Commit Graph

62 Commits

Author SHA1 Message Date
Daniel Borkmann e420bed025 bpf: Add fd-based tcx multi-prog infra with link support
This work refactors and adds a lightweight extension ("tcx") to the tc BPF
ingress and egress data path side for allowing BPF program management based
on fds via bpf() syscall through the newly added generic multi-prog API.
The main goal behind this work which we also presented at LPC [0] last year
and a recent update at LSF/MM/BPF this year [3] is to support long-awaited
BPF link functionality for tc BPF programs, which allows for a model of safe
ownership and program detachment.

Given the rise in tc BPF users in cloud native environments, this becomes
necessary to avoid hard to debug incidents either through stale leftover
programs or 3rd party applications accidentally stepping on each others toes.
As a recap, a BPF link represents the attachment of a BPF program to a BPF
hook point. The BPF link holds a single reference to keep BPF program alive.
Moreover, hook points do not reference a BPF link, only the application's
fd or pinning does. A BPF link holds meta-data specific to attachment and
implements operations for link creation, (atomic) BPF program update,
detachment and introspection. The motivation for BPF links for tc BPF programs
is multi-fold, for example:

  - From Meta: "It's especially important for applications that are deployed
    fleet-wide and that don't "control" hosts they are deployed to. If such
    application crashes and no one notices and does anything about that, BPF
    program will keep running draining resources or even just, say, dropping
    packets. We at FB had outages due to such permanent BPF attachment
    semantics. With fd-based BPF link we are getting a framework, which allows
    safe, auto-detachable behavior by default, unless application explicitly
    opts in by pinning the BPF link." [1]

  - From Cilium-side the tc BPF programs we attach to host-facing veth devices
    and phys devices build the core datapath for Kubernetes Pods, and they
    implement forwarding, load-balancing, policy, EDT-management, etc, within
    BPF. Currently there is no concept of 'safe' ownership, e.g. we've recently
    experienced hard-to-debug issues in a user's staging environment where
    another Kubernetes application using tc BPF attached to the same prio/handle
    of cls_bpf, accidentally wiping all Cilium-based BPF programs from underneath
    it. The goal is to establish a clear/safe ownership model via links which
    cannot accidentally be overridden. [0,2]

BPF links for tc can co-exist with non-link attachments, and the semantics are
in line also with XDP links: BPF links cannot replace other BPF links, BPF
links cannot replace non-BPF links, non-BPF links cannot replace BPF links and
lastly only non-BPF links can replace non-BPF links. In case of Cilium, this
would solve mentioned issue of safe ownership model as 3rd party applications
would not be able to accidentally wipe Cilium programs, even if they are not
BPF link aware.

Earlier attempts [4] have tried to integrate BPF links into core tc machinery
to solve cls_bpf, which has been intrusive to the generic tc kernel API with
extensions only specific to cls_bpf and suboptimal/complex since cls_bpf could
be wiped from the qdisc also. Locking a tc BPF program in place this way, is
getting into layering hacks given the two object models are vastly different.

We instead implemented the tcx (tc 'express') layer which is an fd-based tc BPF
attach API, so that the BPF link implementation blends in naturally similar to
other link types which are fd-based and without the need for changing core tc
internal APIs. BPF programs for tc can then be successively migrated from classic
cls_bpf to the new tc BPF link without needing to change the program's source
code, just the BPF loader mechanics for attaching is sufficient.

For the current tc framework, there is no change in behavior with this change
and neither does this change touch on tc core kernel APIs. The gist of this
patch is that the ingress and egress hook have a lightweight, qdisc-less
extension for BPF to attach its tc BPF programs, in other words, a minimal
entry point for tc BPF. The name tcx has been suggested from discussion of
earlier revisions of this work as a good fit, and to more easily differ between
the classic cls_bpf attachment and the fd-based one.

For the ingress and egress tcx points, the device holds a cache-friendly array
with program pointers which is separated from control plane (slow-path) data.
Earlier versions of this work used priority to determine ordering and expression
of dependencies similar as with classic tc, but it was challenged that for
something more future-proof a better user experience is required. Hence this
resulted in the design and development of the generic attach/detach/query API
for multi-progs. See prior patch with its discussion on the API design. tcx is
the first user and later we plan to integrate also others, for example, one
candidate is multi-prog support for XDP which would benefit and have the same
'look and feel' from API perspective.

The goal with tcx is to have maximum compatibility to existing tc BPF programs,
so they don't need to be rewritten specifically. Compatibility to call into
classic tcf_classify() is also provided in order to allow successive migration
or both to cleanly co-exist where needed given its all one logical tc layer and
the tcx plus classic tc cls/act build one logical overall processing pipeline.

tcx supports the simplified return codes TCX_NEXT which is non-terminating (go
to next program) and terminating ones with TCX_PASS, TCX_DROP, TCX_REDIRECT.
The fd-based API is behind a static key, so that when unused the code is also
not entered. The struct tcx_entry's program array is currently static, but
could be made dynamic if necessary at a point in future. The a/b pair swap
design has been chosen so that for detachment there are no allocations which
otherwise could fail.

The work has been tested with tc-testing selftest suite which all passes, as
well as the tc BPF tests from the BPF CI, and also with Cilium's L4LB.

Thanks also to Nikolay Aleksandrov and Martin Lau for in-depth early reviews
of this work.

  [0] https://lpc.events/event/16/contributions/1353/
  [1] https://lore.kernel.org/bpf/CAEf4BzbokCJN33Nw_kg82sO=xppXnKWEncGTWCTB9vGCmLB6pw@mail.gmail.com
  [2] https://colocatedeventseu2023.sched.com/event/1Jo6O/tales-from-an-ebpf-programs-murder-mystery-hemanth-malla-guillaume-fournier-datadog
  [3] http://vger.kernel.org/bpfconf2023_material/tcx_meta_netdev_borkmann.pdf
  [4] https://lore.kernel.org/bpf/20210604063116.234316-1-memxor@gmail.com

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Link: https://lore.kernel.org/r/20230719140858.13224-3-daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19 10:07:27 -07:00
Daniel Borkmann 053c8e1f23 bpf: Add generic attach/detach/query API for multi-progs
This adds a generic layer called bpf_mprog which can be reused by different
attachment layers to enable multi-program attachment and dependency resolution.
In-kernel users of the bpf_mprog don't need to care about the dependency
resolution internals, they can just consume it with few API calls.

The initial idea of having a generic API sparked out of discussion [0] from an
earlier revision of this work where tc's priority was reused and exposed via
BPF uapi as a way to coordinate dependencies among tc BPF programs, similar
as-is for classic tc BPF. The feedback was that priority provides a bad user
experience and is hard to use [1], e.g.:

  I cannot help but feel that priority logic copy-paste from old tc, netfilter
  and friends is done because "that's how things were done in the past". [...]
  Priority gets exposed everywhere in uapi all the way to bpftool when it's
  right there for users to understand. And that's the main problem with it.

  The user don't want to and don't need to be aware of it, but uapi forces them
  to pick the priority. [...] Your cover letter [0] example proves that in
  real life different service pick the same priority. They simply don't know
  any better. Priority is an unnecessary magic that apps _have_ to pick, so
  they just copy-paste and everyone ends up using the same.

The course of the discussion showed more and more the need for a generic,
reusable API where the "same look and feel" can be applied for various other
program types beyond just tc BPF, for example XDP today does not have multi-
program support in kernel, but also there was interest around this API for
improving management of cgroup program types. Such common multi-program
management concept is useful for BPF management daemons or user space BPF
applications coordinating internally about their attachments.

Both from Cilium and Meta side [2], we've collected the following requirements
for a generic attach/detach/query API for multi-progs which has been implemented
as part of this work:

  - Support prog-based attach/detach and link API
  - Dependency directives (can also be combined):
    - BPF_F_{BEFORE,AFTER} with relative_{fd,id} which can be {prog,link,none}
      - BPF_F_ID flag as {fd,id} toggle; the rationale for id is so that user
        space application does not need CAP_SYS_ADMIN to retrieve foreign fds
        via bpf_*_get_fd_by_id()
      - BPF_F_LINK flag as {prog,link} toggle
      - If relative_{fd,id} is none, then BPF_F_BEFORE will just prepend, and
        BPF_F_AFTER will just append for attaching
      - Enforced only at attach time
    - BPF_F_REPLACE with replace_bpf_fd which can be prog, links have their
      own infra for replacing their internal prog
    - If no flags are set, then it's default append behavior for attaching
  - Internal revision counter and optionally being able to pass expected_revision
  - User space application can query current state with revision, and pass it
    along for attachment to assert current state before doing updates
  - Query also gets extension for link_ids array and link_attach_flags:
    - prog_ids are always filled with program IDs
    - link_ids are filled with link IDs when link was used, otherwise 0
    - {prog,link}_attach_flags for holding {prog,link}-specific flags
  - Must be easy to integrate/reuse for in-kernel users

The uapi-side changes needed for supporting bpf_mprog are rather minimal,
consisting of the additions of the attachment flags, revision counter, and
expanding existing union with relative_{fd,id} member.

The bpf_mprog framework consists of an bpf_mprog_entry object which holds
an array of bpf_mprog_fp (fast-path structure). The bpf_mprog_cp (control-path
structure) is part of bpf_mprog_bundle. Both have been separated, so that
fast-path gets efficient packing of bpf_prog pointers for maximum cache
efficiency. Also, array has been chosen instead of linked list or other
structures to remove unnecessary indirections for a fast point-to-entry in
tc for BPF.

The bpf_mprog_entry comes as a pair via bpf_mprog_bundle so that in case of
updates the peer bpf_mprog_entry is populated and then just swapped which
avoids additional allocations that could otherwise fail, for example, in
detach case. bpf_mprog_{fp,cp} arrays are currently static, but they could
be converted to dynamic allocation if necessary at a point in future.
Locking is deferred to the in-kernel user of bpf_mprog, for example, in case
of tcx which uses this API in the next patch, it piggybacks on rtnl.

