Allow dynamic pointers (struct bpf_dynptr_kern *) to be specified as
parameters in kfuncs. Also, ensure that dynamic pointers passed as argument
are valid and initialized, are a pointer to the stack, and of the type
local. More dynamic pointer types can be supported in the future.
To properly detect whether a parameter is of the desired type, introduce
the stringify_struct() macro to compare the returned structure name with
the desired name. In addition, protect against structure renames, by
halting the build with BUILD_BUG_ON(), so that developers have to revisit
the code.
To check if a dynamic pointer passed to the kfunc is valid and initialized,
and if its type is local, export the existing functions
is_dynptr_reg_valid_init() and is_dynptr_type_expected().
Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220920075951.929132-5-roberto.sassu@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Verifier logic to confirm that a callback function returns 0 or 1 was
added in commit 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper").
At the time, callback return value was only used to continue or stop
iteration.
In order to support callbacks with a broader return value range, such as
those added in rbtree series[0] and others, add a callback_ret_range to
bpf_func_state. Verifier's helpers which set in_callback_fn will also
set the new field, which the verifier will later use to check return
value bounds.
Default to tnum_range(0, 0) instead of using tnum_unknown as a sentinel
value as the latter would prevent the valid range (0, U64_MAX) being
used. Previous global default tnum_range(0, 1) is explicitly set for
extant callback helpers. The change to global default was made after
discussion around this patch in rbtree series [1], goal here is to make
it more obvious that callback_ret_range should be explicitly set.
[0]: lore.kernel.org/bpf/20220830172759.4069786-1-davemarchevsky@fb.com/
[1]: lore.kernel.org/bpf/20220830172759.4069786-2-davemarchevsky@fb.com/
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20220908230716.2751723-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For a lot of use cases in future patches, we will want to modify the
state of registers part of some same 'group' (e.g. same ref_obj_id). It
won't just be limited to releasing reference state, but setting a type
flag dynamically based on certain actions, etc.
Hence, we need a way to easily pass a callback to the function that
iterates over all registers in current bpf_verifier_state in all frames
upto (and including) the curframe.
While in C++ we would be able to easily use a lambda to pass state and
the callback together, sadly we aren't using C++ in the kernel. The next
best thing to avoid defining a function for each case seems like
statement expressions in GNU C. The kernel already uses them heavily,
hence they can passed to the macro in the style of a lambda. The
statement expression will then be substituted in the for loop bodies.
Variables __state and __reg are set to current bpf_func_state and reg
for each invocation of the expression inside the passed in verifier
state.
Then, convert mark_ptr_or_null_regs, clear_all_pkt_pointers,
release_reference, find_good_pkt_pointers, find_equal_scalars to
use bpf_for_each_reg_in_vstate.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220904204145.3089-16-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For drivers (outside of network), the incoming data is not statically
defined in a struct. Most of the time the data buffer is kzalloc-ed
and thus we can not rely on eBPF and BTF to explore the data.
This commit allows to return an arbitrary memory, previously allocated by
the driver.
An interesting extra point is that the kfunc can mark the exported
memory region as read only or read/write.
So, when a kfunc is not returning a pointer to a struct but to a plain
type, we can consider it is a valid allocated memory assuming that:
- one of the arguments is either called rdonly_buf_size or
rdwr_buf_size
- and this argument is a const from the caller point of view
We can then use this parameter as the size of the allocated memory.
The memory is either read-only or read-write based on the name
of the size parameter.
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Link: https://lore.kernel.org/r/20220906151303.2780789-7-benjamin.tissoires@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, verifier verifies callback functions (sync and async) as if
they will be executed once, (i.e. it explores execution state as if the
function was being called once). The next insn to explore is set to
start of subprog and the exit from nested frame is handled using
curframe > 0 and prepare_func_exit. In case of async callback it uses a
customized variant of push_stack simulating a kind of branch to set up
custom state and execution context for the async callback.
While this approach is simple and works when callback really will be
executed only once, it is unsafe for all of our current helpers which
are for_each style, i.e. they execute the callback multiple times.
A callback releasing acquired references of the caller may do so
multiple times, but currently verifier sees it as one call inside the
frame, which then returns to caller. Hence, it thinks it released some
reference that the cb e.g. got access through callback_ctx (register
filled inside cb from spilled typed register on stack).
Similarly, it may see that an acquire call is unpaired inside the
callback, so the caller will copy the reference state of callback and
then will have to release the register with new ref_obj_ids. But again,
the callback may execute multiple times, but the verifier will only
account for acquired references for a single symbolic execution of the
callback, which will cause leaks.
Note that for async callback case, things are different. While currently
we have bpf_timer_set_callback which only executes it once, even for
multiple executions it would be safe, as reference state is NULL and
check_reference_leak would force program to release state before
BPF_EXIT. The state is also unaffected by analysis for the caller frame.
Hence async callback is safe.
Since we want the reference state to be accessible, e.g. for pointers
loaded from stack through callback_ctx's PTR_TO_STACK, we still have to
copy caller's reference_state to callback's bpf_func_state, but we
enforce that whatever references it adds to that reference_state has
been released before it hits BPF_EXIT. This requires introducing a new
callback_ref member in the reference state to distinguish between caller
vs callee references. Hence, check_reference_leak now errors out if it
sees we are in callback_fn and we have not released callback_ref refs.
Since there can be multiple nested callbacks, like frame 0 -> cb1 -> cb2
etc. we need to also distinguish between whether this particular ref
belongs to this callback frame or parent, and only error for our own, so
we store state->frameno (which is always non-zero for callbacks).
In short, callbacks can read parent reference_state, but cannot mutate
it, to be able to use pointers acquired by the caller. They must only
undo their changes (by releasing their own acquired_refs before
BPF_EXIT) on top of caller reference_state before returning (at which
point the caller and callback state will match anyway, so no need to
copy it back to caller).
Fixes: 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220823013125.24938-1-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Our CI[1] reported these warnings when using Sparse:
$ touch net/mptcp/bpf.c
$ make C=1 net/mptcp/bpf.o
net/mptcp/bpf.c: note: in included file:
include/linux/bpf_verifier.h:348:26: error: dubious one-bit signed bitfield
include/linux/bpf_verifier.h:349:29: error: dubious one-bit signed bitfield
Set them as 'unsigned' to avoid warnings.
[1] https://github.com/multipath-tcp/mptcp_net-next/actions/runs/2643588487
Fixes: 1ade237119 ("bpf: Inline calls to bpf_loop when callback is known")
Signed-off-by: Matthieu Baerts <matthieu.baerts@tessares.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220711081200.2081262-1-matthieu.baerts@tessares.net
Calls to `bpf_loop` are replaced with direct loops to avoid
indirection. E.g. the following:
bpf_loop(10, foo, NULL, 0);
Is replaced by equivalent of the following:
for (int i = 0; i < 10; ++i)
foo(i, NULL);
This transformation could be applied when:
- callback is known and does not change during program execution;
- flags passed to `bpf_loop` are always zero.
Inlining logic works as follows:
- During execution simulation function `update_loop_inline_state`
tracks the following information for each `bpf_loop` call
instruction:
- is callback known and constant?
- are flags constant and zero?
- Function `optimize_bpf_loop` increases stack depth for functions
where `bpf_loop` calls can be inlined and invokes `inline_bpf_loop`
to apply the inlining. The additional stack space is used to spill
registers R6, R7 and R8. These registers are used as loop counter,
loop maximal bound and callback context parameter;
Measurements using `benchs/run_bench_bpf_loop.sh` inside QEMU / KVM on
i7-4710HQ CPU show a drop in latency from 14 ns/op to 2 ns/op.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/r/20220620235344.569325-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Minor spelling fix spotted in bpf_verifier.h. Spelling is no big deal,
but it is still an improvement when reading through the code.
