Add kerneldoc comments to pm_suspend_via_firmware(),
pm_resume_via_firmware() and pm_suspend_via_s2idle()
to explain what they do.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
On systems with ACPI platform firmware the last stage of hibernation
is analogous to system suspend to S3 (suspend-to-RAM), so it should
be handled analogously. In particular, pm_suspend_via_firmware()
should return 'true' in that stage to let the callers of it know that
control will be passed to the platform firmware going forward, so
pm_set_suspend_via_firmware() needs to be called then in analogy with
acpi_suspend_begin().
However, the platform hibernation ->begin() callback is invoked
during the "freeze" transition (before creating a snapshot image of
system memory) as well as during the "hibernate" transition which is
the last stage of it and pm_set_suspend_via_firmware() should be
invoked by that callback in the latter stage only.
In order to implement that redefine the hibernation ->begin()
callback to take a pm_message_t argument to indicate which stage
of hibernation is taking place and rework acpi_hibernation_begin()
and acpi_hibernation_begin_old() to take it into account as needed.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Create a common helper to sync filesystems for system suspend and
hibernation.
Signed-off-by: Harry Pan <harry.pan@intel.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Dmitry writes:
"Input updates for v4.19-rc7
- we added a few scheduling points into various input interfaces to
ensure that large writes will not cause RCU stalls
- fixed configuring PS/2 keyboards as wakeup devices on newer
platforms
- added a new Xbox gamepad ID."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input:
Input: uinput - add a schedule point in uinput_inject_events()
Input: evdev - add a schedule point in evdev_write()
Input: mousedev - add a schedule point in mousedev_write()
Input: i8042 - enable keyboard wakeups by default when s2idle is used
Input: xpad - add support for Xbox1 PDP Camo series gamepad
Previously, on typical consumer laptops, pressing a key on the keyboard
when the system is in suspend would cause it to wake up (default or
unconditional behaviour). This happens because the EC generates a SCI
interrupt in this scenario.
That is no longer true on modern laptops based on Intel WhiskeyLake,
including Acer Swift SF314-55G, Asus UX333FA, Asus UX433FN and Asus
UX533FD. We confirmed with Asus EC engineers that the "Modern Standby"
design has been modified so that the EC no longer generates a SCI
in this case; the keyboard controller itself should be used for wakeup.
In order to retain the standard behaviour of being able to use the
keyboard to wake up the system, enable serio wakeups by default on
platforms that are using s2idle.
Link: https://lkml.kernel.org/r/CAB4CAwfQ0mPMqCLp95TVjw4J0r5zKPWkSvvkK4cpZUGE--w8bQ@mail.gmail.com
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Daniel Drake <drake@endlessm.com>
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
At present, "systemctl suspend" and "shutdown" can run in parrallel. A
system can suspend after devices_shutdown(), and resume. Then the shutdown
task goes on to power off. This causes many devices are not really shut
off. Hence replacing reboot_mutex with system_transition_mutex (renamed
from pm_mutex) to achieve the exclusion. The renaming of pm_mutex as
system_transition_mutex can be better to reflect the purpose of the mutex.
Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The declaration for swsusp_arch_resume marks it as 'asmlinkage', but the
definition in x86-32 does not, and it fails to include the header with the
declaration. This leads to a warning when building with
link-time-optimizations:
kernel/power/power.h:108:23: error: type of 'swsusp_arch_resume' does not match original declaration [-Werror=lto-type-mismatch]
extern asmlinkage int swsusp_arch_resume(void);
^
arch/x86/power/hibernate_32.c:148:0: note: 'swsusp_arch_resume' was previously declared here
int swsusp_arch_resume(void)
This moves the declaration into a globally visible header file and fixes up
both x86 definitions to match it.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Len Brown <len.brown@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: linux-pm@vger.kernel.org
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Bart Van Assche <bart.vanassche@wdc.com>
Link: https://lkml.kernel.org/r/20180202145634.200291-2-arnd@arndb.de
Since pm_mutex is not exported using lock/unlock_system_sleep() from
inside a kernel module causes a "pm_mutex undefined" linker error.
Hence move lock/unlock_system_sleep() into kernel/power/main.c and
export these.
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
For SoC to achieve its lowest power platform idle state a set of hardware
preconditions must be met. These preconditions or constraints can be
obtained by issuing a device specific method (_DSM) with function "1".