An extensive test suite for checking all aspects of this API for prog-based
attach/detach and link API comes as BPF selftests in this series.

Thanks also to Andrii Nakryiko for early API discussions wrt Meta's BPF prog
management.

  [0] https://lore.kernel.org/bpf/20221004231143.19190-1-daniel@iogearbox.net
  [1] https://lore.kernel.org/bpf/CAADnVQ+gEY3FjCR=+DmjDR4gp5bOYZUFJQXj4agKFHT9CQPZBw@mail.gmail.com
  [2] http://vger.kernel.org/bpfconf2023_material/tcx_meta_netdev_borkmann.pdf

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/r/20230719140858.13224-2-daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19 10:07:27 -07:00
Andrii Nakryiko 4294a0a7ab bpf: Split off basic BPF verifier log into separate file
kernel/bpf/verifier.c file is large and growing larger all the time. So
it's good to start splitting off more or less self-contained parts into
separate files to keep source code size (somewhat) somewhat under
control.

This patch is a one step in this direction, moving some of BPF verifier log
routines into a separate kernel/bpf/log.c. Right now it's most low-level
and isolated routines to append data to log, reset log to previous
position, etc. Eventually we could probably move verifier state
printing logic here as well, but this patch doesn't attempt to do that
yet.

Subsequent patches will add more logic to verifier log management, so
having basics in a separate file will make sure verifier.c doesn't grow
more with new changes.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-2-andrii@kernel.org
2023-04-11 18:05:42 +02:00
David Vernet 516f4d3397 bpf: Enable cpumasks to be queried and used as kptrs
Certain programs may wish to be able to query cpumasks. For example, if
a program that is tracing percpu operations wishes to track which tasks
end up running on which CPUs, it could be useful to associate that with
the tasks' cpumasks. Similarly, programs tracking NUMA allocations, CPU
scheduling domains, etc, could potentially benefit from being able to
see which CPUs a task could be migrated to.

This patch enables these types of use cases by introducing a series of
bpf_cpumask_* kfuncs. Amongst these kfuncs, there are two separate
"classes" of operations:

1. kfuncs which allow the caller to allocate and mutate their own
   cpumask kptrs in the form of a struct bpf_cpumask * object. Such
   kfuncs include e.g. bpf_cpumask_create() to allocate the cpumask, and
   bpf_cpumask_or() to mutate it. "Regular" cpumasks such as p->cpus_ptr
   may not be passed to these kfuncs, and the verifier will ensure this
   is the case by comparing BTF IDs.

2. Read-only operations which operate on const struct cpumask *
   arguments. For example, bpf_cpumask_test_cpu(), which tests whether a
   CPU is set in the cpumask. Any trusted struct cpumask * or struct
   bpf_cpumask * may be passed to these kfuncs. The verifier allows
   struct bpf_cpumask * even though the kfunc is defined with struct
   cpumask * because the first element of a struct bpf_cpumask is a
   cpumask_t, so it is safe to cast.

A follow-on patch will add selftests which validate these kfuncs, and
another will document them.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230125143816.721952-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-25 07:57:49 -08:00
Yonghong Song c4bcfb38a9 bpf: Implement cgroup storage available to non-cgroup-attached bpf progs
Similar to sk/inode/task storage, implement similar cgroup local storage.

There already exists a local storage implementation for cgroup-attached
bpf programs.  See map type BPF_MAP_TYPE_CGROUP_STORAGE and helper
bpf_get_local_storage(). But there are use cases such that non-cgroup
attached bpf progs wants to access cgroup local storage data. For example,
tc egress prog has access to sk and cgroup. It is possible to use
sk local storage to emulate cgroup local storage by storing data in socket.
But this is a waste as it could be lots of sockets belonging to a particular
cgroup. Alternatively, a separate map can be created with cgroup id as the key.
But this will introduce additional overhead to manipulate the new map.
A cgroup local storage, similar to existing sk/inode/task storage,
should help for this use case.

The life-cycle of storage is managed with the life-cycle of the
cgroup struct.  i.e. the storage is destroyed along with the owning cgroup
with a call to bpf_cgrp_storage_free() when cgroup itself
is deleted.

The userspace map operations can be done by using a cgroup fd as a key
passed to the lookup, update and delete operations.

Typically, the following code is used to get the current cgroup:
    struct task_struct *task = bpf_get_current_task_btf();
    ... task->cgroups->dfl_cgrp ...
and in structure task_struct definition:
    struct task_struct {
        ....
        struct css_set __rcu            *cgroups;
        ....
    }
With sleepable program, accessing task->cgroups is not protected by rcu_read_lock.
So the current implementation only supports non-sleepable program and supporting
sleepable program will be the next step together with adding rcu_read_lock
protection for rcu tagged structures.

Since map name BPF_MAP_TYPE_CGROUP_STORAGE has been used for old cgroup local
storage support, the new map name BPF_MAP_TYPE_CGRP_STORAGE is used
for cgroup storage available to non-cgroup-attached bpf programs. The old
cgroup storage supports bpf_get_local_storage() helper to get the cgroup data.
The new cgroup storage helper bpf_cgrp_storage_get() can provide similar
functionality. While old cgroup storage pre-allocates storage memory, the new
mechanism can also pre-allocate with a user space bpf_map_update_elem() call
to avoid potential run-time memory allocation failure.
Therefore, the new cgroup storage can provide all functionality w.r.t.
the old one. So in uapi bpf.h, the old BPF_MAP_TYPE_CGROUP_STORAGE is alias to
BPF_MAP_TYPE_CGROUP_STORAGE_DEPRECATED to indicate the old cgroup storage can
be deprecated since the new one can provide the same functionality.

Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221026042850.673791-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-10-25 23:19:19 -07:00
Alexei Starovoitov 7c8199e24f bpf: Introduce any context BPF specific memory allocator.
Tracing BPF programs can attach to kprobe and fentry. Hence they
run in unknown context where calling plain kmalloc() might not be safe.

Front-end kmalloc() with minimal per-cpu cache of free elements.
Refill this cache asynchronously from irq_work.

BPF programs always run with migration disabled.
It's safe to allocate from cache of the current cpu with irqs disabled.
Free-ing is always done into bucket of the current cpu as well.
irq_work trims extra free elements from buckets with kfree
and refills them with kmalloc, so global kmalloc logic takes care
of freeing objects allocated by one cpu and freed on another.

struct bpf_mem_alloc supports two modes:
- When size != 0 create kmem_cache and bpf_mem_cache for each cpu.
  This is typical bpf hash map use case when all elements have equal size.
- When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on
  kmalloc/kfree. Max allocation size is 4096 in this case.
  This is bpf_dynptr and bpf_kptr use case.

bpf_mem_alloc/bpf_mem_free are bpf specific 'wrappers' of kmalloc/kfree.
bpf_mem_cache_alloc/bpf_mem_cache_free are 'wrappers' of kmem_cache_alloc/kmem_cache_free.

The allocators are NMI-safe from bpf programs only. They are not NMI-safe in general.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220902211058.60789-2-alexei.starovoitov@gmail.com
2022-09-05 15:33:05 +02:00
Hao Luo d4ccaf58a8 bpf: Introduce cgroup iter
Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes:

 - walking a cgroup's descendants in pre-order.
 - walking a cgroup's descendants in post-order.
 - walking a cgroup's ancestors.
 - process only the given cgroup.

When attaching cgroup_iter, one can set a cgroup to the iter_link
created from attaching. This cgroup is passed as a file descriptor
or cgroup id and serves as the starting point of the walk. If no
cgroup is specified, the starting point will be the root cgroup v2.

For walking descendants, one can specify the order: either pre-order or
post-order. For walking ancestors, the walk starts at the specified
cgroup and ends at the root.

One can also terminate the walk early by returning 1 from the iter
program.

Note that because walking cgroup hierarchy holds cgroup_mutex, the iter
program is called with cgroup_mutex held.

Currently only one session is supported, which means, depending on the
volume of data bpf program intends to send to user space, the number
of cgroups that can be walked is limited. For example, given the current
buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each
cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can
be walked is 512. This is a limitation of cgroup_iter. If the output
data is larger than the kernel buffer size, after all data in the
kernel buffer is consumed by user space, the subsequent read() syscall
will signal EOPNOTSUPP. In order to work around, the user may have to
update their program to reduce the volume of data sent to output. For
example, skip some uninteresting cgroups. In future, we may extend
bpf_iter flags to allow customizing buffer size.

Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-08-25 11:35:37 -07:00
Dmitrii Dolgov 9f88361273 bpf: Add bpf_link iterator
Implement bpf_link iterator to traverse links via bpf_seq_file
operations. The changeset is mostly shamelessly copied from
commit a228a64fc1 ("bpf: Add bpf_prog iterator")

Signed-off-by: Dmitrii Dolgov <9erthalion6@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220510155233.9815-2-9erthalion6@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-05-10 11:20:45 -07:00
Alexei Starovoitov 29db4bea1d bpf: Prepare relo_core.c for kernel duty.
Make relo_core.c to be compiled for the kernel and for user space libbpf.

Note the patch is reducing BPF_CORE_SPEC_MAX_LEN from 64 to 32.
This is the maximum number of nested structs and arrays.
For example:
 struct sample {
     int a;
     struct {
         int b[10];
     };
 };

 struct sample *s = ...;
 int *y = &s->b[5];
This field access is encoded as "0:1:0:5" and spec len is 4.

The follow up patch might bump it back to 64.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211201181040.23337-4-alexei.starovoitov@gmail.com
2021-12-02 11:18:34 -08:00
Joanne Koong 9330986c03 bpf: Add bloom filter map implementation
This patch adds the kernel-side changes for the implementation of
a bpf bloom filter map.

The bloom filter map supports peek (determining whether an element
is present in the map) and push (adding an element to the map)
operations.These operations are exposed to userspace applications
through the already existing syscalls in the following way:

BPF_MAP_LOOKUP_ELEM -> peek
BPF_MAP_UPDATE_ELEM -> push

The bloom filter map does not have keys, only values. In light of
this, the bloom filter map's API matches that of queue stack maps:
user applications use BPF_MAP_LOOKUP_ELEM/BPF_MAP_UPDATE_ELEM
which correspond internally to bpf_map_peek_elem/bpf_map_push_elem,
and bpf programs must use the bpf_map_peek_elem and bpf_map_push_elem
APIs to query or add an element to the bloom filter map. When the
bloom filter map is created, it must be created with a key_size of 0.