Signed-off-by: Hongyi Lu <jwnhy0@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220613211633.58647-1-jwnhy0@gmail.com
Currently, our only way of writing dynamically-sized data into a ring
buffer is through bpf_ringbuf_output but this incurs an extra memcpy
cost. bpf_ringbuf_reserve + bpf_ringbuf_commit avoids this extra
memcpy, but it can only safely support reservation sizes that are
statically known since the verifier cannot guarantee that the bpf
program won’t access memory outside the reserved space.
The bpf_dynptr abstraction allows for dynamically-sized ring buffer
reservations without the extra memcpy.
There are 3 new APIs:
long bpf_ringbuf_reserve_dynptr(void *ringbuf, u32 size, u64 flags, struct bpf_dynptr *ptr);
void bpf_ringbuf_submit_dynptr(struct bpf_dynptr *ptr, u64 flags);
void bpf_ringbuf_discard_dynptr(struct bpf_dynptr *ptr, u64 flags);
These closely follow the functionalities of the original ringbuf APIs.
For example, all ringbuffer dynptrs that have been reserved must be
either submitted or discarded before the program exits.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20220523210712.3641569-4-joannelkoong@gmail.com
This patch adds the bulk of the verifier work for supporting dynamic
pointers (dynptrs) in bpf.
A bpf_dynptr is opaque to the bpf program. It is a 16-byte structure
defined internally as:
struct bpf_dynptr_kern {
void *data;
u32 size;
u32 offset;
} __aligned(8);
The upper 8 bits of *size* is reserved (it contains extra metadata about
read-only status and dynptr type). Consequently, a dynptr only supports
memory less than 16 MB.
There are different types of dynptrs (eg malloc, ringbuf, ...). In this
patchset, the most basic one, dynptrs to a bpf program's local memory,
is added. For now only local memory that is of reg type PTR_TO_MAP_VALUE
is supported.
In the verifier, dynptr state information will be tracked in stack
slots. When the program passes in an uninitialized dynptr
(ARG_PTR_TO_DYNPTR | MEM_UNINIT), the stack slots corresponding
to the frame pointer where the dynptr resides at are marked
STACK_DYNPTR. For helper functions that take in initialized dynptrs (eg
bpf_dynptr_read + bpf_dynptr_write which are added later in this
patchset), the verifier enforces that the dynptr has been initialized
properly by checking that their corresponding stack slots have been
marked as STACK_DYNPTR.
The 6th patch in this patchset adds test cases that the verifier should
successfully reject, such as for example attempting to use a dynptr
after doing a direct write into it inside the bpf program.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20220523210712.3641569-2-joannelkoong@gmail.com
Add a new type flag for bpf_arg_type that when set tells verifier that
for a release function, that argument's register will be the one for
which meta.ref_obj_id will be set, and which will then be released
using release_reference. To capture the regno, introduce a new field
release_regno in bpf_call_arg_meta.
This would be required in the next patch, where we may either pass NULL
or a refcounted pointer as an argument to the release function
bpf_kptr_xchg. Just releasing only when meta.ref_obj_id is set is not
enough, as there is a case where the type of argument needed matches,
but the ref_obj_id is set to 0. Hence, we must enforce that whenever
meta.ref_obj_id is zero, the register that is to be released can only
be NULL for a release function.
Since we now indicate whether an argument is to be released in
bpf_func_proto itself, is_release_function helper has lost its utitlity,
hence refactor code to work without it, and just rely on
meta.release_regno to know when to release state for a ref_obj_id.
Still, the restriction of one release argument and only one ref_obj_id
passed to BPF helper or kfunc remains. This may be lifted in the future.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-3-memxor@gmail.com
The commit 7e40781cc8 ("bpf: verifier: Use target program's type for access verifications")
fixes the verifier checking for BPF_PROG_TYPE_EXT (extension)
prog such that the verifier looks for things based
on the target prog type that it is extending instead of
the BPF_PROG_TYPE_EXT itself.
The current resolve_prog_type() returns the target prog type.
It checks for nullness on prog->aux->dst_prog. However,
when loading a BPF_PROG_TYPE_TRACING prog and it is tracing another
bpf prog instead of a kernel function, prog->aux->dst_prog is not
NULL also. In this case, the verifier should still verify as the
BPF_PROG_TYPE_TRACING type instead of the traced prog type in
prog->aux->dst_prog->type.
An oops has been reported when tracing a struct_ops prog. A NULL
dereference happened in check_return_code() when accessing the
prog->aux->attach_func_proto->type and prog->aux->attach_func_proto
is NULL here because the traced struct_ops prog has the "unreliable" set.
This patch is to change the resolve_prog_type() to only
return the target prog type if the prog being verified is
BPF_PROG_TYPE_EXT.
Fixes: 7e40781cc8 ("bpf: verifier: Use target program's type for access verifications")
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220330011456.2984509-1-kafai@fb.com
Let's ensure that the PTR_TO_BTF_ID reg being passed in to release BPF
helpers and kfuncs always has its offset set to 0. While not a real
problem now, there's a very real possibility this will become a problem
when more and more kfuncs are exposed, and more BPF helpers are added
which can release PTR_TO_BTF_ID.
Previous commits already protected against non-zero var_off. One of the
case we are concerned about now is when we have a type that can be
returned by e.g. an acquire kfunc:
struct foo {
int a;
int b;
struct bar b;
};
... and struct bar is also a type that can be returned by another
acquire kfunc.
Then, doing the following sequence:
struct foo *f = bpf_get_foo(); // acquire kfunc
if (!f)
return 0;
bpf_put_bar(&f->b); // release kfunc
... would work with the current code, since the btf_struct_ids_match
takes reg->off into account for matching pointer type with release kfunc
argument type, but would obviously be incorrect, and most likely lead to
a kernel crash. A test has been included later to prevent regressions in
this area.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220304224645.3677453-5-memxor@gmail.com
Lift the list of register types allowed for having fixed and variable
offsets when passed as helper function arguments into a common helper,
so that they can be reused for kfunc checks in later commits. Keeping a
common helper aids maintainability and allows us to follow the same
consistent rules across helpers and kfuncs. Also, convert check_func_arg
to use this function.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220304224645.3677453-2-memxor@gmail.com
Daniel Borkmann says:
====================
pull-request: bpf-next 2022-01-24
We've added 80 non-merge commits during the last 14 day(s) which contain
a total of 128 files changed, 4990 insertions(+), 895 deletions(-).
The main changes are:
1) Add XDP multi-buffer support and implement it for the mvneta driver,
from Lorenzo Bianconi, Eelco Chaudron and Toke Høiland-Jørgensen.
2) Add unstable conntrack lookup helpers for BPF by using the BPF kfunc
infra, from Kumar Kartikeya Dwivedi.
3) Extend BPF cgroup programs to export custom ret value to userspace via
two helpers bpf_get_retval() and bpf_set_retval(), from YiFei Zhu.
4) Add support for AF_UNIX iterator batching, from Kuniyuki Iwashima.
5) Complete missing UAPI BPF helper description and change bpf_doc.py script
to enforce consistent & complete helper documentation, from Usama Arif.
6) Deprecate libbpf's legacy BPF map definitions and streamline XDP APIs to
follow tc-based APIs, from Andrii Nakryiko.
