New drivers/devices
- Qualcomm ADM driver
- Qualcomm GPI driver
- Allwinner A100 DMA support
- Microchip Sama7g5 support
- Mediatek MT8516 apdma
- Updates:
- more updates to idxd driver and support for IAX config
- runtime PM support for dw driver
- TI keystone drivers for 5.11 included here due to dependency for TI
drivers
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE+vs47OPLdNbVcHzyfBQHDyUjg0cFAl/bkxEACgkQfBQHDyUj
g0dxNA//WzpVy9QJnj6OgXIjM+9sBjqls0iPVfy1JeeMmVW8cgCwLyBNZcssKRye
mJ9+VnTx4JQBj4KD2cFBdpr46GvBFbSbcWNSCdm179NtHI4G6tjtynOcWaI9Clu2
0KHoa/EHIj8/jD3Hsbm+WZ1zCoY4VKBXsEq6x1Sj2tpp0/ocDhH4XLAsWTHE9OAD
sc+0OtHr1wU4EdV6TKNTT0jXsdtzxOPPsvRsoaKncnR+Mkrgv0FvMBfBLhOb3a+m
wUHEkwrEP1pT4Xcew6ZkYs4RYwJI3pllu2gUTs5qtidc723ol/C4kJ27q55N4azb
j5buA8AhEwqIDH8qNuV07qaIu2VTdTdbYid3xgAeFygwM1npecZvOf8k6rTjxR/6
XN8jaDuhc2uISY7Gt5c6tOe8rG3ffNhYrmEuGD5HI0hcglpALiE4NcgalaaQS9J1
suQ6AUtCslReD+6M/lfarn9Zd3UAKGbxU8vCNPq0EcSAGUz9u9VK2VwKiGnAZ8bb
ED3QDUzZYjTDWpiVodsuJlONgaMLsRCQecZWMDRNpzmf1rCXnkY0eDGiSMz+IiXZ
87IdD66u3d/Mkm6jVdwp6+tKZ/ohj+dtIWKhMd8cKXv5zTzS+4IokxpkxdjBsHPx
z+G73IMHjQo8xl/P0IhhwZw+7cBrkntLq8lRSbYxjSTP09QerNE=
=uNBn
-----END PGP SIGNATURE-----
Merge tag 'dmaengine-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul/dmaengine
Pull dmaengine updates from Vinod Koul:
"The last dmaengine updates for this year :)
This contains couple of new drivers, new device support and updates to
bunch of drivers.
New drivers/devices:
- Qualcomm ADM driver
- Qualcomm GPI driver
- Allwinner A100 DMA support
- Microchip Sama7g5 support
- Mediatek MT8516 apdma
Updates:
- more updates to idxd driver and support for IAX config
- runtime PM support for dw driver
- TI drivers"
* tag 'dmaengine-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul/dmaengine: (75 commits)
soc: ti: k3-ringacc: Use correct error casting in k3_ringacc_dmarings_init
dmaengine: ti: k3-udma-glue: Add support for K3 PKTDMA
dmaengine: ti: k3-udma: Initial support for K3 PKTDMA
dmaengine: ti: k3-udma: Add support for BCDMA channel TPL handling
dmaengine: ti: k3-udma: Initial support for K3 BCDMA
soc: ti: k3-ringacc: add AM64 DMA rings support.
dmaengine: ti: Add support for k3 event routers
dmaengine: ti: k3-psil: Add initial map for AM64
dmaengine: ti: k3-psil: Extend psil_endpoint_config for K3 PKTDMA
dt-bindings: dma: ti: Add document for K3 PKTDMA
dt-bindings: dma: ti: Add document for K3 BCDMA
dmaengine: dmatest: Use dmaengine_get_dma_device
dmaengine: doc: client: Update for dmaengine_get_dma_device() usage
dmaengine: Add support for per channel coherency handling
dmaengine: of-dma: Add support for optional router configuration callback
dmaengine: ti: k3-udma-glue: Configure the dma_dev for rings
dmaengine: ti: k3-udma-glue: Get the ringacc from udma_dev
dmaengine: ti: k3-udma-glue: Add function to get device pointer for DMA API
dmaengine: ti: k3-udma: Add support for second resource range from sysfw
dmaengine: ti: k3-udma: Wait for peer teardown completion if supported
...
This commit adds support for PKTDMA in k3-udma glue driver. Use new
psil_endpoint_config struct to get static data for a given channel or a
flow during setup. Make sure that the RX flows being mapped to a RX
channel is within the range of flows that is been allocated to that RX
channel.
