PGT.
If CONFIG_KMAP_LOCAL_FORCE_DEBUG is enabled then kmap_local()/kmap_atomic()
will use the temporary fixmap mapping path.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20201118204007.169209557@linutronix.de
A lot of ground work has been performed on x86 entry code. Fragile path
between user_enter() and user_exit() have IRQs disabled. Uses of RCU and
intrumentation in these fragile areas have been explicitly annotated
and protected.
This architecture doesn't need exception_enter()/exception_exit()
anymore and has therefore earned CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201117151637.259084-6-frederic@kernel.org
Although carved out of normal DRAM, enclave memory is marked in the
system memory map as reserved and is not managed by the core mm. There
may be several regions spread across the system. Each contiguous region
is called an Enclave Page Cache (EPC) section. EPC sections are
enumerated via CPUID
Enclave pages can only be accessed when they are mapped as part of an
enclave, by a hardware thread running inside the enclave.
Parse CPUID data, create metadata for EPC pages and populate a simple
EPC page allocator. Although much smaller, ‘struct sgx_epc_page’
metadata is the SGX analog of the core mm ‘struct page’.
Similar to how the core mm’s page->flags encode zone and NUMA
information, embed the EPC section index to the first eight bits of
sgx_epc_page->desc. This allows a quick reverse lookup from EPC page to
EPC section. Existing client hardware supports only a single section,
while upcoming server hardware will support at most eight sections.
Thus, eight bits should be enough for long term needs.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Serge Ayoun <serge.ayoun@intel.com>
Signed-off-by: Serge Ayoun <serge.ayoun@intel.com>
Co-developed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-6-jarkko@kernel.org
Currently, the only way to get access to the registers of a function via a
ftrace callback is to set the "FL_SAVE_REGS" bit in the ftrace_ops. But as this
saves all regs as if a breakpoint were to trigger (for use with kprobes), it
is expensive.
The regs are already saved on the stack for the default ftrace callbacks, as
that is required otherwise a function being traced will get the wrong
arguments and possibly crash. And on x86, the arguments are already stored
where they would be on a pt_regs structure to use that code for both the
regs version of a callback, it makes sense to pass that information always
to all functions.
If an architecture does this (as x86_64 now does), it is to set
HAVE_DYNAMIC_FTRACE_WITH_ARGS, and this will let the generic code that it
could have access to arguments without having to set the flags.
This also includes having the stack pointer being saved, which could be used
for accessing arguments on the stack, as well as having the function graph
tracer not require its own trampoline!
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Almost all machines use GENERIC_CLOCKEVENTS, so it feels wrong to
require each one to select that symbol manually.
Instead, enable it whenever CONFIG_LEGACY_TIMER_TICK is disabled as
a simplification. It should be possible to select both
GENERIC_CLOCKEVENTS and LEGACY_TIMER_TICK from an architecture now
and decide at runtime between the two.
For the clockevents arch-support.txt file, this means that additional
architectures are marked as TODO when they have at least one machine
that still uses LEGACY_TIMER_TICK, rather than being marked 'ok' when
at least one machine has been converted. This means that both m68k and
arm (for riscpc) revert to TODO.
At this point, we could just always enable CONFIG_GENERIC_CLOCKEVENTS
rather than leaving it off when not needed. I built an m68k
defconfig kernel (using gcc-10.1.0) and found that this would add
around 5.5KB in kernel image size:
text data bss dec hex filename
3861936 1092236 196656 5150828 4e986c obj-m68k/vmlinux-no-clockevent
3866201 1093832 196184 5156217 4ead79 obj-m68k/vmlinux-clockevent
On Arm (MACH_RPC), that difference appears to be twice as large,
around 11KB on top of an 6MB vmlinux.
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
called SEV by also encrypting the guest register state, making the
registers inaccessible to the hypervisor by en-/decrypting them on world
switches. Thus, it adds additional protection to Linux guests against
exfiltration, control flow and rollback attacks.
With SEV-ES, the guest is in full control of what registers the
hypervisor can access. This is provided by a guest-host exchange
mechanism based on a new exception vector called VMM Communication
Exception (#VC), a new instruction called VMGEXIT and a shared
Guest-Host Communication Block which is a decrypted page shared between
the guest and the hypervisor.