7) Support BPF_PROG_QUERY for BPF programs attached to sockmap, from Di Zhu.
8) Deprecate libbpf's bpf_map__def() API and replace users with proper getters
and setters, from Christy Lee.
9) Extend libbpf's btf__add_btf() with an additional hashmap for strings to
reduce overhead, from Kui-Feng Lee.
10) Fix bpftool and libbpf error handling related to libbpf's hashmap__new()
utility function, from Mauricio Vásquez.
11) Add support to BTF program names in bpftool's program dump, from Raman Shukhau.
12) Fix resolve_btfids build to pick up host flags, from Connor O'Brien.
* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (80 commits)
selftests, bpf: Do not yet switch to new libbpf XDP APIs
selftests, xsk: Fix rx_full stats test
bpf: Fix flexible_array.cocci warnings
xdp: disable XDP_REDIRECT for xdp frags
bpf: selftests: add CPUMAP/DEVMAP selftests for xdp frags
bpf: selftests: introduce bpf_xdp_{load,store}_bytes selftest
net: xdp: introduce bpf_xdp_pointer utility routine
bpf: generalise tail call map compatibility check
libbpf: Add SEC name for xdp frags programs
bpf: selftests: update xdp_adjust_tail selftest to include xdp frags
bpf: test_run: add xdp_shared_info pointer in bpf_test_finish signature
bpf: introduce frags support to bpf_prog_test_run_xdp()
bpf: move user_size out of bpf_test_init
bpf: add frags support to xdp copy helpers
bpf: add frags support to the bpf_xdp_adjust_tail() API
bpf: introduce bpf_xdp_get_buff_len helper
net: mvneta: enable jumbo frames if the loaded XDP program support frags
bpf: introduce BPF_F_XDP_HAS_FRAGS flag in prog_flags loading the ebpf program
net: mvneta: add frags support to XDP_TX
xdp: add frags support to xdp_return_{buff/frame}
...
====================
Link: https://lore.kernel.org/r/20220124221235.18993-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Generalize the check_ctx_reg() helper function into a more generic named one
so that it can be reused for other register types as well to check whether
their offset is non-zero. No functional change.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
This patch adds verifier support for PTR_TO_BTF_ID return type of kfunc
to be a reference, by reusing acquire_reference_state/release_reference
support for existing in-kernel bpf helpers.
We make use of the three kfunc types:
- BTF_KFUNC_TYPE_ACQUIRE
Return true if kfunc_btf_id is an acquire kfunc. This will
acquire_reference_state for the returned PTR_TO_BTF_ID (this is the
only allow return value). Note that acquire kfunc must always return a
PTR_TO_BTF_ID{_OR_NULL}, otherwise the program is rejected.
- BTF_KFUNC_TYPE_RELEASE
Return true if kfunc_btf_id is a release kfunc. This will release the
reference to the passed in PTR_TO_BTF_ID which has a reference state
(from earlier acquire kfunc).
The btf_check_func_arg_match returns the regno (of argument register,
hence > 0) if the kfunc is a release kfunc, and a proper referenced
PTR_TO_BTF_ID is being passed to it.
This is similar to how helper call check uses bpf_call_arg_meta to
store the ref_obj_id that is later used to release the reference.
Similar to in-kernel helper, we only allow passing one referenced
PTR_TO_BTF_ID as an argument. It can also be passed in to normal
kfunc, but in case of release kfunc there must always be one
PTR_TO_BTF_ID argument that is referenced.
- BTF_KFUNC_TYPE_RET_NULL
For kfunc returning PTR_TO_BTF_ID, tells if it can be NULL, hence
force caller to mark the pointer not null (using check) before
accessing it. Note that taking into account the case fixed by commit
93c230e3f5 ("bpf: Enforce id generation for all may-be-null register type")
we assign a non-zero id for mark_ptr_or_null_reg logic. Later, if more
return types are supported by kfunc, which have a _OR_NULL variant, it
might be better to move this id generation under a common
reg_type_may_be_null check, similar to the case in the commit.
Referenced PTR_TO_BTF_ID is currently only limited to kfunc, but can be
extended in the future to other BPF helpers as well. For now, we can
rely on the btf_struct_ids_match check to ensure we get the pointer to
the expected struct type. In the future, care needs to be taken to avoid
ambiguity for reference PTR_TO_BTF_ID passed to release function, in
case multiple candidates can release same BTF ID.
e.g. there might be two release kfuncs (or kfunc and helper):
foo(struct abc *p);
bar(struct abc *p);
... such that both release a PTR_TO_BTF_ID with btf_id of struct abc. In
this case we would need to track the acquire function corresponding to
the release function to avoid type confusion, and store this information
in the register state so that an incorrect program can be rejected. This
is not a problem right now, hence it is left as an exercise for the
future patch introducing such a case in the kernel.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220114163953.1455836-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
BPF helpers can associate two adjacent arguments together to pass memory
of certain size, using ARG_PTR_TO_MEM and ARG_CONST_SIZE arguments.
Since we don't use bpf_func_proto for kfunc, we need to leverage BTF to
implement similar support.
The ARG_CONST_SIZE processing for helpers is refactored into a common
check_mem_size_reg helper that is shared with kfunc as well. kfunc
ptr_to_mem support follows logic similar to global functions, where
verification is done as if pointer is not null, even when it may be
null.
This leads to a simple to follow rule for writing kfunc: always check
the argument pointer for NULL, except when it is PTR_TO_CTX. Also, the
PTR_TO_CTX case is also only safe when the helper expecting pointer to
program ctx is not exposed to other programs where same struct is not
ctx type. In that case, the type check will fall through to other cases
and would permit passing other types of pointers, possibly NULL at
runtime.
Currently, we require the size argument to be suffixed with "__sz" in
the parameter name. This information is then recorded in kernel BTF and
verified during function argument checking. In the future we can use BTF
tagging instead, and modify the kernel function definitions. This will
be a purely kernel-side change.
This allows us to have some form of backwards compatibility for
structures that are passed in to the kernel function with their size,
and allow variable length structures to be passed in if they are
accompanied by a size parameter.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220114163953.1455836-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
We have introduced a new type to make bpf_reg composable, by
allocating bits in the type to represent flags.
One of the flags is PTR_MAYBE_NULL which indicates a pointer
may be NULL. This patch switches the qualified reg_types to
use this flag. The reg_types changed in this patch include:
1. PTR_TO_MAP_VALUE_OR_NULL
2. PTR_TO_SOCKET_OR_NULL
3. PTR_TO_SOCK_COMMON_OR_NULL
4. PTR_TO_TCP_SOCK_OR_NULL
5. PTR_TO_BTF_ID_OR_NULL
6. PTR_TO_MEM_OR_NULL
7. PTR_TO_RDONLY_BUF_OR_NULL
8. PTR_TO_RDWR_BUF_OR_NULL
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211217003152.48334-5-haoluo@google.com
There are some common properties shared between bpf reg, ret and arg
values. For instance, a value may be a NULL pointer, or a pointer to
a read-only memory. Previously, to express these properties, enumeration
was used. For example, in order to test whether a reg value can be NULL,
reg_type_may_be_null() simply enumerates all types that are possibly
NULL. The problem of this approach is that it's not scalable and causes
a lot of duplication. These properties can be combined, for example, a
type could be either MAYBE_NULL or RDONLY, or both.