Refer to the document provided in the link below.
Here during initialization (from attach() callback of LPS0 device), invoke
function 1 to get the device constraints. Each enabled constraint is
stored in a table.
The devices in this table are used to check whether they were in required
minimum state, while entering suspend. This check is done from platform
freeze wake() callback, only when /sys/power/pm_debug_messages attribute
is non zero.
If any constraint is not met and device is ACPI power managed then it
prints the device information to kernel logs.
Also if debug is enabled in acpi/sleep.c, the constraint table and state
of each device on wake is dumped in kernel logs.
Since pm_debug_messages_on setting is used as condition to check
constraints outside kernel/power/main.c, pm_debug_messages_on is changed
to a global variable.
Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Rename struct platform_freeze_ops to platform_s2idle_ops to make it
clear that the callbacks in it are used during suspend-to-idle
suspend/resume transitions and rename the related functions,
variables and so on accordingly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Rename the freeze_state enum representing the suspend-to-idle state
machine states to s2idle_states and rename the related variables and
functions accordingly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
To make it clear that the symbol in question refers to
suspend-to-idle, rename it from PM_SUSPEND_FREEZE to
PM_SUSPEND_TO_IDLE.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Modify the ACPI system sleep support setup code to select
suspend-to-idle as the default system sleep state if
(1) the ACPI_FADT_LOW_POWER_S0 flag is set in the FADT and
(2) the Low Power Idle S0 _DSM interface has been discovered and
(3) the default sleep state was not selected from the kernel command
line.
The main motivation for this change is that systems where the (1) and
(2) conditions are met typically ship with OSes that don't exercise
the S3 path in the platform firmware which remains untested and turns
out to be non-functional at least in some cases.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mario Limonciello <mario.limonciello@dell.com>
The messages printed by tk_debug_account_sleep_time() are basically
useful for system sleep debugging, so print them only when the other
debug messages from the core suspend/hibernate code are enabled.
While at it, make it clear that the messages from
tk_debug_account_sleep_time() are about timekeeping suspend
duration, because in general timekeeping may be suspeded and
resumed for multiple times during one system suspend-resume cycle.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Debug messages from the system suspend/hibernation infrastructure can
fill up the entire kernel log buffer in some cases and anyway they
are only useful for debugging. They depend on CONFIG_PM_DEBUG, but
that is set as a rule as some generally useful diagnostic facilities
depend on it too.
For this reason, avoid printing those messages by default, but make
it possible to turn them on as needed with the help of a new sysfs
attribute under /sys/power/.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Have the core suspend/resume framework store the system-wide suspend
state (suspend_state_t) we are about to enter, and expose it to drivers
via pm_suspend_target_state in order to retrieve that. The state is
assigned in suspend_devices_and_enter().
This is useful for platform specific drivers that may need to take a
slightly different suspend/resume path based on the system's
suspend/resume state being entered.
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The ACPI SCI (System Control Interrupt) is set up as a wakeup IRQ
during suspend-to-idle transitions and, consequently, any events
signaled through it wake up the system from that state. However,
on some systems some of the events signaled via the ACPI SCI while
suspended to idle should not cause the system to wake up. In fact,
quite often they should just be discarded.
Arguably, systems should not resume entirely on such events, but in
order to decide which events really should cause the system to resume
and which are spurious, it is necessary to resume up to the point
when ACPI SCIs are actually handled and processed, which is after
executing dpm_resume_noirq() in the system resume path.
For this reasons, add a loop around freeze_enter() in which the
platforms can process events signaled via multiplexed IRQ lines
like the ACPI SCI and add suspend-to-idle hooks that can be
used for this purpose to struct platform_freeze_ops.
In the ACPI case, the ->wake hook is used for checking if the SCI
has triggered while suspended and deferring the interrupt-induced
system wakeup until the events signaled through it are actually
processed sufficiently to decide whether or not the system should
resume. In turn, the ->sync hook allows all of the relevant event
queues to be flushed so as to prevent events from being missed due
to race conditions.