Intercepts to the hypervisor become #VC exceptions in an SEV-ES guest so
in order for that exception mechanism to work, the early x86 init code
needed to be made able to handle exceptions, which, in itself, brings
a bunch of very nice cleanups and improvements to the early boot code
like an early page fault handler, allowing for on-demand building of the
identity mapping. With that, !KASLR configurations do not use the EFI
page table anymore but switch to a kernel-controlled one.
The main part of this series adds the support for that new exchange
mechanism. The goal has been to keep this as much as possibly
separate from the core x86 code by concentrating the machinery in two
SEV-ES-specific files:
arch/x86/kernel/sev-es-shared.c
arch/x86/kernel/sev-es.c
Other interaction with core x86 code has been kept at minimum and behind
static keys to minimize the performance impact on !SEV-ES setups.
Work by Joerg Roedel and Thomas Lendacky and others.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl+FiKYACgkQEsHwGGHe
VUqS5BAAlh5mKwtxXMyFyAIHa5tpsgDjbecFzy1UVmZyxN0JHLlM3NLmb+K52drY
PiWjNNMi/cFMFazkuLFHuY0poBWrZml8zRS/mExKgUJC6EtguS9FQnRE9xjDBoWQ
gOTSGJWEzT5wnFqo8qHwlC2CDCSF1hfL8ks3cUFW2tCWus4F9pyaMSGfFqD224rg
Lh/8+arDMSIKE4uH0cm7iSuyNpbobId0l5JNDfCEFDYRigQZ6pZsQ9pbmbEpncs4
rmjDvBA5eHDlNMXq0ukqyrjxWTX4ZLBOBvuLhpyssSXnnu2T+Tcxg09+ZSTyJAe0
LyC9Wfo0v78JASXMAdeH9b1d1mRYNMqjvnBItNQoqweoqUXWz7kvgxCOp6b/G4xp
cX5YhB6BprBW2DXL45frMRT/zX77UkEKYc5+0IBegV2xfnhRsjqQAQaWLIksyEaX
nz9/C6+1Sr2IAv271yykeJtY6gtlRjg/usTlYpev+K0ghvGvTmuilEiTltjHrso1
XAMbfWHQGSd61LNXofvx/GLNfGBisS6dHVHwtkayinSjXNdWxI6w9fhbWVjQ+y2V
hOF05lmzaJSG5kPLrsFHFqm2YcxOmsWkYYDBHvtmBkMZSf5B+9xxDv97Uy9NETcr
eSYk//TEkKQqVazfCQS/9LSm0MllqKbwNO25sl0Tw2k6PnheO2g=
=toqi
-----END PGP SIGNATURE-----
Merge tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SEV-ES support from Borislav Petkov:
"SEV-ES enhances the current guest memory encryption support called SEV
by also encrypting the guest register state, making the registers
inaccessible to the hypervisor by en-/decrypting them on world
switches. Thus, it adds additional protection to Linux guests against
exfiltration, control flow and rollback attacks.
With SEV-ES, the guest is in full control of what registers the
hypervisor can access. This is provided by a guest-host exchange
mechanism based on a new exception vector called VMM Communication
Exception (#VC), a new instruction called VMGEXIT and a shared
Guest-Host Communication Block which is a decrypted page shared
between the guest and the hypervisor.
Intercepts to the hypervisor become #VC exceptions in an SEV-ES guest
so in order for that exception mechanism to work, the early x86 init
code needed to be made able to handle exceptions, which, in itself,
brings a bunch of very nice cleanups and improvements to the early
boot code like an early page fault handler, allowing for on-demand
building of the identity mapping. With that, !KASLR configurations do
not use the EFI page table anymore but switch to a kernel-controlled
one.
The main part of this series adds the support for that new exchange
mechanism. The goal has been to keep this as much as possibly separate
from the core x86 code by concentrating the machinery in two
SEV-ES-specific files:
arch/x86/kernel/sev-es-shared.c
arch/x86/kernel/sev-es.c
Other interaction with core x86 code has been kept at minimum and
behind static keys to minimize the performance impact on !SEV-ES
setups.