This patch series rewrites the layout of reg_type, arg_type and
ret_type, so that common properties can be extracted and represented as
composable flag. For example, one can write
ARG_PTR_TO_MEM | PTR_MAYBE_NULL
which is equivalent to the previous
ARG_PTR_TO_MEM_OR_NULL
The type ARG_PTR_TO_MEM are called "base type" in this patch. Base
types can be extended with flags. A flag occupies the higher bits while
base types sits in the lower bits.
This patch in particular sets up a set of macro for this purpose. The
following patches will rewrite arg_types, ret_types and reg_types
respectively.
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-2-haoluo@google.com
BPF_LOG_KERNEL is only used internally, so disallow bpf_btf_load()
to set log level as BPF_LOG_KERNEL. The same checking has already
been done in bpf_check(), so factor out a helper to check the
validity of log attributes and use it in both places.
Fixes: 8580ac9404 ("bpf: Process in-kernel BTF")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20211203053001.740945-1-houtao1@huawei.com
This change adds support on the kernel side to allow for BPF programs to
call kernel module functions. Userspace will prepare an array of module
BTF fds that is passed in during BPF_PROG_LOAD using fd_array parameter.
In the kernel, the module BTFs are placed in the auxilliary struct for
bpf_prog, and loaded as needed.
The verifier then uses insn->off to index into the fd_array. insn->off
0 is reserved for vmlinux BTF (for backwards compat), so userspace must
use an fd_array index > 0 for module kfunc support. kfunc_btf_tab is
sorted based on offset in an array, and each offset corresponds to one
descriptor, with a max limit up to 256 such module BTFs.
We also change existing kfunc_tab to distinguish each element based on
imm, off pair as each such call will now be distinct.
Another change is to check_kfunc_call callback, which now include a
struct module * pointer, this is to be used in later patch such that the
kfunc_id and module pointer are matched for dynamically registered BTF
sets from loadable modules, so that same kfunc_id in two modules doesn't
lead to check_kfunc_call succeeding. For the duration of the
check_kfunc_call, the reference to struct module exists, as it returns
the pointer stored in kfunc_btf_tab.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211002011757.311265-2-memxor@gmail.com
Spectre v4 gadgets make use of memory disambiguation, which is a set of
techniques that execute memory access instructions, that is, loads and
stores, out of program order; Intel's optimization manual, section 2.4.4.5:
A load instruction micro-op may depend on a preceding store. Many
microarchitectures block loads until all preceding store addresses are
known. The memory disambiguator predicts which loads will not depend on
any previous stores. When the disambiguator predicts that a load does
not have such a dependency, the load takes its data from the L1 data
cache. Eventually, the prediction is verified. If an actual conflict is
detected, the load and all succeeding instructions are re-executed.
af86ca4e30 ("bpf: Prevent memory disambiguation attack") tried to mitigate
this attack by sanitizing the memory locations through preemptive "fast"
(low latency) stores of zero prior to the actual "slow" (high latency) store
of a pointer value such that upon dependency misprediction the CPU then
speculatively executes the load of the pointer value and retrieves the zero
value instead of the attacker controlled scalar value previously stored at
that location, meaning, subsequent access in the speculative domain is then
redirected to the "zero page".
The sanitized preemptive store of zero prior to the actual "slow" store is
done through a simple ST instruction based on r10 (frame pointer) with
relative offset to the stack location that the verifier has been tracking
on the original used register for STX, which does not have to be r10. Thus,
there are no memory dependencies for this store, since it's only using r10
and immediate constant of zero; hence af86ca4e30 /assumed/ a low latency
operation.
However, a recent attack demonstrated that this mitigation is not sufficient
since the preemptive store of zero could also be turned into a "slow" store
and is thus bypassed as well:
[...]
// r2 = oob address (e.g. scalar)
// r7 = pointer to map value
31: (7b) *(u64 *)(r10 -16) = r2
// r9 will remain "fast" register, r10 will become "slow" register below
32: (bf) r9 = r10
// JIT maps BPF reg to x86 reg:
// r9 -> r15 (callee saved)
// r10 -> rbp
// train store forward prediction to break dependency link between both r9
// and r10 by evicting them from the predictor's LRU table.
33: (61) r0 = *(u32 *)(r7 +24576)
34: (63) *(u32 *)(r7 +29696) = r0
35: (61) r0 = *(u32 *)(r7 +24580)
36: (63) *(u32 *)(r7 +29700) = r0
37: (61) r0 = *(u32 *)(r7 +24584)
38: (63) *(u32 *)(r7 +29704) = r0
39: (61) r0 = *(u32 *)(r7 +24588)
40: (63) *(u32 *)(r7 +29708) = r0
[...]
543: (61) r0 = *(u32 *)(r7 +25596)
544: (63) *(u32 *)(r7 +30716) = r0
// prepare call to bpf_ringbuf_output() helper. the latter will cause rbp
// to spill to stack memory while r13/r14/r15 (all callee saved regs) remain
// in hardware registers. rbp becomes slow due to push/pop latency. below is
// disasm of bpf_ringbuf_output() helper for better visual context:
//
// ffffffff8117ee20: 41 54 push r12
// ffffffff8117ee22: 55 push rbp
// ffffffff8117ee23: 53 push rbx
// ffffffff8117ee24: 48 f7 c1 fc ff ff ff test rcx,0xfffffffffffffffc
// ffffffff8117ee2b: 0f 85 af 00 00 00 jne ffffffff8117eee0 <-- jump taken
// [...]
// ffffffff8117eee0: 49 c7 c4 ea ff ff ff mov r12,0xffffffffffffffea
// ffffffff8117eee7: 5b pop rbx
// ffffffff8117eee8: 5d pop rbp
// ffffffff8117eee9: 4c 89 e0 mov rax,r12
// ffffffff8117eeec: 41 5c pop r12
// ffffffff8117eeee: c3 ret
545: (18) r1 = map[id:4]
547: (bf) r2 = r7
548: (b7) r3 = 0
549: (b7) r4 = 4
550: (85) call bpf_ringbuf_output#194288
// instruction 551 inserted by verifier \
551: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here
// storing map value pointer r7 at fp-16 | since value of r10 is "slow".
552: (7b) *(u64 *)(r10 -16) = r7 /
// following "fast" read to the same memory location, but due to dependency
// misprediction it will speculatively execute before insn 551/552 completes.
553: (79) r2 = *(u64 *)(r9 -16)
// in speculative domain contains attacker controlled r2. in non-speculative
// domain this contains r7, and thus accesses r7 +0 below.
554: (71) r3 = *(u8 *)(r2 +0)
// leak r3
As can be seen, the current speculative store bypass mitigation which the
verifier inserts at line 551 is insufficient since /both/, the write of
the zero sanitation as well as the map value pointer are a high latency
instruction due to prior memory access via push/pop of r10 (rbp) in contrast
to the low latency read in line 553 as r9 (r15) which stays in hardware
registers. Thus, architecturally, fp-16 is r7, however, microarchitecturally,
fp-16 can still be r2.
Initial thoughts to address this issue was to track spilled pointer loads
from stack and enforce their load via LDX through r10 as well so that /both/
the preemptive store of zero /as well as/ the load use the /same/ register
such that a dependency is created between the store and load. However, this
option is not sufficient either since it can be bypassed as well under
speculation. An updated attack with pointer spill/fills now _all_ based on
r10 would look as follows:
[...]
// r2 = oob address (e.g. scalar)
// r7 = pointer to map value
[...]
// longer store forward prediction training sequence than before.