In addition to that, some ACPI code processing wakeup events needs
to be modified to use the "hard" version of wakeup triggers, so that
it will cause a system resume to happen on device-induced wakeup
events even if the "soft" mechanism to prevent the system from
suspending is not enabled. However, to preserve the existing
behavior with respect to suspend-to-RAM, this only is done in
the suspend-to-idle case and only if an SCI has occurred while
suspended.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Revert commit eed4d47efe (ACPI / sleep: Ignore spurious SCI wakeups
from suspend-to-idle) as it turned out to be premature and triggered
a number of different issues on various systems.
That includes, but is not limited to, premature suspend-to-RAM aborts
on Dell XPS 13 (9343) reported by Dominik.
The issue the commit in question attempted to address is real and
will need to be taken care of going forward, but evidently more work
is needed for this purpose.
Reported-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The ACPI SCI (System Control Interrupt) is set up as a wakeup IRQ
during suspend-to-idle transitions and, consequently, any events
signaled through it wake up the system from that state. However,
on some systems some of the events signaled via the ACPI SCI while
suspended to idle should not cause the system to wake up. In fact,
quite often they should just be discarded.
Arguably, systems should not resume entirely on such events, but in
order to decide which events really should cause the system to resume
and which are spurious, it is necessary to resume up to the point
when ACPI SCIs are actually handled and processed, which is after
executing dpm_resume_noirq() in the system resume path.
For this reasons, add a loop around freeze_enter() in which the
platforms can process events signaled via multiplexed IRQ lines
like the ACPI SCI and add suspend-to-idle hooks that can be
used for this purpose to struct platform_freeze_ops.
In the ACPI case, the ->wake hook is used for checking if the SCI
has triggered while suspended and deferring the interrupt-induced
system wakeup until the events signaled through it are actually
processed sufficiently to decide whether or not the system should
resume. In turn, the ->sync hook allows all of the relevant event
queues to be flushed so as to prevent events from being missed due
to race conditions.
In addition to that, some ACPI code processing wakeup events needs
to be modified to use the "hard" version of wakeup triggers, so that
it will cause a system resume to happen on device-induced wakeup
events even if the "soft" mechanism to prevent the system from
suspending is not enabled (that also helps to catch device-induced
wakeup events occurring during suspend transitions in progress).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Revert commit 08b98d3291 (PM / sleep / ACPI: Use the ACPI_FADT_LOW_POWER_S0
flag) as it caused system suspend (in the default configuration) to fail
on Dell XPS13 (9360) with the Kaby Lake processor.
Fixes: 08b98d3291 (PM / sleep / ACPI: Use the ACPI_FADT_LOW_POWER_S0 flag)
Reported-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Modify the ACPI system sleep support setup code to select
suspend-to-idle as the default system sleep state if the
ACPI_FADT_LOW_POWER_S0 flag is set in the FADT and the
default sleep state was not selected from the kernel command
line.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mario Limonciello <mario.limonciello@dell.com>
Suspend-to-idle (aka the "freeze" sleep state) is a system sleep state
in which all of the processors enter deepest possible idle state and
wait for interrupts right after suspending all the devices.
There is no hard requirement for a platform to support and register
platform specific suspend_ops to enter suspend-to-idle/freeze state.
Only deeper system sleep states like PM_SUSPEND_STANDBY and
PM_SUSPEND_MEM rely on such low level support/implementation.
suspend-to-idle can be entered as along as all the devices can be
suspended. This patch enables the support for suspend-to-idle even on
systems that don't have any low level support for deeper system sleep
states and/or don't register any platform specific suspend_ops.
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Tested-by: Andy Gross <andy.gross@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Nothing is using its return value so change it to return void.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There are quite a few cases in which device drivers, bus types or
even the PM core itself may benefit from knowing whether or not
the platform firmware will be involved in the upcoming system power
transition (during system suspend) or whether or not it was involved
in it (during system resume).
For this reason, introduce global system suspend flags that can be
used by the platform code to expose that information for the benefit
of the other parts of the kernel and make the ACPI core set them
as appropriate.
Users of the new flags will be added later.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Add a sysfs attribute, /sys/power/pm_wakeup_irq, reporting the IRQ
number of the first wakeup interrupt (that is, the first interrupt
from an IRQ line armed for system wakeup) seen by the kernel during
the most recent system suspend/resume cycle.
This feature will be useful for system wakeup diagnostics of
spurious wakeup interrupts.