Work by Joerg Roedel and Thomas Lendacky and others"
* tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (73 commits)
x86/sev-es: Use GHCB accessor for setting the MMIO scratch buffer
x86/sev-es: Check required CPU features for SEV-ES
x86/efi: Add GHCB mappings when SEV-ES is active
x86/sev-es: Handle NMI State
x86/sev-es: Support CPU offline/online
x86/head/64: Don't call verify_cpu() on starting APs
x86/smpboot: Load TSS and getcpu GDT entry before loading IDT
x86/realmode: Setup AP jump table
x86/realmode: Add SEV-ES specific trampoline entry point
x86/vmware: Add VMware-specific handling for VMMCALL under SEV-ES
x86/kvm: Add KVM-specific VMMCALL handling under SEV-ES
x86/paravirt: Allow hypervisor-specific VMMCALL handling under SEV-ES
x86/sev-es: Handle #DB Events
x86/sev-es: Handle #AC Events
x86/sev-es: Handle VMMCALL Events
x86/sev-es: Handle MWAIT/MWAITX Events
x86/sev-es: Handle MONITOR/MONITORX Events
x86/sev-es: Handle INVD Events
x86/sev-es: Handle RDPMC Events
x86/sev-es: Handle RDTSC(P) Events
...
- heavily refactor seccomp selftests (and clone3 selftests dependency) to
fix powerpc (Kees Cook, Thadeu Lima de Souza Cascardo)
- fix style issue in selftests (Zou Wei)
- upgrade "unknown action" from KILL_THREAD to KILL_PROCESS (Rich Felker)
- replace task_pt_regs(current) with current_pt_regs() (Denis Efremov)
- fix corner-case race in USER_NOTIF (Jann Horn)
- make CONFIG_SECCOMP no longer per-arch (YiFei Zhu)
-----BEGIN PGP SIGNATURE-----
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAl+E1LAWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJgRfD/0cq7W51+o34719vefC+oZaMjJJ
Bd5HYshmr6NRpMqn0OhtT9kVi6OeV0sK0VJeNxSISDIaGNJ8xCI9YhnXwzY+7myK
+IQu3i2Hv7dlWvTaXWFLL+mvfk6WopLntFGGJQ8KPMnP2gcfH2AZmOeAKGFGhBDe
NwpAUZ9zriXg9JCQp6u0FzPJgk8KfgfHjUY6Hsa095gg0aPSJhc8bWEUNBQwjCe6
uIcxDP/zK2WWaEhO9BfHt6/VTcXw7QgTLS3yM+pwBCgR1JHs7HMhtgcwPT410qES
LmYD8OiHmv5AZhDjcCcNipKEv3ZnxkLnpU/6hfaKM4zn/DoaR/zbfjO9U017rcNV
9gf7k5siAP7DH48IFlqf4Erzd3xyF0OJDnVfC7NiPtggPfO9aWOHJJZCuJRQOdrN
qPMjkaQzFb02qb501PLEn55F24OLDjz1vFOqpkJm2/XamOBVV4uiRKmfpNEo/MOf
QkhSvzvwEFErWwzPH95uFyVhs42stwnM3ppnwtya2+U5kxXdNvbAR8N5leH7siaU
ab+YJIHW59+BxXTlKgXIcqBP/6RqJWJtuT9OqGs0K2A7FhQSexh5MOm+9vvGgIwZ
Qjyijku8dB3aV94BNGnlJq6BV+4Hc6EGadh7h3b8GiRAUTYo0pk5G/iKL6Ii+R6p
0msJENqalKFtNCr70w==
=a4u2
-----END PGP SIGNATURE-----
Merge tag 'seccomp-v5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull seccomp updates from Kees Cook:
"The bulk of the changes are with the seccomp selftests to accommodate
some powerpc-specific behavioral characteristics. Additional cleanups,
fixes, and improvements are also included:
- heavily refactor seccomp selftests (and clone3 selftests
dependency) to fix powerpc (Kees Cook, Thadeu Lima de Souza
Cascardo)
- fix style issue in selftests (Zou Wei)
- upgrade "unknown action" from KILL_THREAD to KILL_PROCESS (Rich
Felker)
- replace task_pt_regs(current) with current_pt_regs() (Denis
Efremov)
- fix corner-case race in USER_NOTIF (Jann Horn)
- make CONFIG_SECCOMP no longer per-arch (YiFei Zhu)"
* tag 'seccomp-v5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (23 commits)
seccomp: Make duplicate listener detection non-racy
seccomp: Move config option SECCOMP to arch/Kconfig