2062: (61) r0 = *(u32 *)(r7 +25588)
2063: (63) *(u32 *)(r7 +30708) = r0
2064: (61) r0 = *(u32 *)(r7 +25592)
2065: (63) *(u32 *)(r7 +30712) = r0
2066: (61) r0 = *(u32 *)(r7 +25596)
2067: (63) *(u32 *)(r7 +30716) = r0
// store the speculative load address (scalar) this time after the store
// forward prediction training.
2068: (7b) *(u64 *)(r10 -16) = r2
// preoccupy the CPU store port by running sequence of dummy stores.
2069: (63) *(u32 *)(r7 +29696) = r0
2070: (63) *(u32 *)(r7 +29700) = r0
2071: (63) *(u32 *)(r7 +29704) = r0
2072: (63) *(u32 *)(r7 +29708) = r0
2073: (63) *(u32 *)(r7 +29712) = r0
2074: (63) *(u32 *)(r7 +29716) = r0
2075: (63) *(u32 *)(r7 +29720) = r0
2076: (63) *(u32 *)(r7 +29724) = r0
2077: (63) *(u32 *)(r7 +29728) = r0
2078: (63) *(u32 *)(r7 +29732) = r0
2079: (63) *(u32 *)(r7 +29736) = r0
2080: (63) *(u32 *)(r7 +29740) = r0
2081: (63) *(u32 *)(r7 +29744) = r0
2082: (63) *(u32 *)(r7 +29748) = r0
2083: (63) *(u32 *)(r7 +29752) = r0
2084: (63) *(u32 *)(r7 +29756) = r0
2085: (63) *(u32 *)(r7 +29760) = r0
2086: (63) *(u32 *)(r7 +29764) = r0
2087: (63) *(u32 *)(r7 +29768) = r0
2088: (63) *(u32 *)(r7 +29772) = r0
2089: (63) *(u32 *)(r7 +29776) = r0
2090: (63) *(u32 *)(r7 +29780) = r0
2091: (63) *(u32 *)(r7 +29784) = r0
2092: (63) *(u32 *)(r7 +29788) = r0
2093: (63) *(u32 *)(r7 +29792) = r0
2094: (63) *(u32 *)(r7 +29796) = r0
2095: (63) *(u32 *)(r7 +29800) = r0
2096: (63) *(u32 *)(r7 +29804) = r0
2097: (63) *(u32 *)(r7 +29808) = r0
2098: (63) *(u32 *)(r7 +29812) = r0
// overwrite scalar with dummy pointer; same as before, also including the
// sanitation store with 0 from the current mitigation by the verifier.
2099: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here
2100: (7b) *(u64 *)(r10 -16) = r7 | since store unit is still busy.
// load from stack intended to bypass stores.
2101: (79) r2 = *(u64 *)(r10 -16)
2102: (71) r3 = *(u8 *)(r2 +0)
// leak r3
[...]
Looking at the CPU microarchitecture, the scheduler might issue loads (such
as seen in line 2101) before stores (line 2099,2100) because the load execution
units become available while the store execution unit is still busy with the
sequence of dummy stores (line 2069-2098). And so the load may use the prior
stored scalar from r2 at address r10 -16 for speculation. The updated attack
may work less reliable on CPU microarchitectures where loads and stores share
execution resources.
This concludes that the sanitizing with zero stores from af86ca4e30 ("bpf:
Prevent memory disambiguation attack") is insufficient. Moreover, the detection
of stack reuse from af86ca4e30 where previously data (STACK_MISC) has been
written to a given stack slot where a pointer value is now to be stored does
not have sufficient coverage as precondition for the mitigation either; for
several reasons outlined as follows:
1) Stack content from prior program runs could still be preserved and is
therefore not "random", best example is to split a speculative store
bypass attack between tail calls, program A would prepare and store the
oob address at a given stack slot and then tail call into program B which
does the "slow" store of a pointer to the stack with subsequent "fast"
read. From program B PoV such stack slot type is STACK_INVALID, and
therefore also must be subject to mitigation.
2) The STACK_SPILL must not be coupled to register_is_const(&stack->spilled_ptr)
condition, for example, the previous content of that memory location could
also be a pointer to map or map value. Without the fix, a speculative
store bypass is not mitigated in such precondition and can then lead to
a type confusion in the speculative domain leaking kernel memory near
these pointer types.
While brainstorming on various alternative mitigation possibilities, we also
stumbled upon a retrospective from Chrome developers [0]:
[...] For variant 4, we implemented a mitigation to zero the unused memory
of the heap prior to allocation, which cost about 1% when done concurrently
and 4% for scavenging. Variant 4 defeats everything we could think of. We
explored more mitigations for variant 4 but the threat proved to be more
pervasive and dangerous than we anticipated. For example, stack slots used
by the register allocator in the optimizing compiler could be subject to
type confusion, leading to pointer crafting. Mitigating type confusion for
stack slots alone would have required a complete redesign of the backend of
the optimizing compiler, perhaps man years of work, without a guarantee of
completeness. [...]
From BPF side, the problem space is reduced, however, options are rather
limited. One idea that has been explored was to xor-obfuscate pointer spills
to the BPF stack:
[...]
// preoccupy the CPU store port by running sequence of dummy stores.
[...]
2106: (63) *(u32 *)(r7 +29796) = r0
2107: (63) *(u32 *)(r7 +29800) = r0
2108: (63) *(u32 *)(r7 +29804) = r0
2109: (63) *(u32 *)(r7 +29808) = r0
2110: (63) *(u32 *)(r7 +29812) = r0
// overwrite scalar with dummy pointer; xored with random 'secret' value
// of 943576462 before store ...
2111: (b4) w11 = 943576462
2112: (af) r11 ^= r7
2113: (7b) *(u64 *)(r10 -16) = r11
2114: (79) r11 = *(u64 *)(r10 -16)
2115: (b4) w2 = 943576462
2116: (af) r2 ^= r11
// ... and restored with the same 'secret' value with the help of AX reg.
2117: (71) r3 = *(u8 *)(r2 +0)
[...]
While the above would not prevent speculation, it would make data leakage
infeasible by directing it to random locations. In order to be effective
and prevent type confusion under speculation, such random secret would have
to be regenerated for each store. The additional complexity involved for a
tracking mechanism that prevents jumps such that restoring spilled pointers
would not get corrupted is not worth the gain for unprivileged. Hence, the
fix in here eventually opted for emitting a non-public BPF_ST | BPF_NOSPEC
instruction which the x86 JIT translates into a lfence opcode. Inserting the
latter in between the store and load instruction is one of the mitigations
options [1]. The x86 instruction manual notes:
[...] An LFENCE that follows an instruction that stores to memory might
complete before the data being stored have become globally visible. [...]
The latter meaning that the preceding store instruction finished execution
and the store is at minimum guaranteed to be in the CPU's store queue, but
it's not guaranteed to be in that CPU's L1 cache at that point (globally
visible). The latter would only be guaranteed via sfence. So the load which
is guaranteed to execute after the lfence for that local CPU would have to
rely on store-to-load forwarding. [2], in section 2.3 on store buffers says:
[...] For every store operation that is added to the ROB, an entry is
allocated in the store buffer. This entry requires both the virtual and
physical address of the target. Only if there is no free entry in the store
buffer, the frontend stalls until there is an empty slot available in the
store buffer again. Otherwise, the CPU can immediately continue adding
subsequent instructions to the ROB and execute them out of order. On Intel
CPUs, the store buffer has up to 56 entries. [...]
One small upside on the fix is that it lifts constraints from af86ca4e30
where the sanitize_stack_off relative to r10 must be the same when coming
from different paths. The BPF_ST | BPF_NOSPEC gets emitted after a BPF_STX
or BPF_ST instruction. This happens either when we store a pointer or data
value to the BPF stack for the first time, or upon later pointer spills.