Signed-off-by: Alexandra Yates <alexandra.yates@linux.intel.com>
[ rjw: Fixed up pm_wakeup_irq definition ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
In preparation for adding support for quiescing timers in the final
stage of suspend-to-idle transitions, rework the freeze_enter()
function making the system wait on a wakeup event, the freeze_wake()
function terminating the suspend-to-idle loop and the mechanism by
which deep idle states are entered during suspend-to-idle.
First of all, introduce a simple state machine for suspend-to-idle
and make the code in question use it.
Second, prevent freeze_enter() from losing wakeup events due to race
conditions and ensure that the number of online CPUs won't change
while it is being executed. In addition to that, make it force
all of the CPUs re-enter the idle loop in case they are in idle
states already (so they can enter deeper idle states if possible).
Next, drop cpuidle_use_deepest_state() and replace use_deepest_state
checks in cpuidle_select() and cpuidle_reflect() with a single
suspend-to-idle state check in cpuidle_idle_call().
Finally, introduce cpuidle_enter_freeze() that will simply find the
deepest idle state available to the given CPU and enter it using
cpuidle_enter().
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
The ACPI GPE wakeup from suspend-to-idle is currently based on using
the IRQF_NO_SUSPEND flag for the ACPI SCI, but that is problematic
for a couple of reasons. First, in principle the ACPI SCI may be
shared and IRQF_NO_SUSPEND does not really work well with shared
interrupts. Second, it may require the ACPI subsystem to special-case
the handling of device notifications depending on whether or not
they are received during suspend-to-idle in some places which would
lead to fragile code. Finally, it's better the handle ACPI wakeup
interrupts consistently with wakeup interrupts from other sources.
For this reason, remove the IRQF_NO_SUSPEND flag from the ACPI SCI
and use enable_irq_wake()/disable_irq_wake() with it instead, which
requires two additional platform hooks to be added to struct
platform_freeze_ops.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
It sometimes may be necessary to abort a system suspend in
progress or wake up the system from suspend-to-idle even if the
pm_wakeup_event()/pm_stay_awake() mechanism is not enabled.
For this purpose, introduce a new global variable pm_abort_suspend
and make pm_wakeup_pending() check its value. Also add routines
for manipulating that variable.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
To support using kernel features that are not compatible with hibernation,
this creates the "nohibernate" kernel boot parameter to disable both
hibernation and resume. This allows hibernation support to be a boot-time
choice instead of only a compile-time choice.
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Pull ARM updates from Russell King:
- Major clean-up of the L2 cache support code. The existing mess was
becoming rather unmaintainable through all the additions that others
have done over time. This turns it into a much nicer structure, and
implements a few performance improvements as well.
- Clean up some of the CP15 control register tweaks for alignment
support, moving some code and data into alignment.c
- DMA properties for ARM, from Santosh and reviewed by DT people. This
adds DT properties to specify bus translations we can't discover
automatically, and to indicate whether devices are coherent.
- Hibernation support for ARM
- Make ftrace work with read-only text in modules
- add suspend support for PJ4B CPUs
- rework interrupt masking for undefined instruction handling, which
allows us to enable interrupts earlier in the handling of these
exceptions.
- support for big endian page tables
- fix stacktrace support to exclude stacktrace functions from the
trace, and add save_stack_trace_regs() implementation so that kprobes
can record stack traces.
- Add support for the Cortex-A17 CPU.
- Remove last vestiges of ARM710 support.
- Removal of ARM "meminfo" structure, finally converting us solely to
memblock to handle the early memory initialisation.
* 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm: (142 commits)
ARM: ensure C page table setup code follows assembly code (part II)
ARM: ensure C page table setup code follows assembly code
ARM: consolidate last remaining open-coded alignment trap enable
ARM: remove global cr_no_alignment
ARM: remove CPU_CP15 conditional from alignment.c
ARM: remove unused adjust_cr() function
ARM: move "noalign" command line option to alignment.c
ARM: provide common method to clear bits in CPU control register
ARM: 8025/1: Get rid of meminfo
ARM: 8060/1: mm: allow sub-architectures to override PCI I/O memory type
ARM: 8066/1: correction for ARM patch 8031/2
ARM: 8049/1: ftrace/add save_stack_trace_regs() implementation
ARM: 8065/1: remove last use of CONFIG_CPU_ARM710
ARM: 8062/1: Modify ldrt fixup handler to re-execute the userspace instruction
ARM: 8047/1: rwsem: use asm-generic rwsem implementation
ARM: l2c: trial at enabling some Cortex-A9 optimisations
ARM: l2c: add warnings for stuff modifying aux_ctrl register values
ARM: l2c: print a warning with L2C-310 caches if the cache size is modified
ARM: l2c: remove old .set_debug method
ARM: l2c: kill L2X0_AUX_CTRL_MASK before anyone else makes use of this
...