selftests/clone3: Avoid OS-defined clone_args
selftests/seccomp: powerpc: Set syscall return during ptrace syscall exit
selftests/seccomp: Allow syscall nr and ret value to be set separately
selftests/seccomp: Record syscall during ptrace entry
selftests/seccomp: powerpc: Fix seccomp return value testing
selftests/seccomp: Remove SYSCALL_NUM_RET_SHARE_REG in favor of SYSCALL_RET_SET
selftests/seccomp: Avoid redundant register flushes
selftests/seccomp: Convert REGSET calls into ARCH_GETREG/ARCH_SETREG
selftests/seccomp: Convert HAVE_GETREG into ARCH_GETREG/ARCH_SETREG
selftests/seccomp: Remove syscall setting #ifdefs
selftests/seccomp: mips: Remove O32-specific macro
selftests/seccomp: arm64: Define SYSCALL_NUM_SET macro
selftests/seccomp: arm: Define SYSCALL_NUM_SET macro
selftests/seccomp: mips: Define SYSCALL_NUM_SET macro
selftests/seccomp: Provide generic syscall setting macro
selftests/seccomp: Refactor arch register macros to avoid xtensa special case
selftests/seccomp: Use __NR_mknodat instead of __NR_mknod
selftests/seccomp: Use bitwise instead of arithmetic operator for flags
...
applied to indirect function calls. Remove a data load (indirection) by
modifying the text.
They give the flexibility of function pointers, but with better
performance. (This is especially important for cases where
retpolines would otherwise be used, as retpolines can be pretty
slow.)
API overview:
DECLARE_STATIC_CALL(name, func);
DEFINE_STATIC_CALL(name, func);
DEFINE_STATIC_CALL_NULL(name, typename);
static_call(name)(args...);
static_call_cond(name)(args...);
static_call_update(name, func);
x86 is supported via text patching, otherwise basic indirect calls are used,
with function pointers.
There's a second variant using inline code patching, inspired by jump-labels,
implemented on x86 as well.
The new APIs are utilized in the x86 perf code, a heavy user of function pointers,
where static calls speed up the PMU handler by 4.2% (!).
The generic implementation is not really excercised on other architectures,
outside of the trivial test_static_call_init() self-test.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl+EfAQRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iEAw//divHeVCJnHhV+YBbuI9ROUsERkzu8VhK
O1DEmW68Fvj7pszT8NZsMjtkt97ZtxDRK7aCJiiup0eItG9qCJ8lpCLb84ZbizHV
HhCbhBLrpxSvTrWlQnkgP1OkPAbtoryIjVlZzWhjye2MY8UEbVnZWyviBolbAAxH
Fk1Yi56fIMu19GO+9Ohzy9E2VDnVEH1iMx5YWoLD2H88Qbq/yEMP+U2tIj8hIVKT
Y/jdogihNXRIau6QB+YPfDPisdty+RHxfU7zct4Rv8cFF5ylglZB5fD34C3sUQF2
WqsaYz7zjUj9f02F8pw8hIaAT7InzArPhlNVITxf2oMfmdrNqBptnSCddZqCJLvv
oDGew21k50Zcbqkv9amclpxXH5tTpRvJeqit2pz/85GMeqBRuhzHUAkCpht5YA73
qJsHWS3z+qIxKi0tDbhDJswuwa51q5sgdUUwo1uCr3wT3DGDlqNhCAZBzX14dcty
0shDSbv13TCwqAcb7asPzEoPwE15cwa+x+viGEIL901pyZKyQYjs/abDU26It3BW
roWRkuVJZ9/QMdZJs1v7kaXw1L8YiKIDkBgke+xbfrDwEvvjudQkl2LUL66DB11j
RJU3GyxKClvdY06SSRh/H13fqZLNKh1JZ0nPEWSTJECDFN9zcDjrDrod/7PFOcpY
NAlawLoGG+s=
=JvpF
-----END PGP SIGNATURE-----
Merge tag 'core-static_call-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull static call support from Ingo Molnar:
"This introduces static_call(), which is the idea of static_branch()
applied to indirect function calls. Remove a data load (indirection)
by modifying the text.