The former needs to be enforced since otherwise stale stack data could be
leaked under speculation as outlined earlier. For non-x86 JITs the BPF_ST |
BPF_NOSPEC mapping is currently optimized away, but others could emit a
speculation barrier as well if necessary. For real-world unprivileged
programs e.g. generated by LLVM, pointer spill/fill is only generated upon
register pressure and LLVM only tries to do that for pointers which are not
used often. The program main impact will be the initial BPF_ST | BPF_NOSPEC
sanitation for the STACK_INVALID case when the first write to a stack slot
occurs e.g. upon map lookup. In future we might refine ways to mitigate
the latter cost.
[0] https://arxiv.org/pdf/1902.05178.pdf
[1] https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
[2] https://arxiv.org/pdf/1905.05725.pdf
Fixes: af86ca4e30 ("bpf: Prevent memory disambiguation attack")
Fixes: f7cf25b202 ("bpf: track spill/fill of constants")
Co-developed-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Benedict Schlueter <benedict.schlueter@rub.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
In 7fedb63a83 ("bpf: Tighten speculative pointer arithmetic mask") we
narrowed the offset mask for unprivileged pointer arithmetic in order to
mitigate a corner case where in the speculative domain it is possible to
advance, for example, the map value pointer by up to value_size-1 out-of-
bounds in order to leak kernel memory via side-channel to user space.
The verifier's state pruning for scalars leaves one corner case open
where in the first verification path R_x holds an unknown scalar with an
aux->alu_limit of e.g. 7, and in a second verification path that same
register R_x, here denoted as R_x', holds an unknown scalar which has
tighter bounds and would thus satisfy range_within(R_x, R_x') as well as
tnum_in(R_x, R_x') for state pruning, yielding an aux->alu_limit of 3:
Given the second path fits the register constraints for pruning, the final
generated mask from aux->alu_limit will remain at 7. While technically
not wrong for the non-speculative domain, it would however be possible
to craft similar cases where the mask would be too wide as in 7fedb63a83.
One way to fix it is to detect the presence of unknown scalar map pointer
arithmetic and force a deeper search on unknown scalars to ensure that
we do not run into a masking mismatch.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Teach max stack depth checking algorithm about async callbacks
that don't increase bpf program stack size.
Also add sanity check that bpf_tail_call didn't sneak into async cb.
It's impossible, since PTR_TO_CTX is not available in async cb,
hence the program cannot contain bpf_tail_call(ctx,...);
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-10-alexei.starovoitov@gmail.com
bpf_for_each_map_elem() and bpf_timer_set_callback() helpers are relying on
PTR_TO_FUNC infra in the verifier to validate addresses to subprograms
and pass them into the helpers as function callbacks.
In case of bpf_for_each_map_elem() the callback is invoked synchronously
and the verifier treats it as a normal subprogram call by adding another
bpf_func_state and new frame in __check_func_call().
bpf_timer_set_callback() doesn't invoke the callback directly.
The subprogram will be called asynchronously from bpf_timer_cb().
Teach the verifier to validate such async callbacks as special kind
of jump by pushing verifier state into stack and let pop_stack() process it.
Special care needs to be taken during state pruning.
The call insn doing bpf_timer_set_callback has to be a prune_point.
Otherwise short timer callbacks might not have prune points in front of
bpf_timer_set_callback() which means is_state_visited() will be called
after this call insn is processed in __check_func_call(). Which means that
another async_cb state will be pushed to be walked later and the verifier
will eventually hit BPF_COMPLEXITY_LIMIT_JMP_SEQ limit.
Since push_async_cb() looks like another push_stack() branch the
infinite loop detection will trigger false positive. To recognize
this case mark such states as in_async_callback_fn.
To distinguish infinite loop in async callback vs the same callback called
with different arguments for different map and timer add async_entry_cnt
to bpf_func_state.
Enforce return zero from async callbacks.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-9-alexei.starovoitov@gmail.com
bpf_timer_init() arguments are:
1. pointer to a timer (which is embedded in map element).
2. pointer to a map.
Make sure that pointer to a timer actually belongs to that map.
Use map_uid (which is unique id of inner map) to reject:
inner_map1 = bpf_map_lookup_elem(outer_map, key1)
inner_map2 = bpf_map_lookup_elem(outer_map, key2)
if (inner_map1 && inner_map2) {
timer = bpf_map_lookup_elem(inner_map1);
if (timer)
// mismatch would have been allowed
bpf_timer_init(timer, inner_map2);
}
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-6-alexei.starovoitov@gmail.com
Typical program loading sequence involves creating bpf maps and applying
map FDs into bpf instructions in various places in the bpf program.
This job is done by libbpf that is using compiler generated ELF relocations
to patch certain instruction after maps are created and BTFs are loaded.
The goal of fd_idx is to allow bpf instructions to stay immutable
after compilation. At load time the libbpf would still create maps as usual,
but it wouldn't need to patch instructions. It would store map_fds into
__u32 fd_array[] and would pass that pointer to sys_bpf(BPF_PROG_LOAD).
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210514003623.28033-9-alexei.starovoitov@gmail.com
func_states_equal makes a very short lived allocation for idmap,
probably because it's too large to fit on the stack. However the
function is called quite often, leading to a lot of alloc / free
churn. Replace the temporary allocation with dedicated scratch
space in struct bpf_verifier_env.
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Edward Cree <ecree.xilinx@gmail.com>
Link: https://lore.kernel.org/bpf/20210429134656.122225-4-lmb@cloudflare.com
The current implemented mechanisms to mitigate data disclosure under
speculation mainly address stack and map value oob access from the
speculative domain. However, Piotr discovered that uninitialized BPF
stack is not protected yet, and thus old data from the kernel stack,
potentially including addresses of kernel structures, could still be
extracted from that 512 bytes large window. The BPF stack is special
compared to map values since it's not zero initialized for every
program invocation, whereas map values /are/ zero initialized upon
their initial allocation and thus cannot leak any prior data in either
domain. In the non-speculative domain, the verifier ensures that every
stack slot read must have a prior stack slot write by the BPF program
to avoid such data leaking issue.
However, this is not enough: for example, when the pointer arithmetic
operation moves the stack pointer from the last valid stack offset to
the first valid offset, the sanitation logic allows for any intermediate
offsets during speculative execution, which could then be used to
extract any restricted stack content via side-channel.
Given for unprivileged stack pointer arithmetic the use of unknown
but bounded scalars is generally forbidden, we can simply turn the
register-based arithmetic operation into an immediate-based arithmetic
operation without the need for masking. This also gives the benefit
of reducing the needed instructions for the operation. Given after
the work in 7fedb63a83 ("bpf: Tighten speculative pointer arithmetic
mask"), the aux->alu_limit already holds the final immediate value for
the offset register with the known scalar. Thus, a simple mov of the
immediate to AX register with using AX as the source for the original
instruction is sufficient and possible now in this case.
Reported-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Piotr Krysiuk <piotras@gmail.com>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
There is currently no way to discover the target of a tracing program
attachment after the fact. Add this information to bpf_link_info and return
it when querying the bpf_link fd.