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Link: https://lore.kernel.org/r/20201208090440.31792-21-peter.ujfalusi@ti.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
One of the DMAs introduced with AM64 is the Packet DMA (PKTDMA).
It serves similar purpose as K3 UDMAP channels in packet mode, but with
notable differences, like tflow support and channels being allocated to
service specific peripherals.
The rings for the PKTDMA is integrated within the DMA itself instead of
using rings from the general purpose ringacc.
PKTDMA can be used to service PSI-L peripherals, similarly to
K3 UDMA channels.
Most of the driver code can be reused for PKTDMA tchan/rchan support but
new setup and allocation functions are needed to handle the differences
between the DMAs.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Link: https://lore.kernel.org/r/20201208090440.31792-20-peter.ujfalusi@ti.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
If of_xudma_dev_get() returns with the valid udma_dev then the driver
already got the ringacc, there is no need to execute
of_k3_ringacc_get_by_phandle() for each channel via the glue layer.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Reviewed-by: Grygorii Strashko <grygorii.strashko@ti.com>
Link: https://lore.kernel.org/r/20201208090440.31792-6-peter.ujfalusi@ti.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Glue layer users should use the device of the DMA for DMA mapping and
allocations as it is the DMA which accesses to descriptors and buffers,
not the clients
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Reviewed-by: Grygorii Strashko <grygorii.strashko@ti.com>
Link: https://lore.kernel.org/r/20201208090440.31792-5-peter.ujfalusi@ti.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
gcc warns about a mismatch argument type when passing
'false' into a function that expects an enum:
drivers/dma/ti/k3-udma-private.c: In function 'xudma_tchan_get':
drivers/dma/ti/k3-udma-private.c:86:34: warning: implicit conversion from 'enum <anonymous>' to 'enum udma_tp_level' [-Wenum-conversion]
86 | return __udma_reserve_##res(ud, false, id); \
| ^~~~~
drivers/dma/ti/k3-udma-private.c:95:1: note: in expansion of macro 'XUDMA_GET_PUT_RESOURCE'
95 | XUDMA_GET_PUT_RESOURCE(tchan);
| ^~~~~~~~~~~~~~~~~~~~~~
In this case, false has the same numerical value as
UDMA_TP_NORMAL, so passing that is most likely the correct
way to avoid the warning without changing the behavior.
Fixes: d702419134 ("dmaengine: ti: k3-udma: Add glue layer for non DMAengine users")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Link: https://lore.kernel.org/r/20201026160123.3704531-1-arnd@kernel.org
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Instead of using higher level wrappers (udma_rchanrt/tchanrt read/write),
use the underlying register access functions directly.
This will allow changes in the higher level wrappers within the DMAengine
driver.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Reviewed-by: Grygorii Strashko <grygorii.strashko@ti.com>
Link: https://lore.kernel.org/r/20200707102352.28773-5-peter.ujfalusi@ti.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
if of_find_device_by_node() succeed and platform_get_drvdata() failed,
of_xudma_dev_get() will return without put_device(), which will leak
the memory.
Signed-off-by: Yu Kuai <yukuai3@huawei.com>
Link: https://lore.kernel.org/r/20200618130110.582543-1-yukuai3@huawei.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Certain users can not use right now the DMAengine API due to missing
features in the core. Prime example is Networking.
These users can use the glue layer interface to avoid misuse of DMAengine
API and when the core gains the needed features they can be converted to
use generic API.
The most prominent features the glue layer clients are depending on:
- most PSI-L native peripheral use extra rflow ranges on a receive channel
and depending on the peripheral's configuration packets from a single
free descriptor ring is going to be received to different receive ring
- it is also possible to have different free descriptor rings per rflow
and an rflow can also support 4 additional free descriptor ring based
on the size of the incoming packet
- out of order completion of descriptors on a channel
- when we have several queues to handle different priority packets the
descriptors will be completed 'out-of-order'
- the notion of prep_slave_sg is not matching with what the streaming type
of operation is demanding for networking
- Streaming type of operation
- Ability to fill the free descriptor ring with descriptors in
anticipation of incoming traffic and when a packet arrives UDMAP will
form a packet and gives it to the client driver
- the descriptors are not backed with exact size data buffers as we don't
know the size of the packet we will receive, but as a generic pool of
buffers to be used by the receive channel
- NAPI type of operation (polling instead of interrupt driven transfer)
- without this we can not sustain gigabit speeds and we need to support NAPI
- not to limit this to networking, but other high performance operations
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Tested-by: Keerthy <j-keerthy@ti.com>
Link: https://lore.kernel.org/r/20191223110458.30766-12-peter.ujfalusi@ti.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>