For updates, the user will pass in the element to add to the map
as the value, with a NULL key. For lookups, the user will pass in the
element to query in the map as the value, with a NULL key. In the
verifier layer, this requires us to modify the argument type of
a bloom filter's BPF_FUNC_map_peek_elem call to ARG_PTR_TO_MAP_VALUE;
as well, in the syscall layer, we need to copy over the user value
so that in bpf_map_peek_elem, we know which specific value to query.

A few things to please take note of:
 * If there are any concurrent lookups + updates, the user is
responsible for synchronizing this to ensure no false negative lookups
occur.
 * The number of hashes to use for the bloom filter is configurable from
userspace. If no number is specified, the default used will be 5 hash
functions. The benchmarks later in this patchset can help compare the
performance of using different number of hashes on different entry
sizes. In general, using more hashes decreases both the false positive
rate and the speed of a lookup.
 * Deleting an element in the bloom filter map is not supported.
 * The bloom filter map may be used as an inner map.
 * The "max_entries" size that is specified at map creation time is used
to approximate a reasonable bitmap size for the bloom filter, and is not
otherwise strictly enforced. If the user wishes to insert more entries
into the bloom filter than "max_entries", they may do so but they should
be aware that this may lead to a higher false positive rate.

Signed-off-by: Joanne Koong <joannekoong@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211027234504.30744-2-joannekoong@fb.com
2021-10-28 13:22:49 -07:00
Song Liu a10787e6d5 bpf: Enable task local storage for tracing programs
To access per-task data, BPF programs usually creates a hash table with
pid as the key. This is not ideal because:
 1. The user need to estimate the proper size of the hash table, which may
    be inaccurate;
 2. Big hash tables are slow;
 3. To clean up the data properly during task terminations, the user need
    to write extra logic.

Task local storage overcomes these issues and offers a better option for
these per-task data. Task local storage is only available to BPF_LSM. Now
enable it for tracing programs.

Unlike LSM programs, tracing programs can be called in IRQ contexts.
Helpers that access task local storage are updated to use
raw_spin_lock_irqsave() instead of raw_spin_lock_bh().

Tracing programs can attach to functions on the task free path, e.g.
exit_creds(). To avoid allocating task local storage after
bpf_task_storage_free(). bpf_task_storage_get() is updated to not allocate
new storage when the task is not refcounted (task->usage == 0).

Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: KP Singh <kpsingh@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210225234319.336131-2-songliubraving@fb.com
2021-02-26 11:51:47 -08:00
Jakub Kicinski 07cbce2e46 Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:

====================
pull-request: bpf-next 2020-11-14

1) Add BTF generation for kernel modules and extend BTF infra in kernel
   e.g. support for split BTF loading and validation, from Andrii Nakryiko.

2) Support for pointers beyond pkt_end to recognize LLVM generated patterns
   on inlined branch conditions, from Alexei Starovoitov.

3) Implements bpf_local_storage for task_struct for BPF LSM, from KP Singh.

4) Enable FENTRY/FEXIT/RAW_TP tracing program to use the bpf_sk_storage
   infra, from Martin KaFai Lau.

5) Add XDP bulk APIs that introduce a defer/flush mechanism to optimize the
   XDP_REDIRECT path, from Lorenzo Bianconi.

6) Fix a potential (although rather theoretical) deadlock of hashtab in NMI
   context, from Song Liu.

7) Fixes for cross and out-of-tree build of bpftool and runqslower allowing build
   for different target archs on same source tree, from Jean-Philippe Brucker.

8) Fix error path in htab_map_alloc() triggered from syzbot, from Eric Dumazet.

9) Move functionality from test_tcpbpf_user into the test_progs framework so it
   can run in BPF CI, from Alexander Duyck.

10) Lift hashtab key_size limit to be larger than MAX_BPF_STACK, from Florian Lehner.

Note that for the fix from Song we have seen a sparse report on context
imbalance which requires changes in sparse itself for proper annotation
detection where this is currently being discussed on linux-sparse among
developers [0]. Once we have more clarification/guidance after their fix,
Song will follow-up.

  [0] https://lore.kernel.org/linux-sparse/CAHk-=wh4bx8A8dHnX612MsDO13st6uzAz1mJ1PaHHVevJx_ZCw@mail.gmail.com/T/
      https://lore.kernel.org/linux-sparse/20201109221345.uklbp3lzgq6g42zb@ltop.local/T/

* git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (66 commits)
  net: mlx5: Add xdp tx return bulking support
  net: mvpp2: Add xdp tx return bulking support
  net: mvneta: Add xdp tx return bulking support
  net: page_pool: Add bulk support for ptr_ring
  net: xdp: Introduce bulking for xdp tx return path
  bpf: Expose bpf_d_path helper to sleepable LSM hooks
  bpf: Augment the set of sleepable LSM hooks
  bpf: selftest: Use bpf_sk_storage in FENTRY/FEXIT/RAW_TP
  bpf: Allow using bpf_sk_storage in FENTRY/FEXIT/RAW_TP
  bpf: Rename some functions in bpf_sk_storage
  bpf: Folding omem_charge() into sk_storage_charge()
  selftests/bpf: Add asm tests for pkt vs pkt_end comparison.
  selftests/bpf: Add skb_pkt_end test
  bpf: Support for pointers beyond pkt_end.
  tools/bpf: Always run the *-clean recipes
  tools/bpf: Add bootstrap/ to .gitignore
  bpf: Fix NULL dereference in bpf_task_storage
  tools/bpftool: Fix build slowdown
  tools/runqslower: Build bpftool using HOSTCC
  tools/runqslower: Enable out-of-tree build
  ...
====================

Link: https://lore.kernel.org/r/20201114020819.29584-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-11-14 09:13:41 -08:00
KP Singh 4cf1bc1f10 bpf: Implement task local storage
Similar to bpf_local_storage for sockets and inodes add local storage
for task_struct.

The life-cycle of storage is managed with the life-cycle of the
task_struct.  i.e. the storage is destroyed along with the owning task
with a callback to the bpf_task_storage_free from the task_free LSM
hook.

The BPF LSM allocates an __rcu pointer to the bpf_local_storage in
the security blob which are now stackable and can co-exist with other
LSMs.

The userspace map operations can be done by using a pid fd as a key
passed to the lookup, update and delete operations.

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20201106103747.2780972-3-kpsingh@chromium.org
2020-11-06 08:08:37 -08:00
Ard Biesheuvel 080b6f4076 bpf: Don't rely on GCC __attribute__((optimize)) to disable GCSE
Commit 3193c0836 ("bpf: Disable GCC -fgcse optimization for
___bpf_prog_run()") introduced a __no_fgcse macro that expands to a
function scope __attribute__((optimize("-fno-gcse"))), to disable a
GCC specific optimization that was causing trouble on x86 builds, and
was not expected to have any positive effect in the first place.

However, as the GCC manual documents, __attribute__((optimize))
is not for production use, and results in all other optimization
options to be forgotten for the function in question. This can
cause all kinds of trouble, but in one particular reported case,
it causes -fno-asynchronous-unwind-tables to be disregarded,
resulting in .eh_frame info to be emitted for the function.

This reverts commit 3193c0836, and instead, it disables the -fgcse
optimization for the entire source file, but only when building for
X86 using GCC with CONFIG_BPF_JIT_ALWAYS_ON disabled. Note that the
original commit states that CONFIG_RETPOLINE=n triggers the issue,
whereas CONFIG_RETPOLINE=y performs better without the optimization,
so it is kept disabled in both cases.

Fixes: 3193c0836f ("bpf: Disable GCC -fgcse optimization for ___bpf_prog_run()")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lore.kernel.org/lkml/CAMuHMdUg0WJHEcq6to0-eODpXPOywLot6UD2=GFHpzoj_hCoBQ@mail.gmail.com/
Link: https://lore.kernel.org/bpf/20201028171506.15682-2-ardb@kernel.org
2020-10-29 20:01:46 -07:00
KP Singh 8ea636848a bpf: Implement bpf_local_storage for inodes
Similar to bpf_local_storage for sockets, add local storage for inodes.
The life-cycle of storage is managed with the life-cycle of the inode.
i.e. the storage is destroyed along with the owning inode.

The BPF LSM allocates an __rcu pointer to the bpf_local_storage in the
security blob which are now stackable and can co-exist with other LSMs.

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200825182919.1118197-6-kpsingh@chromium.org
2020-08-25 15:00:04 -07:00
KP Singh 450af8d0f6 bpf: Split bpf_local_storage to bpf_sk_storage
A purely mechanical change:

	bpf_sk_storage.c = bpf_sk_storage.c + bpf_local_storage.c
	bpf_sk_storage.h = bpf_sk_storage.h + bpf_local_storage.h

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200825182919.1118197-5-kpsingh@chromium.org
2020-08-25 15:00:04 -07:00
Alexei Starovoitov d71fa5c976 bpf: Add kernel module with user mode driver that populates bpffs.
Add kernel module with user mode driver that populates bpffs with
BPF iterators.

$ mount bpffs /my/bpffs/ -t bpf
$ ls -la /my/bpffs/
total 4
drwxrwxrwt  2 root root    0 Jul  2 00:27 .
drwxr-xr-x 19 root root 4096 Jul  2 00:09 ..
-rw-------  1 root root    0 Jul  2 00:27 maps.debug
-rw-------  1 root root    0 Jul  2 00:27 progs.debug

The user mode driver will load BPF Type Formats, create BPF maps, populate BPF
maps, load two BPF programs, attach them to BPF iterators, and finally send two
bpf_link IDs back to the kernel.
The kernel will pin two bpf_links into newly mounted bpffs instance under
names "progs.debug" and "maps.debug". These two files become human readable.