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210413091607.58945-1-toke@redhat.com
The bpf_for_each_map_elem() helper is introduced which
iterates all map elements with a callback function. The
helper signature looks like
long bpf_for_each_map_elem(map, callback_fn, callback_ctx, flags)
and for each map element, the callback_fn will be called. For example,
like hashmap, the callback signature may look like
long callback_fn(map, key, val, callback_ctx)
There are two known use cases for this. One is from upstream ([1]) where
a for_each_map_elem helper may help implement a timeout mechanism
in a more generic way. Another is from our internal discussion
for a firewall use case where a map contains all the rules. The packet
data can be compared to all these rules to decide allow or deny
the packet.
For array maps, users can already use a bounded loop to traverse
elements. Using this helper can avoid using bounded loop. For other
type of maps (e.g., hash maps) where bounded loop is hard or
impossible to use, this helper provides a convenient way to
operate on all elements.
For callback_fn, besides map and map element, a callback_ctx,
allocated on caller stack, is also passed to the callback
function. This callback_ctx argument can provide additional
input and allow to write to caller stack for output.
If the callback_fn returns 0, the helper will iterate through next
element if available. If the callback_fn returns 1, the helper
will stop iterating and returns to the bpf program. Other return
values are not used for now.
Currently, this helper is only available with jit. It is possible
to make it work with interpreter with so effort but I leave it
as the future work.
[1]: https://lore.kernel.org/bpf/20210122205415.113822-1-xiyou.wangcong@gmail.com/
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210226204925.3884923-1-yhs@fb.com
Add an ability to pass a pointer to a type with known size in arguments
of a global function. Such pointers may be used to overcome the limit on
the maximum number of arguments, avoid expensive and tricky workarounds
and to have multiple output arguments.
A referenced type may contain pointers but indirect access through them
isn't supported.
The implementation consists of two parts. If a global function has an
argument that is a pointer to a type with known size then:
1) In btf_check_func_arg_match(): check that the corresponding
register points to NULL or to a valid memory region that is large enough
to contain the expected argument's type.
2) In btf_prepare_func_args(): set the corresponding register type to
PTR_TO_MEM_OR_NULL and its size to the size of the expected type.
Only global functions are supported because allowance of pointers for
static functions might break validation. Consider the following
scenario. A static function has a pointer argument. A caller passes
pointer to its stack memory. Because the callee can change referenced
memory verifier cannot longer assume any particular slot type of the
caller's stack memory hence the slot type is changed to SLOT_MISC. If
there is an operation that relies on slot type other than SLOT_MISC then
verifier won't be able to infer safety of the operation.
When verifier sees a static function that has a pointer argument
different from PTR_TO_CTX then it skips arguments check and continues
with "inline" validation with more information available. The operation
that relies on the particular slot type now succeeds.
Because global functions were not allowed to have pointer arguments
different from PTR_TO_CTX it's not possible to break existing and valid
code.
Signed-off-by: Dmitrii Banshchikov <me@ubique.spb.ru>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210212205642.620788-4-me@ubique.spb.ru
Before this patch, variable offset access to the stack was dissalowed
for regular instructions, but was allowed for "indirect" accesses (i.e.
helpers). This patch removes the restriction, allowing reading and
writing to the stack through stack pointers with variable offsets. This
makes stack-allocated buffers more usable in programs, and brings stack
pointers closer to other types of pointers.
The motivation is being able to use stack-allocated buffers for data
manipulation. When the stack size limit is sufficient, allocating
buffers on the stack is simpler than per-cpu arrays, or other
alternatives.
In unpriviledged programs, variable-offset reads and writes are
disallowed (they were already disallowed for the indirect access case)
because the speculative execution checking code doesn't support them.
Additionally, when writing through a variable-offset stack pointer, if
any pointers are in the accessible range, there's possilibities of later
leaking pointers because the write cannot be tracked precisely.
Writes with variable offset mark the whole range as initialized, even
though we don't know which stack slots are actually written. This is in
order to not reject future reads to these slots. Note that this doesn't
affect writes done through helpers; like before, helpers need the whole
stack range to be initialized to begin with.
All the stack slots are in range are considered scalars after the write;
variable-offset register spills are not tracked.
For reads, all the stack slots in the variable range needs to be
initialized (but see above about what writes do), otherwise the read is
rejected. All register spilled in stack slots that might be read are
marked as having been read, however reads through such pointers don't do
register filling; the target register will always be either a scalar or
a constant zero.
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210207011027.676572-2-andreimatei1@gmail.com
Add support for directly accessing kernel module variables from BPF programs
using special ldimm64 instructions. This functionality builds upon vmlinux
ksym support, but extends ldimm64 with src_reg=BPF_PSEUDO_BTF_ID to allow
specifying kernel module BTF's FD in insn[1].imm field.
During BPF program load time, verifier will resolve FD to BTF object and will
take reference on BTF object itself and, for module BTFs, corresponding module
as well, to make sure it won't be unloaded from under running BPF program. The
mechanism used is similar to how bpf_prog keeps track of used bpf_maps.
One interesting change is also in how per-CPU variable is determined. The
logic is to find .data..percpu data section in provided BTF, but both vmlinux
and module each have their own .data..percpu entries in BTF. So for module's
case, the search for DATASEC record needs to look at only module's added BTF
types. This is implemented with custom search function.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/bpf/20210112075520.4103414-6-andrii@kernel.org
Remove a permeating assumption thoughout BPF verifier of vmlinux BTF. Instead,
wherever BTF type IDs are involved, also track the instance of struct btf that
goes along with the type ID. This allows to gradually add support for kernel
module BTFs and using/tracking module types across BPF helper calls and
registers.
This patch also renames btf_id() function to btf_obj_id() to minimize naming
clash with using btf_id to denote BTF *type* ID, rather than BTF *object*'s ID.
Also, altough btf_vmlinux can't get destructed and thus doesn't need
refcounting, module BTFs need that, so apply BTF refcounting universally when
BPF program is using BTF-powered attachment (tp_btf, fentry/fexit, etc). This
makes for simpler clean up code.
Now that BTF type ID is not enough to uniquely identify a BTF type, extend BPF
trampoline key to include BTF object ID. To differentiate that from target
program BPF ID, set 31st bit of type ID. BTF type IDs (at least currently) are
not allowed to take full 32 bits, so there is no danger of confusing that bit
with a valid BTF type ID.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201203204634.1325171-10-andrii@kernel.org
This patch adds the verifier support to recognize inlined branch conditions.
The LLVM knows that the branch evaluates to the same value, but the verifier
couldn't track it. Hence causing valid programs to be rejected.
The potential LLVM workaround: https://reviews.llvm.org/D87428
can have undesired side effects, since LLVM doesn't know that
skb->data/data_end are being compared. LLVM has to introduce extra boolean
variable and use inline_asm trick to force easier for the verifier assembly.
Instead teach the verifier to recognize that
r1 = skb->data;
r1 += 10;
r2 = skb->data_end;
if (r1 > r2) {
here r1 points beyond packet_end and
subsequent
if (r1 > r2) // always evaluates to "true".
}
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Jiri Olsa <jolsa@redhat.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20201111031213.25109-2-alexei.starovoitov@gmail.com
Pseudo_btf_id is a type of ld_imm insn that associates a btf_id to a
ksym so that further dereferences on the ksym can use the BTF info
to validate accesses. Internally, when seeing a pseudo_btf_id ld insn,
the verifier reads the btf_id stored in the insn[0]'s imm field and
marks the dst_reg as PTR_TO_BTF_ID. The btf_id points to a VAR_KIND,
which is encoded in btf_vminux by pahole. If the VAR is not of a struct
type, the dst reg will be marked as PTR_TO_MEM instead of PTR_TO_BTF_ID
and the mem_size is resolved to the size of the VAR's type.