They give the flexibility of function pointers, but with better
performance. (This is especially important for cases where retpolines
would otherwise be used, as retpolines can be pretty slow.)
API overview:
DECLARE_STATIC_CALL(name, func);
DEFINE_STATIC_CALL(name, func);
DEFINE_STATIC_CALL_NULL(name, typename);
static_call(name)(args...);
static_call_cond(name)(args...);
static_call_update(name, func);
x86 is supported via text patching, otherwise basic indirect calls are
used, with function pointers.
There's a second variant using inline code patching, inspired by
jump-labels, implemented on x86 as well.
The new APIs are utilized in the x86 perf code, a heavy user of
function pointers, where static calls speed up the PMU handler by
4.2% (!).
The generic implementation is not really excercised on other
architectures, outside of the trivial test_static_call_init()
self-test"
* tag 'core-static_call-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
static_call: Fix return type of static_call_init
tracepoint: Fix out of sync data passing by static caller
tracepoint: Fix overly long tracepoint names
x86/perf, static_call: Optimize x86_pmu methods
tracepoint: Optimize using static_call()
static_call: Allow early init
static_call: Add some validation
static_call: Handle tail-calls
static_call: Add static_call_cond()
x86/alternatives: Teach text_poke_bp() to emulate RET
static_call: Add simple self-test for static calls
x86/static_call: Add inline static call implementation for x86-64
x86/static_call: Add out-of-line static call implementation
static_call: Avoid kprobes on inline static_call()s
static_call: Add inline static call infrastructure
static_call: Add basic static call infrastructure
compiler.h: Make __ADDRESSABLE() symbol truly unique
jump_label,module: Fix module lifetime for __jump_label_mod_text_reserved()
module: Properly propagate MODULE_STATE_COMING failure
module: Fix up module_notifier return values
...
In order to make adding configurable features into seccomp easier,
it's better to have the options at one single location, considering
especially that the bulk of seccomp code is arch-independent. An quick
look also show that many SECCOMP descriptions are outdated; they talk
about /proc rather than prctl.
As a result of moving the config option and keeping it default on,
architectures arm, arm64, csky, riscv, sh, and xtensa did not have SECCOMP
on by default prior to this and SECCOMP will be default in this change.
Architectures microblaze, mips, powerpc, s390, sh, and sparc have an
outdated depend on PROC_FS and this dependency is removed in this change.
Suggested-by: Jann Horn <jannh@google.com>
Link: https://lore.kernel.org/lkml/CAG48ez1YWz9cnp08UZgeieYRhHdqh-ch7aNwc4JRBnGyrmgfMg@mail.gmail.com/
Signed-off-by: YiFei Zhu <yifeifz2@illinois.edu>
[kees: added HAVE_ARCH_SECCOMP help text, tweaked wording]
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/9ede6ef35c847e58d61e476c6a39540520066613.1600951211.git.yifeifz2@illinois.edu
In reaction to a proposal to introduce a memcpy_mcsafe_fast()
implementation Linus points out that memcpy_mcsafe() is poorly named
relative to communicating the scope of the interface. Specifically what
addresses are valid to pass as source, destination, and what faults /
exceptions are handled.
Of particular concern is that even though x86 might be able to handle
the semantics of copy_mc_to_user() with its common copy_user_generic()
implementation other archs likely need / want an explicit path for this
case:
On Fri, May 1, 2020 at 11:28 AM Linus Torvalds <torvalds@linux-foundation.org> wrote:
>
> On Thu, Apr 30, 2020 at 6:21 PM Dan Williams <dan.j.williams@intel.com> wrote:
> >
> > However now I see that copy_user_generic() works for the wrong reason.