$ cat /my/bpffs/progs.debug
  id name            attached
  11 dump_bpf_map    bpf_iter_bpf_map
  12 dump_bpf_prog   bpf_iter_bpf_prog
  27 test_pkt_access
  32 test_main       test_pkt_access test_pkt_access
  33 test_subprog1   test_pkt_access_subprog1 test_pkt_access
  34 test_subprog2   test_pkt_access_subprog2 test_pkt_access
  35 test_subprog3   test_pkt_access_subprog3 test_pkt_access
  36 new_get_skb_len get_skb_len test_pkt_access
  37 new_get_skb_ifindex get_skb_ifindex test_pkt_access
  38 new_get_constant get_constant test_pkt_access

The BPF program dump_bpf_prog() in iterators.bpf.c is printing this data about
all BPF programs currently loaded in the system. This information is unstable
and will change from kernel to kernel as ".debug" suffix conveys.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200819042759.51280-4-alexei.starovoitov@gmail.com
2020-08-20 16:02:36 +02:00
Alexei Starovoitov a228a64fc1 bpf: Add bpf_prog iterator
It's mostly a copy paste of commit 6086d29def ("bpf: Add bpf_map iterator")
that is use to implement bpf_seq_file opreations to traverse all bpf programs.

v1->v2: Tweak to use build time btf_id

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2020-07-25 20:16:32 -07:00
Jakub Sitnicki b27f7bb590 flow_dissector: Move out netns_bpf prog callbacks
Move functions to manage BPF programs attached to netns that are not
specific to flow dissector to a dedicated module named
bpf/net_namespace.c.

The set of functions will grow with the addition of bpf_link support for
netns attached programs. This patch prepares ground by creating a place
for it.

This is a code move with no functional changes intended.

Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200531082846.2117903-4-jakub@cloudflare.com
2020-06-01 15:21:02 -07:00
Andrii Nakryiko 457f44363a bpf: Implement BPF ring buffer and verifier support for it
This commit adds a new MPSC ring buffer implementation into BPF ecosystem,
which allows multiple CPUs to submit data to a single shared ring buffer. On
the consumption side, only single consumer is assumed.

Motivation
----------
There are two distinctive motivators for this work, which are not satisfied by
existing perf buffer, which prompted creation of a new ring buffer
implementation.
  - more efficient memory utilization by sharing ring buffer across CPUs;
  - preserving ordering of events that happen sequentially in time, even
  across multiple CPUs (e.g., fork/exec/exit events for a task).

These two problems are independent, but perf buffer fails to satisfy both.
Both are a result of a choice to have per-CPU perf ring buffer.  Both can be
also solved by having an MPSC implementation of ring buffer. The ordering
problem could technically be solved for perf buffer with some in-kernel
counting, but given the first one requires an MPSC buffer, the same solution
would solve the second problem automatically.

Semantics and APIs
------------------
Single ring buffer is presented to BPF programs as an instance of BPF map of
type BPF_MAP_TYPE_RINGBUF. Two other alternatives considered, but ultimately
rejected.

One way would be to, similar to BPF_MAP_TYPE_PERF_EVENT_ARRAY, make
BPF_MAP_TYPE_RINGBUF could represent an array of ring buffers, but not enforce
"same CPU only" rule. This would be more familiar interface compatible with
existing perf buffer use in BPF, but would fail if application needed more
advanced logic to lookup ring buffer by arbitrary key. HASH_OF_MAPS addresses
this with current approach. Additionally, given the performance of BPF
ringbuf, many use cases would just opt into a simple single ring buffer shared
among all CPUs, for which current approach would be an overkill.

Another approach could introduce a new concept, alongside BPF map, to
represent generic "container" object, which doesn't necessarily have key/value
interface with lookup/update/delete operations. This approach would add a lot
of extra infrastructure that has to be built for observability and verifier
support. It would also add another concept that BPF developers would have to
familiarize themselves with, new syntax in libbpf, etc. But then would really
provide no additional benefits over the approach of using a map.
BPF_MAP_TYPE_RINGBUF doesn't support lookup/update/delete operations, but so
doesn't few other map types (e.g., queue and stack; array doesn't support
delete, etc).

The approach chosen has an advantage of re-using existing BPF map
infrastructure (introspection APIs in kernel, libbpf support, etc), being
familiar concept (no need to teach users a new type of object in BPF program),
and utilizing existing tooling (bpftool). For common scenario of using
a single ring buffer for all CPUs, it's as simple and straightforward, as
would be with a dedicated "container" object. On the other hand, by being
a map, it can be combined with ARRAY_OF_MAPS and HASH_OF_MAPS map-in-maps to
implement a wide variety of topologies, from one ring buffer for each CPU
(e.g., as a replacement for perf buffer use cases), to a complicated
application hashing/sharding of ring buffers (e.g., having a small pool of
ring buffers with hashed task's tgid being a look up key to preserve order,
but reduce contention).

Key and value sizes are enforced to be zero. max_entries is used to specify
the size of ring buffer and has to be a power of 2 value.

There are a bunch of similarities between perf buffer
(BPF_MAP_TYPE_PERF_EVENT_ARRAY) and new BPF ring buffer semantics:
  - variable-length records;
  - if there is no more space left in ring buffer, reservation fails, no
    blocking;
  - memory-mappable data area for user-space applications for ease of
    consumption and high performance;
  - epoll notifications for new incoming data;
  - but still the ability to do busy polling for new data to achieve the
    lowest latency, if necessary.

BPF ringbuf provides two sets of APIs to BPF programs:
  - bpf_ringbuf_output() allows to *copy* data from one place to a ring
    buffer, similarly to bpf_perf_event_output();
  - bpf_ringbuf_reserve()/bpf_ringbuf_commit()/bpf_ringbuf_discard() APIs
    split the whole process into two steps. First, a fixed amount of space is
    reserved. If successful, a pointer to a data inside ring buffer data area
    is returned, which BPF programs can use similarly to a data inside
    array/hash maps. Once ready, this piece of memory is either committed or
    discarded. Discard is similar to commit, but makes consumer ignore the
    record.

bpf_ringbuf_output() has disadvantage of incurring extra memory copy, because
record has to be prepared in some other place first. But it allows to submit
records of the length that's not known to verifier beforehand. It also closely
matches bpf_perf_event_output(), so will simplify migration significantly.

bpf_ringbuf_reserve() avoids the extra copy of memory by providing a memory
pointer directly to ring buffer memory. In a lot of cases records are larger
than BPF stack space allows, so many programs have use extra per-CPU array as
a temporary heap for preparing sample. bpf_ringbuf_reserve() avoid this needs
completely. But in exchange, it only allows a known constant size of memory to
be reserved, such that verifier can verify that BPF program can't access
memory outside its reserved record space. bpf_ringbuf_output(), while slightly
slower due to extra memory copy, covers some use cases that are not suitable
for bpf_ringbuf_reserve().

The difference between commit and discard is very small. Discard just marks
a record as discarded, and such records are supposed to be ignored by consumer
code. Discard is useful for some advanced use-cases, such as ensuring
all-or-nothing multi-record submission, or emulating temporary malloc()/free()
within single BPF program invocation.

Each reserved record is tracked by verifier through existing
reference-tracking logic, similar to socket ref-tracking. It is thus
impossible to reserve a record, but forget to submit (or discard) it.

bpf_ringbuf_query() helper allows to query various properties of ring buffer.
Currently 4 are supported:
  - BPF_RB_AVAIL_DATA returns amount of unconsumed data in ring buffer;
  - BPF_RB_RING_SIZE returns the size of ring buffer;
  - BPF_RB_CONS_POS/BPF_RB_PROD_POS returns current logical possition of
    consumer/producer, respectively.
Returned values are momentarily snapshots of ring buffer state and could be
off by the time helper returns, so this should be used only for
debugging/reporting reasons or for implementing various heuristics, that take
into account highly-changeable nature of some of those characteristics.

One such heuristic might involve more fine-grained control over poll/epoll
notifications about new data availability in ring buffer. Together with
BPF_RB_NO_WAKEUP/BPF_RB_FORCE_WAKEUP flags for output/commit/discard helpers,
it allows BPF program a high degree of control and, e.g., more efficient
batched notifications. Default self-balancing strategy, though, should be
adequate for most applications and will work reliable and efficiently already.

Design and implementation
-------------------------
This reserve/commit schema allows a natural way for multiple producers, either
on different CPUs or even on the same CPU/in the same BPF program, to reserve
independent records and work with them without blocking other producers. This
means that if BPF program was interruped by another BPF program sharing the
same ring buffer, they will both get a record reserved (provided there is
enough space left) and can work with it and submit it independently. This
applies to NMI context as well, except that due to using a spinlock during
reservation, in NMI context, bpf_ringbuf_reserve() might fail to get a lock,
in which case reservation will fail even if ring buffer is not full.

The ring buffer itself internally is implemented as a power-of-2 sized
circular buffer, with two logical and ever-increasing counters (which might
wrap around on 32-bit architectures, that's not a problem):
  - consumer counter shows up to which logical position consumer consumed the
    data;
  - producer counter denotes amount of data reserved by all producers.

Each time a record is reserved, producer that "owns" the record will
successfully advance producer counter. At that point, data is still not yet
ready to be consumed, though. Each record has 8 byte header, which contains
the length of reserved record, as well as two extra bits: busy bit to denote
that record is still being worked on, and discard bit, which might be set at
commit time if record is discarded. In the latter case, consumer is supposed
to skip the record and move on to the next one. Record header also encodes
record's relative offset from the beginning of ring buffer data area (in
pages). This allows bpf_ringbuf_commit()/bpf_ringbuf_discard() to accept only
the pointer to the record itself, without requiring also the pointer to ring
buffer itself. Ring buffer memory location will be restored from record
metadata header. This significantly simplifies verifier, as well as improving
API usability.

Producer counter increments are serialized under spinlock, so there is
a strict ordering between reservations. Commits, on the other hand, are
completely lockless and independent. All records become available to consumer
in the order of reservations, but only after all previous records where
already committed. It is thus possible for slow producers to temporarily hold
off submitted records, that were reserved later.