The "freeze" sleep state suffers from the same issue that was
addressed by commit ad07277e82 (ACPI / PM: Hold acpi_scan_lock over
system PM transitions) for ACPI sleep states, that is, things break
if ->remove() is called for devices whose system resume callbacks
haven't been executed yet.
It also can be addressed in the same way, by holding the ACPI scan
lock over the "freeze" sleep state and PM transitions to and from
that state, but ->begin() and ->end() platform operations for the
"freeze" sleep state are needed for this purpose.
This change has been tested on Acer Aspire S5 with Thunderbolt.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Enable hibernation for ARM architectures and provide ARM
architecture specific calls used during hibernation.
The swsusp hibernation framework depends on the
platform first having functional suspend/resume.
Then, in order to enable hibernation on a given platform, a
platform_hibernation_ops structure may need to be registered with
the system in order to save/restore any SoC-specific / cpu specific
state needing (re)init over a suspend-to-disk/resume-from-disk cycle.
For example:
- "secure" SoCs that have different sets of control registers
and/or different CR reg access patterns.
- SoCs with L2 caches as the activation sequence there is
SoC-dependent; a full off-on cycle for L2 is not done
by the hibernation support code.
- SoCs requiring steps on wakeup _before_ the "generic" parts
done by cpu_suspend / cpu_resume can work correctly.
- SoCs having persistent state which is maintained during suspend
and resume, but will be lost during the power off cycle after
suspend-to-disk.
This is a rebase/rework of Frank Hofmann's v5 hibernation patchset.
Acked-by: Russ Dill <Russ.Dill@ti.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Sebastian Capella <sebastian.capella@linaro.org>
Acked-by: Pavel Machek <pavel@ucw.cz>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
[fixed duplicate virt_to_pfn() definition --rmk]
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Commit a938da06 introduced a useful little log message to tell
users/debuggers which wakeup source aborted a suspend. However,
this message is only printed if the abort happens during the
in-kernel suspend path (after writing /sys/power/state).
The full specification of the /sys/power/wakeup_count facility
allows user-space power managers to double-check if wakeups have
already happened before it actually tries to suspend (e.g. while it
was running user-space pre-suspend hooks), by writing the last known
wakeup_count value to /sys/power/wakeup_count. This patch changes
the sysfs handler for that node to also print said log message if
that write fails, so that we can figure out the offending wakeup
source for both kinds of suspend aborts.
Signed-off-by: Julius Werner <jwerner@chromium.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
PM_SUSPEND_FREEZE state is a general state that
does not need any platform specific support, it equals
frozen processes + suspended devices + idle processors.
Compared with PM_SUSPEND_MEMORY,
PM_SUSPEND_FREEZE saves less power
because the system is still in a running state.
PM_SUSPEND_FREEZE has less resume latency because it does not
touch BIOS, and the processors are in idle state.
Compared with RTPM/idle,
PM_SUSPEND_FREEZE saves more power as
1. the processor has longer sleep time because processes are frozen.
The deeper c-state the processor supports, more power saving we can get.
2. PM_SUSPEND_FREEZE uses system suspend code path, thus we can get
more power saving from the devices that does not have good RTPM support.
This state is useful for
1) platforms that do not have STR, or have a broken STR.
2) platforms that have an extremely low power idle state,
which can be used to replace STR.
The following describes how PM_SUSPEND_FREEZE state works.
1. echo freeze > /sys/power/state
2. the processes are frozen.
3. all the devices are suspended.
4. all the processors are blocked by a wait queue
5. all the processors idles and enters (Deep) c-state.
6. an interrupt fires.
7. a processor is woken up and handles the irq.
8. if it is a general event,
a) the irq handler runs and quites.
b) goto step 4.