> > It works because the exception on the source address due to poison
> > looks no different than a write fault on the user address to the
> > caller, it's still just a short copy. So it makes copy_to_user() work
> > for the wrong reason relative to the name.
>
> Right.
>
> And it won't work that way on other architectures. On x86, we have a
> generic function that can take faults on either side, and we use it
> for both cases (and for the "in_user" case too), but that's an
> artifact of the architecture oddity.
>
> In fact, it's probably wrong even on x86 - because it can hide bugs -
> but writing those things is painful enough that everybody prefers
> having just one function.
Replace a single top-level memcpy_mcsafe() with either
copy_mc_to_user(), or copy_mc_to_kernel().
Introduce an x86 copy_mc_fragile() name as the rename for the
low-level x86 implementation formerly named memcpy_mcsafe(). It is used
as the slow / careful backend that is supplanted by a fast
copy_mc_generic() in a follow-on patch.
One side-effect of this reorganization is that separating copy_mc_64.S
to its own file means that perf no longer needs to track dependencies
for its memcpy_64.S benchmarks.
[ bp: Massage a bit. ]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: <stable@vger.kernel.org>
Link: http://lore.kernel.org/r/CAHk-=wjSqtXAqfUJxFtWNwmguFASTgB0dz1dT3V-78Quiezqbg@mail.gmail.com
Link: https://lkml.kernel.org/r/160195561680.2163339.11574962055305783722.stgit@dwillia2-desk3.amr.corp.intel.com
Install an exception handler for #VC exception that uses a GHCB. Also
add the infrastructure for handling different exit-codes by decoding
the instruction that caused the exception and error handling.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-24-joro@8bytes.org
Add the inline static call implementation for x86-64. The generated code
is identical to the out-of-line case, except we move the trampoline into
it's own section.
Objtool uses the trampoline naming convention to detect all the call
sites. It then annotates those call sites in the .static_call_sites
section.
During boot (and module init), the call sites are patched to call
directly into the destination function. The temporary trampoline is
then no longer used.
[peterz: merged trampolines, put trampoline in section]
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20200818135804.864271425@infradead.org
Add the x86 out-of-line static call implementation. For each key, a
permanent trampoline is created which is the destination for all static
calls for the given key. The trampoline has a direct jump which gets
patched by static_call_update() when the destination function changes.
[peterz: fixed trampoline, rewrote patching code]
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20200818135804.804315175@infradead.org
posix CPU timers into task work context. The tick interrupt is reduced to a
quick check which queues the work which is doing the heavy lifting before
returning to user space or going back to guest mode. Moving this out is
deferring the signal delivery slightly but posix CPU timers are inaccurate
by nature as they depend on the tick so there is no real damage. The
relevant test cases all passed.
This lifts the last offender for RT out of the hard interrupt context tick
handler, but it also has the general benefit that the actual heavy work is
accounted to the task/process and not to the tick interrupt itself.
Further optimizations are possible to break long sighand lock hold and
interrupt disabled (on !RT kernels) times when a massive amount of posix
CPU timers (which are unpriviledged) is armed for a task/process.