Reservation/commit/consumer protocol is verified by litmus tests in
Documentation/litmus-test/bpf-rb.

One interesting implementation bit, that significantly simplifies (and thus
speeds up as well) implementation of both producers and consumers is how data
area is mapped twice contiguously back-to-back in the virtual memory. This
allows to not take any special measures for samples that have to wrap around
at the end of the circular buffer data area, because the next page after the
last data page would be first data page again, and thus the sample will still
appear completely contiguous in virtual memory. See comment and a simple ASCII
diagram showing this visually in bpf_ringbuf_area_alloc().

Another feature that distinguishes BPF ringbuf from perf ring buffer is
a self-pacing notifications of new data being availability.
bpf_ringbuf_commit() implementation will send a notification of new record
being available after commit only if consumer has already caught up right up
to the record being committed. If not, consumer still has to catch up and thus
will see new data anyways without needing an extra poll notification.
Benchmarks (see tools/testing/selftests/bpf/benchs/bench_ringbuf.c) show that
this allows to achieve a very high throughput without having to resort to
tricks like "notify only every Nth sample", which are necessary with perf
buffer. For extreme cases, when BPF program wants more manual control of
notifications, commit/discard/output helpers accept BPF_RB_NO_WAKEUP and
BPF_RB_FORCE_WAKEUP flags, which give full control over notifications of data
availability, but require extra caution and diligence in using this API.

Comparison to alternatives
--------------------------
Before considering implementing BPF ring buffer from scratch existing
alternatives in kernel were evaluated, but didn't seem to meet the needs. They
largely fell into few categores:
  - per-CPU buffers (perf, ftrace, etc), which don't satisfy two motivations
    outlined above (ordering and memory consumption);
  - linked list-based implementations; while some were multi-producer designs,
    consuming these from user-space would be very complicated and most
    probably not performant; memory-mapping contiguous piece of memory is
    simpler and more performant for user-space consumers;
  - io_uring is SPSC, but also requires fixed-sized elements. Naively turning
    SPSC queue into MPSC w/ lock would have subpar performance compared to
    locked reserve + lockless commit, as with BPF ring buffer. Fixed sized
    elements would be too limiting for BPF programs, given existing BPF
    programs heavily rely on variable-sized perf buffer already;
  - specialized implementations (like a new printk ring buffer, [0]) with lots
    of printk-specific limitations and implications, that didn't seem to fit
    well for intended use with BPF programs.

  [0] https://lwn.net/Articles/779550/

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-2-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-06-01 14:38:22 -07:00
Björn Töpel d20a1676df xsk: Move xskmap.c to net/xdp/
The XSKMAP is partly implemented by net/xdp/xsk.c. Move xskmap.c from
kernel/bpf/ to net/xdp/, which is the logical place for AF_XDP related
code. Also, move AF_XDP struct definitions, and function declarations
only used by AF_XDP internals into net/xdp/xsk.h.

Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200520192103.355233-3-bjorn.topel@gmail.com
2020-05-21 17:31:26 -07:00
Yonghong Song eaaacd2391 bpf: Add task and task/file iterator targets
Only the tasks belonging to "current" pid namespace
are enumerated.

For task/file target, the bpf program will have access to
  struct task_struct *task
  u32 fd
  struct file *file
where fd/file is an open file for the task.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175911.2476407-1-yhs@fb.com
2020-05-09 17:05:26 -07:00
Yonghong Song 6086d29def bpf: Add bpf_map iterator
Implement seq_file operations to traverse all bpf_maps.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175909.2476096-1-yhs@fb.com
2020-05-09 17:05:26 -07:00
Yonghong Song ae24345da5 bpf: Implement an interface to register bpf_iter targets
The target can call bpf_iter_reg_target() to register itself.
The needed information:
  target:           target name
  seq_ops:          the seq_file operations for the target
  init_seq_private  target callback to initialize seq_priv during file open
  fini_seq_private  target callback to clean up seq_priv during file release
  seq_priv_size:    the private_data size needed by the seq_file
                    operations

The target name represents a target which provides a seq_ops
for iterating objects.

The target can provide two callback functions, init_seq_private
and fini_seq_private, called during file open/release time.
For example, /proc/net/{tcp6, ipv6_route, netlink, ...}, net
name space needs to be setup properly during file open and
released properly during file release.

Function bpf_iter_unreg_target() is also implemented to unregister
a particular target.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175859.2474669-1-yhs@fb.com
2020-05-09 17:05:25 -07:00
KP Singh fc611f47f2 bpf: Introduce BPF_PROG_TYPE_LSM
Introduce types and configs for bpf programs that can be attached to
LSM hooks. The programs can be enabled by the config option
CONFIG_BPF_LSM.

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Florent Revest <revest@google.com>
Reviewed-by: Thomas Garnier <thgarnie@google.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: James Morris <jamorris@linux.microsoft.com>
Link: https://lore.kernel.org/bpf/20200329004356.27286-2-kpsingh@chromium.org
2020-03-30 01:34:00 +02:00
Martin KaFai Lau 27ae7997a6 bpf: Introduce BPF_PROG_TYPE_STRUCT_OPS
This patch allows the kernel's struct ops (i.e. func ptr) to be
implemented in BPF.  The first use case in this series is the
"struct tcp_congestion_ops" which will be introduced in a
latter patch.

This patch introduces a new prog type BPF_PROG_TYPE_STRUCT_OPS.
The BPF_PROG_TYPE_STRUCT_OPS prog is verified against a particular
func ptr of a kernel struct.  The attr->attach_btf_id is the btf id
of a kernel struct.  The attr->expected_attach_type is the member
"index" of that kernel struct.  The first member of a struct starts
with member index 0.  That will avoid ambiguity when a kernel struct
has multiple func ptrs with the same func signature.

For example, a BPF_PROG_TYPE_STRUCT_OPS prog is written
to implement the "init" func ptr of the "struct tcp_congestion_ops".
The attr->attach_btf_id is the btf id of the "struct tcp_congestion_ops"
of the _running_ kernel.  The attr->expected_attach_type is 3.

The ctx of BPF_PROG_TYPE_STRUCT_OPS is an array of u64 args saved
by arch_prepare_bpf_trampoline that will be done in the next
patch when introducing BPF_MAP_TYPE_STRUCT_OPS.

"struct bpf_struct_ops" is introduced as a common interface for the kernel
struct that supports BPF_PROG_TYPE_STRUCT_OPS prog.  The supporting kernel
struct will need to implement an instance of the "struct bpf_struct_ops".

The supporting kernel struct also needs to implement a bpf_verifier_ops.
During BPF_PROG_LOAD, bpf_struct_ops_find() will find the right
bpf_verifier_ops by searching the attr->attach_btf_id.

A new "btf_struct_access" is also added to the bpf_verifier_ops such
that the supporting kernel struct can optionally provide its own specific
check on accessing the func arg (e.g. provide limited write access).

After btf_vmlinux is parsed, the new bpf_struct_ops_init() is called
to initialize some values (e.g. the btf id of the supporting kernel
struct) and it can only be done once the btf_vmlinux is available.

The R0 checks at BPF_EXIT is excluded for the BPF_PROG_TYPE_STRUCT_OPS prog
if the return type of the prog->aux->attach_func_proto is "void".

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003503.3855825-1-kafai@fb.com
2020-01-09 08:46:18 -08:00
Björn Töpel 75ccbef636 bpf: Introduce BPF dispatcher
The BPF dispatcher is a multi-way branch code generator, mainly
targeted for XDP programs. When an XDP program is executed via the
bpf_prog_run_xdp(), it is invoked via an indirect call. The indirect
call has a substantial performance impact, when retpolines are
enabled. The dispatcher transform indirect calls to direct calls, and
therefore avoids the retpoline. The dispatcher is generated using the
BPF JIT, and relies on text poking provided by bpf_arch_text_poke().

The dispatcher hijacks a trampoline function it via the __fentry__ nop
of the trampoline. One dispatcher instance currently supports up to 64
dispatch points. A user creates a dispatcher with its corresponding
trampoline with the DEFINE_BPF_DISPATCHER macro.

Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191213175112.30208-3-bjorn.topel@gmail.com
2019-12-13 13:09:32 -08:00
Alexei Starovoitov fec56f5890 bpf: Introduce BPF trampoline
Introduce BPF trampoline concept to allow kernel code to call into BPF programs
with practically zero overhead.  The trampoline generation logic is
architecture dependent.  It's converting native calling convention into BPF
calling convention.  BPF ISA is 64-bit (even on 32-bit architectures). The
registers R1 to R5 are used to pass arguments into BPF functions. The main BPF
program accepts only single argument "ctx" in R1. Whereas CPU native calling
convention is different. x86-64 is passing first 6 arguments in registers
and the rest on the stack. x86-32 is passing first 3 arguments in registers.
sparc64 is passing first 6 in registers. And so on.

The trampolines between BPF and kernel already exist.  BPF_CALL_x macros in
include/linux/filter.h statically compile trampolines from BPF into kernel
helpers. They convert up to five u64 arguments into kernel C pointers and
integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On
32-bit architecture they're meaningful.

The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and
__bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert
kernel function arguments into array of u64s that BPF program consumes via
R1=ctx pointer.

This patch set is doing the same job as __bpf_trace_##call() static
trampolines, but dynamically for any kernel function. There are ~22k global
kernel functions that are attachable via nop at function entry. The function
arguments and types are described in BTF.  The job of btf_distill_func_proto()
function is to extract useful information from BTF into "function model" that
architecture dependent trampoline generators will use to generate assembly code
to cast kernel function arguments into array of u64s.  For example the kernel
function eth_type_trans has two pointers. They will be casted to u64 and stored
into stack of generated trampoline. The pointer to that stack space will be
passed into BPF program in R1. On x86-64 such generated trampoline will consume
16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will
make sure that only two u64 are accessed read-only by BPF program. The verifier
will also recognize the precise type of the pointers being accessed and will
not allow typecasting of the pointer to a different type within BPF program.