9. if it is a real wake event, say, power button pressing, keyboard touch, mouse moving,
a) the irq handler runs and activate the wakeup source
b) wakeup_source_activate() notifies the wait queue.
c) system starts resuming from PM_SUSPEND_FREEZE
10. all the devices are resumed.
11. all the processes are unfrozen.
12. system is back to working.
Known Issue:
The wakeup of this new PM_SUSPEND_FREEZE state may behave differently
from the previous suspend state.
Take ACPI platform for example, there are some GPEs that only enabled
when the system is in sleep state, to wake the system backk from S3/S4.
But we are not touching these GPEs during transition to PM_SUSPEND_FREEZE.
This means we may lose some wake event.
But on the other hand, as we do not disable all the Interrupts during
PM_SUSPEND_FREEZE, we may get some extra "wakeup" Interrupts, that are
not available for S3/S4.
The patches has been tested on an old Sony laptop, and here are the results:
Average Power:
1. RPTM/idle for half an hour:
14.8W, 12.6W, 14.1W, 12.5W, 14.4W, 13.2W, 12.9W
2. Freeze for half an hour:
11W, 10.4W, 9.4W, 11.3W 10.5W
3. RTPM/idle for three hours:
11.6W
4. Freeze for three hours:
10W
5. Suspend to Memory:
0.5~0.9W
Average Resume Latency:
1. RTPM/idle with a black screen: (From pressing keyboard to screen back)
Less than 0.2s
2. Freeze: (From pressing power button to screen back)
2.50s
3. Suspend to Memory: (From pressing power button to screen back)
4.33s
>From the results, we can see that all the platforms should benefit from
this patch, even if it does not have Low Power S0.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Change the behavior of the newly introduced
/sys/power/pm_print_times attribute so that its initial value
depends on initcall_debug, but setting it to 0 will cause device
suspend/resume times not to be printed, even if initcall_debug has
been set. This way, the people who use initcall_debug for reasons
other than PM debugging will be able to switch the suspend/resume
times printing off, if need be.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Android uses one wakelock statistics that is only necessary for
opportunistic sleep. Namely, the prevent_suspend_time field
accumulates the total time the given wakelock has been locked
while "automatic suspend" was enabled. Add an analogous field,
prevent_sleep_time, to wakeup sources and make it behave in a similar
way.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Introduce a mechanism by which the kernel can trigger global
transitions to a sleep state chosen by user space if there are no
active wakeup sources.
It consists of a new sysfs attribute, /sys/power/autosleep, that
can be written one of the strings returned by reads from
/sys/power/state, an ordered workqueue and a work item carrying out
the "suspend" operations. If a string representing the system's
sleep state is written to /sys/power/autosleep, the work item
triggering transitions to that state is queued up and it requeues
itself after every execution until user space writes "off" to
/sys/power/autosleep.
That work item enables the detection of wakeup events using the
functions already defined in drivers/base/power/wakeup.c (with one
small modification) and calls either pm_suspend(), or hibernate() to
put the system into a sleep state. If a wakeup event is reported
while the transition is in progress, it will abort the transition and
the "system suspend" work item will be queued up again.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: NeilBrown <neilb@suse.de>
Since suspend_stats_update() is only called from pm_suspend(),
move its code directly into that function and remove the static
inline definition from include/linux/suspend.h. Clean_up
pm_suspend() in the process.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
The code
if (error) {
suspend_stats.fail++;
dpm_save_failed_errno(error);
} else
suspend_stats.success++;
Appears in the kernel/power/main.c and kernel/power/suspend.c.
This patch just creates a new function to avoid duplicated code.
Suggested-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Marcos Paulo de Souza <marcos.mage@gmail.com>
Acked-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
The current device suspend/resume phases during system-wide power
transitions appear to be insufficient for some platforms that want
to use the same callback routines for saving device states and
related operations during runtime suspend/resume as well as during
system suspend/resume. In principle, they could point their
.suspend_noirq() and .resume_noirq() to the same callback routines
as their .runtime_suspend() and .runtime_resume(), respectively,
but at least some of them require device interrupts to be enabled
while the code in those routines is running.
It also makes sense to have device suspend-resume callbacks that will
be executed with runtime PM disabled and with device interrupts
enabled in case someone needs to run some special code in that
context during system-wide power transitions.
Apart from this, .suspend_noirq() and .resume_noirq() were introduced
as a workaround for drivers using shared interrupts and failing to
prevent their interrupt handlers from accessing suspended hardware.