This is currently only enabled for x86 because the architecture has to
ensure that task work is handled in KVM before entering a guest, which was
just established for x86 with the new common entry/exit code which got
merged post 5.8 and is not the case for other KVM architectures.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl82sRkTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUs2D/9IZuALnVXtnvsOQh5uMRpxr/I6tpQm
KJSRkcSSne9rIV3dQlswDdaT7bGibd7pbKQOnlA0vc37vDwaJHEzmTOJGpHpHnMA
fHH2QP3LL2oZ1d7DG6eNJESCmaFBcaYXNbKtluOWQzHQhd9P8yHb4N+kzfxHK0Fr
uNd+cd6T658xPsNOLaLP3MG2Yz0rVt2F5c1v8n78NfibeKckYhPov8cwVrf2WGWr
XFHKorx4lXZ+vFwKEeZ7qQtqvAsLDixgMkFfY2GGSPhd1AMAaIUICZgsdEj2gg7H
YK+lwA0uoqPaXshOCmdkCLkfPA7BRmAySWE7jUPbIvRqM94Uapk9+4CqjgiH1Qs+
T8CWbcZk8tZACFrouhZkhrnjUTev/vE7oirsjn26DRY68/Ec7llpCOjvVA7HZWqN
vJ/BN35IufA7WEkf2TWNv5mg1zIlHI0O17zDifFq4g2VKFDVvQB0QYWlvug/eAu9
zYNX3WwA/IP8C9EOHZt54e6AKH8F3dT04oLFUkmRIcVKv1SEbdFufVfV7RavPEwK
P21JNXPDdd0aLUO7ksqyQN7pyR3puGXSCb5NAPtZY6UWSMN4G/3SVry3mJa/0BJd
mn+uYGpo9vmceh90vAHBoGIena/pez/PyRLWgGeT9jMjk95rNY0sEhaLEAOF9AR5
ck+3K2rY0S3wwQ==
=Reot
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2020-08-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull more timer updates from Thomas Gleixner:
"A set of posix CPU timer changes which allows to defer the heavy work
of posix CPU timers into task work context. The tick interrupt is
reduced to a quick check which queues the work which is doing the
heavy lifting before returning to user space or going back to guest
mode. Moving this out is deferring the signal delivery slightly but
posix CPU timers are inaccurate by nature as they depend on the tick
so there is no real damage. The relevant test cases all passed.
This lifts the last offender for RT out of the hard interrupt context
tick handler, but it also has the general benefit that the actual
heavy work is accounted to the task/process and not to the tick
interrupt itself.
Further optimizations are possible to break long sighand lock hold and
interrupt disabled (on !RT kernels) times when a massive amount of
posix CPU timers (which are unpriviledged) is armed for a
task/process.
This is currently only enabled for x86 because the architecture has to
ensure that task work is handled in KVM before entering a guest, which
was just established for x86 with the new common entry/exit code which
got merged post 5.8 and is not the case for other KVM architectures"
* tag 'timers-core-2020-08-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Select POSIX_CPU_TIMERS_TASK_WORK
posix-cpu-timers: Provide mechanisms to defer timer handling to task_work
posix-cpu-timers: Split run_posix_cpu_timers()
x86:
* Report last CPU for debugging
* Emulate smaller MAXPHYADDR in the guest than in the host
* .noinstr and tracing fixes from Thomas
* nested SVM page table switching optimization and fixes
Generic:
* Unify shadow MMU cache data structures across architectures
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl8pC+oUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNcOwgAjomqtEqQNlp7DdZT7VyyklzbxX1/
ud7v+oOJ8K4sFlf64lSthjPo3N9rzZCcw+yOXmuyuITngXOGc3tzIwXpCzpLtuQ1
WO1Ql3B/2dCi3lP5OMmsO1UAZqy9pKLg1dfeYUPk48P5+p7d/NPmk+Em5kIYzKm5
JsaHfCp2EEXomwmljNJ8PQ1vTjIQSSzlgYUBZxmCkaaX7zbEUMtxAQCStHmt8B84
33LczwXBm3viSWrzsoBV37I70+tseugiSGsCfUyupXOvq55d6D9FCqtCb45Hn4Vh
Ik8ggKdalsk/reiGEwNw1/3nr6mRMkHSbl+Mhc4waOIFf9dn0urgQgOaDg==
=YVx0
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"s390:
- implement diag318
x86:
- Report last CPU for debugging
- Emulate smaller MAXPHYADDR in the guest than in the host
- .noinstr and tracing fixes from Thomas
- nested SVM page table switching optimization and fixes
Generic:
- Unify shadow MMU cache data structures across architectures"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (127 commits)
KVM: SVM: Fix sev_pin_memory() error handling
KVM: LAPIC: Set the TDCR settable bits
KVM: x86: Specify max TDP level via kvm_configure_mmu()
KVM: x86/mmu: Rename max_page_level to max_huge_page_level
KVM: x86: Dynamically calculate TDP level from max level and MAXPHYADDR
KVM: VXM: Remove temporary WARN on expected vs. actual EPTP level mismatch
KVM: x86: Pull the PGD's level from the MMU instead of recalculating it
KVM: VMX: Make vmx_load_mmu_pgd() static
KVM: x86/mmu: Add separate helper for shadow NPT root page role calc
KVM: VMX: Drop a duplicate declaration of construct_eptp()
KVM: nSVM: Correctly set the shadow NPT root level in its MMU role
KVM: Using macros instead of magic values
MIPS: KVM: Fix build error caused by 'kvm_run' cleanup
KVM: nSVM: remove nonsensical EXITINFO1 adjustment on nested NPF
KVM: x86: Add a capability for GUEST_MAXPHYADDR < HOST_MAXPHYADDR support
KVM: VMX: optimize #PF injection when MAXPHYADDR does not match
KVM: VMX: Add guest physical address check in EPT violation and misconfig
KVM: VMX: introduce vmx_need_pf_intercept
KVM: x86: update exception bitmap on CPUID changes
KVM: x86: rename update_bp_intercept to update_exception_bitmap
...