The tracing use case in the datacenter demonstrated that certain key kernel
functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always
active.  Other functions have both kprobe and kretprobe.  So it is essential to
keep both kernel code and BPF programs executing at maximum speed. Hence
generated BPF trampoline is re-generated every time new program is attached or
detached to maintain maximum performance.

To avoid the high cost of retpoline the attached BPF programs are called
directly. __bpf_prog_enter/exit() are used to support per-program execution
stats.  In the future this logic will be optimized further by adding support
for bpf_stats_enabled_key inside generated assembly code. Introduction of
preemptible and sleepable BPF programs will completely remove the need to call
to __bpf_prog_enter/exit().

Detach of a BPF program from the trampoline should not fail. To avoid memory
allocation in detach path the half of the page is used as a reserve and flipped
after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly
which is enough for BPF tracing use cases. This limit can be increased in the
future.

BPF_TRACE_FENTRY programs have access to raw kernel function arguments while
BPF_TRACE_FEXIT programs have access to kernel return value as well. Often
kprobe BPF program remembers function arguments in a map while kretprobe
fetches arguments from a map and analyzes them together with return value.
BPF_TRACE_FEXIT accelerates this typical use case.

Recursion prevention for kprobe BPF programs is done via per-cpu
bpf_prog_active counter. In practice that turned out to be a mistake. It
caused programs to randomly skip execution. The tracing tools missed results
they were looking for. Hence BPF trampoline doesn't provide builtin recursion
prevention. It's a job of BPF program itself and will be addressed in the
follow up patches.

BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases
in the future. For example to remove retpoline cost from XDP programs.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
2019-11-15 23:41:51 +01:00
Andrii Nakryiko 341dfcf8d7 btf: expose BTF info through sysfs
Make .BTF section allocated and expose its contents through sysfs.

/sys/kernel/btf directory is created to contain all the BTFs present
inside kernel. Currently there is only kernel's main BTF, represented as
/sys/kernel/btf/kernel file. Once kernel modules' BTFs are supported,
each module will expose its BTF as /sys/kernel/btf/<module-name> file.

Current approach relies on a few pieces coming together:
1. pahole is used to take almost final vmlinux image (modulo .BTF and
   kallsyms) and generate .BTF section by converting DWARF info into
   BTF. This section is not allocated and not mapped to any segment,
   though, so is not yet accessible from inside kernel at runtime.
2. objcopy dumps .BTF contents into binary file and subsequently
   convert binary file into linkable object file with automatically
   generated symbols _binary__btf_kernel_bin_start and
   _binary__btf_kernel_bin_end, pointing to start and end, respectively,
   of BTF raw data.
3. final vmlinux image is generated by linking this object file (and
   kallsyms, if necessary). sysfs_btf.c then creates
   /sys/kernel/btf/kernel file and exposes embedded BTF contents through
   it. This allows, e.g., libbpf and bpftool access BTF info at
   well-known location, without resorting to searching for vmlinux image
   on disk (location of which is not standardized and vmlinux image
   might not be even available in some scenarios, e.g., inside qemu
   during testing).

Alternative approach using .incbin assembler directive to embed BTF
contents directly was attempted but didn't work, because sysfs_proc.o is
not re-compiled during link-vmlinux.sh stage. This is required, though,
to update embedded BTF data (initially empty data is embedded, then
pahole generates BTF info and we need to regenerate sysfs_btf.o with
updated contents, but it's too late at that point).

If BTF couldn't be generated due to missing or too old pahole,
sysfs_btf.c handles that gracefully by detecting that
_binary__btf_kernel_bin_start (weak symbol) is 0 and not creating
/sys/kernel/btf at all.

v2->v3:
- added Documentation/ABI/testing/sysfs-kernel-btf (Greg K-H);
- created proper kobject (btf_kobj) for btf directory (Greg K-H);
- undo v2 change of reusing vmlinux, as it causes extra kallsyms pass
  due to initially missing  __binary__btf_kernel_bin_{start/end} symbols;

v1->v2:
- allow kallsyms stage to re-use vmlinux generated by gen_btf();

Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-13 16:14:15 +02:00
Valdis Klētnieks aee450cbe4 bpf: silence warning messages in core
Compiling kernel/bpf/core.c with W=1 causes a flood of warnings:

kernel/bpf/core.c:1198:65: warning: initialized field overwritten [-Woverride-init]
 1198 | #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
      |                                                                 ^~~~
kernel/bpf/core.c:1087:2: note: in expansion of macro 'BPF_INSN_3_TBL'
 1087 |  INSN_3(ALU, ADD,  X),   \
      |  ^~~~~~
kernel/bpf/core.c:1202:3: note: in expansion of macro 'BPF_INSN_MAP'
 1202 |   BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
      |   ^~~~~~~~~~~~
kernel/bpf/core.c:1198:65: note: (near initialization for 'public_insntable[12]')
 1198 | #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
      |                                                                 ^~~~
kernel/bpf/core.c:1087:2: note: in expansion of macro 'BPF_INSN_3_TBL'
 1087 |  INSN_3(ALU, ADD,  X),   \
      |  ^~~~~~
kernel/bpf/core.c:1202:3: note: in expansion of macro 'BPF_INSN_MAP'
 1202 |   BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
      |   ^~~~~~~~~~~~

98 copies of the above.

The attached patch silences the warnings, because we *know* we're overwriting
the default initializer. That leaves bpf/core.c with only 6 other warnings,
which become more visible in comparison.

Signed-off-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-06-12 16:51:02 +02:00
Mauricio Vasquez B f1a2e44a3a bpf: add queue and stack maps
Queue/stack maps implement a FIFO/LIFO data storage for ebpf programs.
These maps support peek, pop and push operations that are exposed to eBPF
programs through the new bpf_map[peek/pop/push] helpers.  Those operations
are exposed to userspace applications through the already existing
syscalls in the following way:

BPF_MAP_LOOKUP_ELEM            -> peek
BPF_MAP_LOOKUP_AND_DELETE_ELEM -> pop
BPF_MAP_UPDATE_ELEM            -> push

Queue/stack maps are implemented using a buffer, tail and head indexes,
hence BPF_F_NO_PREALLOC is not supported.

As opposite to other maps, queue and stack do not use RCU for protecting
maps values, the bpf_map[peek/pop] have a ARG_PTR_TO_UNINIT_MAP_VALUE
argument that is a pointer to a memory zone where to save the value of a
map.  Basically the same as ARG_PTR_TO_UNINIT_MEM, but the size has not
be passed as an extra argument.

Our main motivation for implementing queue/stack maps was to keep track
of a pool of elements, like network ports in a SNAT, however we forsee
other use cases, like for exampling saving last N kernel events in a map
and then analysing from userspace.

Signed-off-by: Mauricio Vasquez B <mauricio.vasquez@polito.it>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-10-19 13:24:31 -07:00
Daniel Borkmann 604326b41a bpf, sockmap: convert to generic sk_msg interface
Add a generic sk_msg layer, and convert current sockmap and later
kTLS over to make use of it. While sk_buff handles network packet
representation from netdevice up to socket, sk_msg handles data
representation from application to socket layer.

This means that sk_msg framework spans across ULP users in the
kernel, and enables features such as introspection or filtering
of data with the help of BPF programs that operate on this data
structure.

Latter becomes in particular useful for kTLS where data encryption
is deferred into the kernel, and as such enabling the kernel to
perform L7 introspection and policy based on BPF for TLS connections
where the record is being encrypted after BPF has run and came to
a verdict. In order to get there, first step is to transform open
coding of scatter-gather list handling into a common core framework
that subsystems can use.

The code itself has been split and refactored into three bigger
pieces: i) the generic sk_msg API which deals with managing the
scatter gather ring, providing helpers for walking and mangling,
transferring application data from user space into it, and preparing
it for BPF pre/post-processing, ii) the plain sock map itself
where sockets can be attached to or detached from; these bits
are independent of i) which can now be used also without sock
map, and iii) the integration with plain TCP as one protocol
to be used for processing L7 application data (later this could
e.g. also be extended to other protocols like UDP). The semantics
are the same with the old sock map code and therefore no change
of user facing behavior or APIs. While pursuing this work it
also helped finding a number of bugs in the old sockmap code
that we've fixed already in earlier commits. The test_sockmap
kselftest suite passes through fine as well.

Joint work with John.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-10-15 12:23:19 -07:00
Martin KaFai Lau 5dc4c4b7d4 bpf: Introduce BPF_MAP_TYPE_REUSEPORT_SOCKARRAY
This patch introduces a new map type BPF_MAP_TYPE_REUSEPORT_SOCKARRAY.

To unleash the full potential of a bpf prog, it is essential for the
userspace to be capable of directly setting up a bpf map which can then
be consumed by the bpf prog to make decision.  In this case, decide which
SO_REUSEPORT sk to serve the incoming request.

By adding BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, the userspace has total control
and visibility on where a SO_REUSEPORT sk should be located in a bpf map.
The later patch will introduce BPF_PROG_TYPE_SK_REUSEPORT such that
the bpf prog can directly select a sk from the bpf map.  That will
raise the programmability of the bpf prog attached to a reuseport
group (a group of sk serving the same IP:PORT).

For example, in UDP, the bpf prog can peek into the payload (e.g.
through the "data" pointer introduced in the later patch) to learn
the application level's connection information and then decide which sk
to pick from a bpf map.  The userspace can tightly couple the sk's location
in a bpf map with the application logic in generating the UDP payload's
connection information.  This connection info contact/API stays within the
userspace.

Also, when used with map-in-map, the userspace can switch the
old-server-process's inner map to a new-server-process's inner map
in one call "bpf_map_update_elem(outer_map, &index, &new_reuseport_array)".
The bpf prog will then direct incoming requests to the new process instead
of the old process.  The old process can finish draining the pending
requests (e.g. by "accept()") before closing the old-fds.  [Note that
deleting a fd from a bpf map does not necessary mean the fd is closed]

During map_update_elem(),
Only SO_REUSEPORT sk (i.e. which has already been added
to a reuse->socks[]) can be used.  That means a SO_REUSEPORT sk that is
"bind()" for UDP or "bind()+listen()" for TCP.  These conditions are
ensured in "reuseport_array_update_check()".