It appears to be better not to use them for other porposes, or we may
have to deal with some serious confusion (which seems to be happening
already).
For the above reasons, introduce new device suspend/resume phases,
"late suspend" and "early resume" (and analogously for hibernation)
whose callback will be executed with runtime PM disabled and with
device interrupts enabled and whose callback pointers generally may
point to runtime suspend/resume routines.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Reviewed-by: Kevin Hilman <khilman@ti.com>
Commit 33e638b, "PM / Sleep: Use the freezer_count() functions in
[un]lock_system_sleep() APIs" introduced an undesirable change in the
behaviour of unlock_system_sleep() since freezer_count() internally calls
try_to_freeze() - which we don't need in unlock_system_sleep().
And commit bcda53f, "PM / Sleep: Replace mutex_[un]lock(&pm_mutex) with
[un]lock_system_sleep()" made these APIs wide-spread. This caused a
regression in suspend-to-disk where snapshot_read() and snapshot_write()
were getting frozen due to the try_to_freeze embedded in
unlock_system_sleep(), since these functions were invoked when the freezing
condition was still in effect.
Fix this by rewriting unlock_system_sleep() by open-coding freezer_count()
and dropping the try_to_freeze() part. Not only will this fix the
regression but this will also ensure that the API only does what it is
intended to do, and nothing more, under the hood.
While at it, make the code more correct and robust by ensuring that the
PF_FREEZER_SKIP flag gets cleared with pm_mutex held, to avoid a race with
the freezer.
Also, to be on the safer side, open-code freezer_do_not_count() as well
(inside lock_system_sleep()), to ensure that any unrelated modification to
freezer[_do_not]_count() does not break things again!
Reported-and-tested-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
The [un]lock_system_sleep() APIs were originally introduced to mutually
exclude memory hotplug and hibernation.
Directly using mutex_lock(&pm_mutex) to achieve mutual exclusion with
suspend or hibernation code can lead to freezing failures. However, the
APIs [un]lock_system_sleep() can be safely used to achieve the same,
without causing freezing failures.
So, since it would be beneficial to modify all the existing users of
mutex_lock(&pm_mutex) (in all parts of the kernel), so that they use these
safe APIs intead, make these APIs generic by removing the restriction that
they work only when CONFIG_HIBERNATE_CALLBACKS is set. Moreover, that
restriction didn't buy us anything anyway.
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Now that freezer_count() and freezer_do_not_count() don't have the restriction
that they are effective only when called by userspace processes, use
them in lock_system_sleep() and unlock_system_sleep() instead of open-coding
their parts.
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
The lock_system_sleep() function is used in the memory hotplug code at
several places in order to implement mutual exclusion with hibernation.
However, this function tries to acquire the 'pm_mutex' lock using
mutex_lock() and hence blocks in TASK_UNINTERRUPTIBLE state if it doesn't
get the lock. This would lead to task freezing failures and hence
hibernation failure as a consequence, even though the hibernation call path
successfully acquired the lock.
But it is to be noted that, since this task tries to acquire pm_mutex, if it
blocks due to this, we are *100% sure* that this task is not going to run
as long as hibernation sequence is in progress, since hibernation releases
'pm_mutex' only at the very end, when everything is done.
And this means, this task is going to be anyway blocked for much more longer
than what the freezer intends to achieve; which means, freezing and thawing
doesn't really make any difference to this task!
So, to fix freezing failures, we just ask the freezer to skip freezing this
task, since it is already "frozen enough".
But instead of calling freezer_do_not_count() and freezer_count() as it is,
we use only the relevant parts of those functions, because restrictions
such as 'the task should be a userspace one' etc., might not be relevant in
this scenario.
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Introduce the config option CONFIG_VT_CONSOLE_SLEEP in order to cleanup
the #if defined ugliness for the vt suspend support functions. Note that
CONFIG_VT_CONSOLE is already dependant on CONFIG_VT.
The function pm_set_vt_switch is actually dependant on CONFIG_VT and not
CONFIG_PM_SLEEP. This fixes a compile error when CONFIG_PM_SLEEP is
not set:
drivers/tty/vt/vt_ioctl.c:1794: error: redefinition of 'pm_set_vt_switch'
include/linux/suspend.h:17: error: previous definition of 'pm_set_vt_switch' was here
Also, remove the incorrect path from the comment in console.c.