Move POSIX CPU timer expiry and signal delivery into task context.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20200730102337.888613724@linutronix.de
to the generic code. Pretty much a straight forward 1:1 conversion plus the
consolidation of the KVM handling of pending work before entering guest
mode.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl8pEFgTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYocEwD/474Eb7LzZ8yahyUBirWJP3k3qzgs9j
dZUxqB6LNuDOstEyTGLPdx1dmQP2vHbFfjoM7YBOH37EGcHsqjGliLvn2Y05ZD7O
6kYwjz6qVnJcm3IMtfSUn/8LkfO5pGUdKd3U5ngDmPLpkeaQ4nPKqiO0uIb0wzwa
cO7l10tG4YjMCWQxPNIaOh8kncLieQBediJPFjkQjV+Fh33kSU3LWTl3fccz6b5+
mgSUFL0qjQpp+Nl7lCaDQQiAop9GTUETfDtximRydZauiM2NpCfz+QBmQzq50Xv1
G3DWZoBIZBjmWJUgfSmS/s4GOYkBTBnT/fUcZmIDcgdRwvtEvRzIhcP87/wn7P3N
UKpLdHqmvA0BFDXZbNZgS362++29pj5Lnb+u3QbWSKQ9UqHN0NUlSY4wzfTLXsGp
Mzpp4TW0u/8kyOlo7wK3lVDgNJaPG31aiNVuDPgLe4cEluO5cq7/7g2GcFBqF1Ly
SqNGD1IccteNQTNvDopczPy7qUl5Lal+Ia06szNSPR48gLrvhSWdyYr2i1sD7vx4
hAhR0Hsi9dacGv46TrRw1OdDzq9bOW68G8GIgLJgDXaayPXLnx6TQEUjzQtIkE/i
ydTPUarp5QOFByt+RBjI90ZcW4RuLgMTOEVONPXtSn8IoCP2Kdg9u3gD9AmUW3Q2
JFkKMiSiJPGxlw==
=84y7
-----END PGP SIGNATURE-----
Merge tag 'x86-entry-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 conversion to generic entry code from Thomas Gleixner:
"The conversion of X86 syscall, interrupt and exception entry/exit
handling to the generic code.
Pretty much a straight-forward 1:1 conversion plus the consolidation
of the KVM handling of pending work before entering guest mode"
* tag 'x86-entry-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kvm: Use __xfer_to_guest_mode_work_pending() in kvm_run_vcpu()
x86/kvm: Use generic xfer to guest work function
x86/entry: Cleanup idtentry_enter/exit
x86/entry: Use generic interrupt entry/exit code
x86/entry: Cleanup idtentry_entry/exit_user
x86/entry: Use generic syscall exit functionality
x86/entry: Use generic syscall entry function
x86/ptrace: Provide pt_regs helper for entry/exit
x86/entry: Move user return notifier out of loop
x86/entry: Consolidate 32/64 bit syscall entry
x86/entry: Consolidate check_user_regs()
x86: Correct noinstr qualifiers
x86/idtentry: Remove stale comment