A SO_REUSEPORT sk can only be added once to a map (i.e. the
same sk cannot be added twice even to the same map).  SO_REUSEPORT
already allows another sk to be created for the same IP:PORT.
There is no need to re-create a similar usage in the BPF side.

When a SO_REUSEPORT is deleted from the "reuse->socks[]" (e.g. "close()"),
it will notify the bpf map to remove it from the map also.  It is
done through "bpf_sk_reuseport_detach()" and it will only be called
if >=1 of the "reuse->sock[]" has ever been added to a bpf map.

The map_update()/map_delete() has to be in-sync with the
"reuse->socks[]".  Hence, the same "reuseport_lock" used
by "reuse->socks[]" has to be used here also. Care has
been taken to ensure the lock is only acquired when the
adding sk passes some strict tests. and
freeing the map does not require the reuseport_lock.

The reuseport_array will also support lookup from the syscall
side.  It will return a sock_gen_cookie().  The sock_gen_cookie()
is on-demand (i.e. a sk's cookie is not generated until the very
first map_lookup_elem()).

The lookup cookie is 64bits but it goes against the logical userspace
expectation on 32bits sizeof(fd) (and as other fd based bpf maps do also).
It may catch user in surprise if we enforce value_size=8 while
userspace still pass a 32bits fd during update.  Supporting different
value_size between lookup and update seems unintuitive also.

We also need to consider what if other existing fd based maps want
to return 64bits value from syscall's lookup in the future.
Hence, reuseport_array supports both value_size 4 and 8, and
assuming user will usually use value_size=4.  The syscall's lookup
will return ENOSPC on value_size=4.  It will will only
return 64bits value from sock_gen_cookie() when user consciously
choose value_size=8 (as a signal that lookup is desired) which then
requires a 64bits value in both lookup and update.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-08-11 01:58:46 +02:00
Roman Gushchin de9cbbaadb bpf: introduce cgroup storage maps
This commit introduces BPF_MAP_TYPE_CGROUP_STORAGE maps:
a special type of maps which are implementing the cgroup storage.

>From the userspace point of view it's almost a generic
hash map with the (cgroup inode id, attachment type) pair
used as a key.

The only difference is that some operations are restricted:
  1) a user can't create new entries,
  2) a user can't remove existing entries.

The lookup from userspace is o(log(n)).

Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-08-03 00:47:32 +02:00
Björn Töpel fbfc504a24 bpf: introduce new bpf AF_XDP map type BPF_MAP_TYPE_XSKMAP
The xskmap is yet another BPF map, very much inspired by
dev/cpu/sockmap, and is a holder of AF_XDP sockets. A user application
adds AF_XDP sockets into the map, and by using the bpf_redirect_map
helper, an XDP program can redirect XDP frames to an AF_XDP socket.

Note that a socket that is bound to certain ifindex/queue index will
*only* accept XDP frames from that netdev/queue index. If an XDP
program tries to redirect from a netdev/queue index other than what
the socket is bound to, the frame will not be received on the socket.

A socket can reside in multiple maps.

v3: Fixed race and simplified code.
v2: Removed one indirection in map lookup.

Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-05-03 15:55:24 -07:00
Martin KaFai Lau 69b693f0ae bpf: btf: Introduce BPF Type Format (BTF)
This patch introduces BPF type Format (BTF).

BTF (BPF Type Format) is the meta data format which describes
the data types of BPF program/map.  Hence, it basically focus
on the C programming language which the modern BPF is primary
using.  The first use case is to provide a generic pretty print
capability for a BPF map.

BTF has its root from CTF (Compact C-Type format).  To simplify
the handling of BTF data, BTF removes the differences between
small and big type/struct-member.  Hence, BTF consistently uses u32
instead of supporting both "one u16" and "two u32 (+padding)" in
describing type and struct-member.

It also raises the number of types (and functions) limit
from 0x7fff to 0x7fffffff.

Due to the above changes,  the format is not compatible to CTF.
Hence, BTF starts with a new BTF_MAGIC and version number.

This patch does the first verification pass to the BTF.  The first
pass checks:
1. meta-data size (e.g. It does not go beyond the total btf's size)
2. name_offset is valid
3. Each BTF_KIND (e.g. int, enum, struct....) does its
   own check of its meta-data.

Some other checks, like checking a struct's member is referring
to a valid type, can only be done in the second pass.  The second
verification pass will be implemented in the next patch.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-19 21:46:24 +02:00
John Fastabend 5f103c5d4d bpf: only build sockmap with CONFIG_INET
The sockmap infrastructure is only aware of TCP sockets at the
moment. In the future we plan to add UDP. In both cases CONFIG_NET
should be built-in.

So lets only build sockmap if CONFIG_INET is enabled.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-01-04 19:01:14 +01:00
Jakub Kicinski ab3f0063c4 bpf: offload: add infrastructure for loading programs for a specific netdev
The fact that we don't know which device the program is going
to be used on is quite limiting in current eBPF infrastructure.
We have to reverse or limit the changes which kernel makes to
the loaded bytecode if we want it to be offloaded to a networking
device.  We also have to invent new APIs for debugging and
troubleshooting support.

Make it possible to load programs for a specific netdev.  This
helps us to bring the debug information closer to the core
eBPF infrastructure (e.g. we will be able to reuse the verifer
log in device JIT).  It allows device JITs to perform translation
on the original bytecode.

__bpf_prog_get() when called to get a reference for an attachment
point will now refuse to give it if program has a device assigned.
Following patches will add a version of that function which passes
the expected netdev in. @type argument in __bpf_prog_get() is
renamed to attach_type to make it clearer that it's only set on
attachment.

All calls to ndo_bpf are protected by rtnl, only verifier callbacks
are not.  We need a wait queue to make sure netdev doesn't get
destroyed while verifier is still running and calling its driver.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-05 22:26:18 +09:00
David S. Miller 2a171788ba Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Files removed in 'net-next' had their license header updated
in 'net'.  We take the remove from 'net-next'.

Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-04 09:26:51 +09:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Jesper Dangaard Brouer 6710e11269 bpf: introduce new bpf cpu map type BPF_MAP_TYPE_CPUMAP
The 'cpumap' is primarily used as a backend map for XDP BPF helper
call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.

This patch implement the main part of the map.  It is not connected to
the XDP redirect system yet, and no SKB allocation are done yet.

The main concern in this patch is to ensure the datapath can run
without any locking.  This adds complexity to the setup and tear-down
procedure, which assumptions are extra carefully documented in the
code comments.

V2:
 - make sure array isn't larger than NR_CPUS
 - make sure CPUs added is a valid possible CPU

V3: fix nitpicks from Jakub Kicinski <kubakici@wp.pl>

V5:
 - Restrict map allocation to root / CAP_SYS_ADMIN
 - WARN_ON_ONCE if queue is not empty on tear-down
 - Return -EPERM on memlock limit instead of -ENOMEM
 - Error code in __cpu_map_entry_alloc() also handle ptr_ring_cleanup()
 - Moved cpu_map_enqueue() to next patch

V6: all notice by Daniel Borkmann
 - Fix err return code in cpu_map_alloc() introduced in V5
 - Move cpu_possible() check after max_entries boundary check
 - Forbid usage initially in check_map_func_compatibility()

V7:
 - Fix alloc error path spotted by Daniel Borkmann
 - Did stress test adding+removing CPUs from the map concurrently
 - Fixed refcnt issue on cpu_map_entry, kthread started too soon
 - Make sure packets are flushed during tear-down, involved use of
   rcu_barrier() and kthread_run only exit after queue is empty
 - Fix alloc error path in __cpu_map_entry_alloc() for ptr_ring

V8:
 - Nitpicking comments and gramma by Edward Cree
 - Fix missing semi-colon introduced in V7 due to rebasing
 - Move struct bpf_cpu_map_entry members cpu+map_id to tracepoint patch

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 12:12:18 +01:00
Jakub Kicinski f4ac7e0b5c bpf: move instruction printing into a separate file
Separate the instruction printing into a standalone source file.
This way sneaky code from tools/ can compile it in directly.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-10 12:30:16 -07:00
John Fastabend 6bdc9c4c31 bpf: sock_map fixes for !CONFIG_BPF_SYSCALL and !STREAM_PARSER
Resolve issues with !CONFIG_BPF_SYSCALL and !STREAM_PARSER

net/core/filter.c: In function ‘do_sk_redirect_map’:
net/core/filter.c:1881:3: error: implicit declaration of function ‘__sock_map_lookup_elem’ [-Werror=implicit-function-declaration]
   sk = __sock_map_lookup_elem(ri->map, ri->ifindex);
   ^
net/core/filter.c:1881:6: warning: assignment makes pointer from integer without a cast [enabled by default]
   sk = __sock_map_lookup_elem(ri->map, ri->ifindex);

Fixes: 174a79ff95 ("bpf: sockmap with sk redirect support")
Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-16 15:34:13 -07:00
John Fastabend 174a79ff95 bpf: sockmap with sk redirect support
Recently we added a new map type called dev map used to forward XDP
packets between ports (6093ec2dc3). This patches introduces a
similar notion for sockets.

A sockmap allows users to add participating sockets to a map. When
sockets are added to the map enough context is stored with the
map entry to use the entry with a new helper

  bpf_sk_redirect_map(map, key, flags)

This helper (analogous to bpf_redirect_map in XDP) is given the map
and an entry in the map. When called from a sockmap program, discussed
below, the skb will be sent on the socket using skb_send_sock().

With the above we need a bpf program to call the helper from that will
then implement the send logic. The initial site implemented in this
series is the recv_sock hook. For this to work we implemented a map
attach command to add attributes to a map. In sockmap we add two
programs a parse program and a verdict program. The parse program
uses strparser to build messages and pass them to the verdict program.
The parse programs use the normal strparser semantics. The verdict
program is of type SK_SKB.