[rjw: Replaced #if defined() with #ifdef in suspend.h.]
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
For s390 there is one additional byte associated with each page,
the storage key. This byte contains the referenced and changed
bits and needs to be included into the hibernation image.
If the storage keys are not restored to their previous state all
original pages would appear to be dirty. This can cause
inconsistencies e.g. with read-only filesystems.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Record S3 failure time about each reason and the latest two failed
devices' names in S3 progress.
We can check it through 'suspend_stats' entry in debugfs.
The motivation of the patch:
We are enabling power features on Medfield. Comparing with PC/notebook,
a mobile enters/exits suspend-2-ram (we call it s3 on Medfield) far
more frequently. If it can't enter suspend-2-ram in time, the power
might be used up soon.
We often find sometimes, a device suspend fails. Then, system retries
s3 over and over again. As display is off, testers and developers
don't know what happens.
Some testers and developers complain they don't know if system
tries suspend-2-ram, and what device fails to suspend. They need
such info for a quick check. The patch adds suspend_stats under
debugfs for users to check suspend to RAM statistics quickly.
If not using this patch, we have other methods to get info about
what device fails. One is to turn on CONFIG_PM_DEBUG, but users
would get too much info and testers need recompile the system.
In addition, dynamic debug is another good tool to dump debug info.
But it still doesn't match our utilization scenario closely.
1) user need write a user space parser to process the syslog output;
2) Our testing scenario is we leave the mobile for at least hours.
Then, check its status. No serial console available during the
testing. One is because console would be suspended, and the other
is serial console connecting with spi or HSU devices would consume
power. These devices are powered off at suspend-2-ram.
Signed-off-by: ShuoX Liu <shuox.liu@intel.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
It is not necessary to share the same notifier.h.
Signed-off-by: WANG Cong <amwang@redhat.com>
Cc: David Miller <davem@davemloft.net>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A system or a device may need to control suspend/wakeup events. It may
want to wakeup the system after a predefined amount of time or at a
predefined event decided while entering suspend for polling or delayed
work. Then, it may want to enter suspend again if its predefined wakeup
condition is the only wakeup reason and there is no outstanding events;
thus, it does not wakeup the userspace unnecessary or unnecessary
devices and keeps suspended as long as possible (saving the power).
Enabling a system to wakeup after a specified time can be easily
achieved by using RTC. However, to enter suspend again immediately
without invoking userland and unrelated devices, we need additional
features in the suspend framework.
Such need comes from:
1. Monitoring a critical device status without interrupts that can
wakeup the system. (in-suspend polling)
An example is ambient temperature monitoring that needs to shut down
the system or a specific device function if it is too hot or cold. The
temperature of a specific device may be needed to be monitored as well;
e.g., a charger monitors battery temperature in order to stop charging
if overheated.
2. Execute critical "delayed work" at suspend.
A driver or a system/board may have a delayed work (or any similar
things) that it wants to execute at the requested time.
For example, some chargers want to check the battery voltage some
time (e.g., 30 seconds) after the battery is fully charged and the
charger has stopped. Then, the charger restarts charging if the voltage
has dropped more than a threshold, which is smaller than "restart-charger"
voltage, which is a threshold to restart charging regardless of the
time passed.
This patch allows to add "suspend_again" callback at struct
platform_suspend_ops and let the "suspend_again" callback return true if
the system is required to enter suspend again after the current instance
of wakeup. Device-wise suspend_again implemented at dev_pm_ops or
syscore is not done because: a) suspend_again feature is usually under
platform-wise decision and controls the behavior of the whole platform
and b) There are very limited devices related to the usage cases of
suspend_again; chargers and temperature sensors are mentioned so far.
With suspend_again callback registered at struct platform_suspend_ops
suspend_ops in kernel/power/suspend.c with suspend_set_ops by the
platform, the suspend framework tries to enter suspend again by
looping suspend_enter() if suspend_again has returned true and there has
been no errors in the suspending sequence or pending wakeups (by
pm_wakeup_pending).
Tested at Exynos4-NURI.
[rjw: Fixed up kerneldoc comment for suspend_enter().]
Signed-off-by: MyungJoo Ham <myungjoo.ham@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>