The verdict program returns a verdict SK_DROP, or  SK_REDIRECT for
now. Additional actions may be added later. When SK_REDIRECT is
returned, expected when bpf program uses bpf_sk_redirect_map(), the
sockmap logic will consult per cpu variables set by the helper routine
and pull the sock entry out of the sock map. This pattern follows the
existing redirect logic in cls and xdp programs.

This gives the flow,

 recv_sock -> str_parser (parse_prog) -> verdict_prog -> skb_send_sock
                                                     \
                                                      -> kfree_skb

As an example use case a message based load balancer may use specific
logic in the verdict program to select the sock to send on.

Sample programs are provided in future patches that hopefully illustrate
the user interfaces. Also selftests are in follow-on patches.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-16 11:27:53 -07:00
Edward Cree f1174f77b5 bpf/verifier: rework value tracking
Unifies adjusted and unadjusted register value types (e.g. FRAME_POINTER is
 now just a PTR_TO_STACK with zero offset).
Tracks value alignment by means of tracking known & unknown bits.  This
 also replaces the 'reg->imm' (leading zero bits) calculations for (what
 were) UNKNOWN_VALUEs.
If pointer leaks are allowed, and adjust_ptr_min_max_vals returns -EACCES,
 treat the pointer as an unknown scalar and try again, because we might be
 able to conclude something about the result (e.g. pointer & 0x40 is either
 0 or 0x40).
Verifier hooks in the netronome/nfp driver were changed to match the new
 data structures.

Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-08 17:51:34 -07:00
John Fastabend 546ac1ffb7 bpf: add devmap, a map for storing net device references
Device map (devmap) is a BPF map, primarily useful for networking
applications, that uses a key to lookup a reference to a netdevice.

The map provides a clean way for BPF programs to build virtual port
to physical port maps. Additionally, it provides a scoping function
for the redirect action itself allowing multiple optimizations. Future
patches will leverage the map to provide batching at the XDP layer.

Another optimization/feature, that is not yet implemented, would be
to support multiple netdevices per key to support efficient multicast
and broadcast support.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-17 09:48:06 -07:00
Martin KaFai Lau 56f668dfe0 bpf: Add array of maps support
This patch adds a few helper funcs to enable map-in-map
support (i.e. outer_map->inner_map).  The first outer_map type
BPF_MAP_TYPE_ARRAY_OF_MAPS is also added in this patch.
The next patch will introduce a hash of maps type.

Any bpf map type can be acted as an inner_map.  The exception
is BPF_MAP_TYPE_PROG_ARRAY because the extra level of
indirection makes it harder to verify the owner_prog_type
and owner_jited.

Multi-level map-in-map is not supported (i.e. map->map is ok
but not map->map->map).

When adding an inner_map to an outer_map, it currently checks the
map_type, key_size, value_size, map_flags, max_entries and ops.
The verifier also uses those map's properties to do static analysis.
map_flags is needed because we need to ensure BPF_PROG_TYPE_PERF_EVENT
is using a preallocated hashtab for the inner_hash also.  ops and
max_entries are needed to generate inlined map-lookup instructions.
For simplicity reason, a simple '==' test is used for both map_flags
and max_entries.  The equality of ops is implied by the equality of
map_type.

During outer_map creation time, an inner_map_fd is needed to create an
outer_map.  However, the inner_map_fd's life time does not depend on the
outer_map.  The inner_map_fd is merely used to initialize
the inner_map_meta of the outer_map.

Also, for the outer_map:

* It allows element update and delete from syscall
* It allows element lookup from bpf_prog

The above is similar to the current fd_array pattern.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-22 15:45:45 -07:00
Daniel Mack b95a5c4db0 bpf: add a longest prefix match trie map implementation
This trie implements a longest prefix match algorithm that can be used
to match IP addresses to a stored set of ranges.

Internally, data is stored in an unbalanced trie of nodes that has a
maximum height of n, where n is the prefixlen the trie was created
with.

Tries may be created with prefix lengths that are multiples of 8, in
the range from 8 to 2048. The key used for lookup and update operations
is a struct bpf_lpm_trie_key, and the value is a uint64_t.

The code carries more information about the internal implementation.

Signed-off-by: Daniel Mack <daniel@zonque.org>
Reviewed-by: David Herrmann <dh.herrmann@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-23 16:10:38 -05:00
Daniel Mack 3007098494 cgroup: add support for eBPF programs
This patch adds two sets of eBPF program pointers to struct cgroup.
One for such that are directly pinned to a cgroup, and one for such
that are effective for it.

To illustrate the logic behind that, assume the following example
cgroup hierarchy.

  A - B - C
        \ D - E

If only B has a program attached, it will be effective for B, C, D
and E. If D then attaches a program itself, that will be effective for
both D and E, and the program in B will only affect B and C. Only one
program of a given type is effective for a cgroup.

Attaching and detaching programs will be done through the bpf(2)
syscall. For now, ingress and egress inet socket filtering are the
only supported use-cases.

Signed-off-by: Daniel Mack <daniel@zonque.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-25 16:25:52 -05:00
Martin KaFai Lau 3a08c2fd76 bpf: LRU List
Introduce bpf_lru_list which will provide LRU capability to
the bpf_htab in the later patch.

* General Thoughts:
1. Target use case.  Read is more often than update.
   (i.e. bpf_lookup_elem() is more often than bpf_update_elem()).
   If bpf_prog does a bpf_lookup_elem() first and then an in-place
   update, it still counts as a read operation to the LRU list concern.
2. It may be useful to think of it as a LRU cache
3. Optimize the read case
   3.1 No lock in read case
   3.2 The LRU maintenance is only done during bpf_update_elem()
4. If there is a percpu LRU list, it will lose the system-wise LRU
   property.  A completely isolated percpu LRU list has the best
   performance but the memory utilization is not ideal considering
   the work load may be imbalance.
5. Hence, this patch starts the LRU implementation with a global LRU
   list with batched operations before accessing the global LRU list.
   As a LRU cache, #read >> #update/#insert operations, it will work well.
6. There is a local list (for each cpu) which is named
   'struct bpf_lru_locallist'.  This local list is not used to sort
   the LRU property.  Instead, the local list is to batch enough
   operations before acquiring the lock of the global LRU list.  More
   details on this later.
7. In the later patch, it allows a percpu LRU list by specifying a
   map-attribute for scalability reason and for use cases that need to
   prepare for the worst (and pathological) case like DoS attack.
   The percpu LRU list is completely isolated from each other and the
   LRU nodes (including free nodes) cannot be moved across the list.  The
   following description is for the global LRU list but mostly applicable
   to the percpu LRU list also.

* Global LRU List:
1. It has three sub-lists: active-list, inactive-list and free-list.
2. The two list idea, active and inactive, is borrowed from the
   page cache.
3. All nodes are pre-allocated and all sit at the free-list (of the
   global LRU list) at the beginning.  The pre-allocation reasoning
   is similar to the existing BPF_MAP_TYPE_HASH.  However,
   opting-out prealloc (BPF_F_NO_PREALLOC) is not supported in
   the LRU map.

* Active/Inactive List (of the global LRU list):
1. The active list, as its name says it, maintains the active set of
   the nodes.  We can think of it as the working set or more frequently
   accessed nodes.  The access frequency is approximated by a ref-bit.
   The ref-bit is set during the bpf_lookup_elem().
2. The inactive list, as its name also says it, maintains a less
   active set of nodes.  They are the candidates to be removed
   from the bpf_htab when we are running out of free nodes.
3. The ordering of these two lists is acting as a rough clock.
   The tail of the inactive list is the older nodes and
   should be released first if the bpf_htab needs free element.

* Rotating the Active/Inactive List (of the global LRU list):
1. It is the basic operation to maintain the LRU property of
   the global list.
2. The active list is only rotated when the inactive list is running
   low.  This idea is similar to the current page cache.
   Inactive running low is currently defined as
   "# of inactive < # of active".
3. The active list rotation always starts from the tail.  It moves
   node without ref-bit set to the head of the inactive list.
   It moves node with ref-bit set back to the head of the active
   list and then clears its ref-bit.
4. The inactive rotation is pretty simply.
   It walks the inactive list and moves the nodes back to the head of
   active list if its ref-bit is set. The ref-bit is cleared after moving
   to the active list.
   If the node does not have ref-bit set, it just leave it as it is
   because it is already in the inactive list.

* Shrinking the Inactive List (of the global LRU list):
1. Shrinking is the operation to get free nodes when the bpf_htab is
   full.
2. It usually only shrinks the inactive list to get free nodes.
3. During shrinking, it will walk the inactive list from the tail,
   delete the nodes without ref-bit set from bpf_htab.
4. If no free node found after step (3), it will forcefully get
   one node from the tail of inactive or active list.  Forcefully is
   in the sense that it ignores the ref-bit.

* Local List:
1. Each CPU has a 'struct bpf_lru_locallist'.  The purpose is to
   batch enough operations before acquiring the lock of the
   global LRU.
2. A local list has two sub-lists, free-list and pending-list.
3. During bpf_update_elem(), it will try to get from the free-list
   of (the current CPU local list).
4. If the local free-list is empty, it will acquire from the
   global LRU list.  The global LRU list can either satisfy it
   by its global free-list or by shrinking the global inactive
   list.  Since we have acquired the global LRU list lock,
   it will try to get at most LOCAL_FREE_TARGET elements
   to the local free list.
5. When a new element is added to the bpf_htab, it will
   first sit at the pending-list (of the local list) first.
   The pending-list will be flushed to the global LRU list
   when it needs to acquire free nodes from the global list
   next time.

* Lock Consideration:
The LRU list has a lock (lru_lock).  Each bucket of htab has a
lock (buck_lock).  If both locks need to be acquired together,
the lock order is always lru_lock -> buck_lock and this only
happens in the bpf_lru_list.c logic.

In hashtab.c, both locks are not acquired together (i.e. one
lock is always released first before acquiring another lock).

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-15 11:50:20 -05:00