>From the VAR btf_id, the verifier can also read the address of the
ksym's corresponding kernel var from kallsyms and use that to fill
dst_reg.
Therefore, the proper functionality of pseudo_btf_id depends on (1)
kallsyms and (2) the encoding of kernel global VARs in pahole, which
should be available since pahole v1.18.
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200929235049.2533242-2-haoluo@google.com
The check_attach_btf_id() function really does three things:
1. It performs a bunch of checks on the program to ensure that the
attachment is valid.
2. It stores a bunch of state about the attachment being requested in
the verifier environment and struct bpf_prog objects.
3. It allocates a trampoline for the attachment.
This patch splits out (1.) and (3.) into separate functions which will
perform the checks, but return the computed values instead of directly
modifying the environment. This is done in preparation for reusing the
checks when the actual attachment is happening, which will allow tracing
programs to have multiple (compatible) attachments.
This also fixes a bug where a bunch of checks were skipped if a trampoline
already existed for the tracing target.
Fixes: 6ba43b761c ("bpf: Attachment verification for BPF_MODIFY_RETURN")
Fixes: 1e6c62a882 ("bpf: Introduce sleepable BPF programs")
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In preparation for moving code around, change a bunch of references to
env->log (and the verbose() logging helper) to use bpf_log() and a direct
pointer to struct bpf_verifier_log. While we're touching the function
signature, mark the 'prog' argument to bpf_check_type_match() as const.
Also enhance the bpf_verifier_log_needed() check to handle NULL pointers
for the log struct so we can re-use the code with logging disabled.
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
LD_[ABS|IND] instructions may return from the function early. bpf_tail_call
pseudo instruction is either fallthrough or return. Allow them in the
subprograms only when subprograms are BTF annotated and have scalar return
types. Allow ld_abs and tail_call in the main program even if it calls into
subprograms. In the past that was not ok to do for ld_abs, since it was JITed
with special exit sequence. Since bpf_gen_ld_abs() was introduced the ld_abs
looks like normal exit insn from JIT point of view, so it's safe to allow them
in the main program.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This commit serves two things:
1) it optimizes BPF prologue/epilogue generation
2) it makes possible to have tailcalls within BPF subprogram
Both points are related to each other since without 1), 2) could not be
achieved.
In [1], Alexei says:
"The prologue will look like:
nop5
xor eax,eax // two new bytes if bpf_tail_call() is used in this
// function
push rbp
mov rbp, rsp
sub rsp, rounded_stack_depth
push rax // zero init tail_call counter
variable number of push rbx,r13,r14,r15
Then bpf_tail_call will pop variable number rbx,..
and final 'pop rax'
Then 'add rsp, size_of_current_stack_frame'
jmp to next function and skip over 'nop5; xor eax,eax; push rpb; mov
rbp, rsp'
This way new function will set its own stack size and will init tail
call
counter with whatever value the parent had.
If next function doesn't use bpf_tail_call it won't have 'xor eax,eax'.
Instead it would need to have 'nop2' in there."
Implement that suggestion.
Since the layout of stack is changed, tail call counter handling can not
rely anymore on popping it to rbx just like it have been handled for
constant prologue case and later overwrite of rbx with actual value of
rbx pushed to stack. Therefore, let's use one of the register (%rcx) that
is considered to be volatile/caller-saved and pop the value of tail call
counter in there in the epilogue.
Drop the BUILD_BUG_ON in emit_prologue and in
emit_bpf_tail_call_indirect where instruction layout is not constant
anymore.
Introduce new poke target, 'tailcall_bypass' to poke descriptor that is
dedicated for skipping the register pops and stack unwind that are
generated right before the actual jump to target program.
For case when the target program is not present, BPF program will skip
the pop instructions and nop5 dedicated for jmpq $target. An example of
such state when only R6 of callee saved registers is used by program:
ffffffffc0513aa1: e9 0e 00 00 00 jmpq 0xffffffffc0513ab4
ffffffffc0513aa6: 5b pop %rbx
ffffffffc0513aa7: 58 pop %rax
ffffffffc0513aa8: 48 81 c4 00 00 00 00 add $0x0,%rsp
ffffffffc0513aaf: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)
ffffffffc0513ab4: 48 89 df mov %rbx,%rdi
When target program is inserted, the jump that was there to skip
pops/nop5 will become the nop5, so CPU will go over pops and do the
actual tailcall.
One might ask why there simply can not be pushes after the nop5?
In the following example snippet:
ffffffffc037030c: 48 89 fb mov %rdi,%rbx
(...)
ffffffffc0370332: 5b pop %rbx
ffffffffc0370333: 58 pop %rax
ffffffffc0370334: 48 81 c4 00 00 00 00 add $0x0,%rsp
ffffffffc037033b: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)
ffffffffc0370340: 48 81 ec 00 00 00 00 sub $0x0,%rsp
ffffffffc0370347: 50 push %rax
ffffffffc0370348: 53 push %rbx
ffffffffc0370349: 48 89 df mov %rbx,%rdi
ffffffffc037034c: e8 f7 21 00 00 callq 0xffffffffc0372548
There is the bpf2bpf call (at ffffffffc037034c) right after the tailcall
and jump target is not present. ctx is in %rbx register and BPF
subprogram that we will call into on ffffffffc037034c is relying on it,
e.g. it will pick ctx from there. Such code layout is therefore broken
as we would overwrite the content of %rbx with the value that was pushed
on the prologue. That is the reason for the 'bypass' approach.
Special care needs to be taken during the install/update/remove of
tailcall target. In case when target program is not present, the CPU
must not execute the pop instructions that precede the tailcall.
To address that, the following states can be defined:
A nop, unwind, nop
B nop, unwind, tail
C skip, unwind, nop
D skip, unwind, tail
A is forbidden (lead to incorrectness). The state transitions between
tailcall install/update/remove will work as follows:
First install tail call f: C->D->B(f)
* poke the tailcall, after that get rid of the skip
Update tail call f to f': B(f)->B(f')
* poke the tailcall (poke->tailcall_target) and do NOT touch the
poke->tailcall_bypass
Remove tail call: B(f')->C(f')
* poke->tailcall_bypass is poked back to jump, then we wait the RCU
grace period so that other programs will finish its execution and
after that we are safe to remove the poke->tailcall_target
Install new tail call (f''): C(f')->D(f'')->B(f'').
* same as first step
This way CPU can never be exposed to "unwind, tail" state.
Last but not least, when tailcalls get mixed with bpf2bpf calls, it
would be possible to encounter the endless loop due to clearing the
tailcall counter if for example we would use the tailcall3-like from BPF
selftests program that would be subprogram-based, meaning the tailcall
would be present within the BPF subprogram.
This test, broken down to particular steps, would do:
entry -> set tailcall counter to 0, bump it by 1, tailcall to func0
func0 -> call subprog_tail
(we are NOT skipping the first 11 bytes of prologue and this subprogram
has a tailcall, therefore we clear the counter...)
subprog -> do the same thing as entry
and then loop forever.
To address this, the idea is to go through the call chain of bpf2bpf progs
and look for a tailcall presence throughout whole chain. If we saw a single
tail call then each node in this call chain needs to be marked as a subprog
that can reach the tailcall. We would later feed the JIT with this info
and:
- set eax to 0 only when tailcall is reachable and this is the entry prog
- if tailcall is reachable but there's no tailcall in insns of currently
JITed prog then push rax anyway, so that it will be possible to
propagate further down the call chain
- finally if tailcall is reachable, then we need to precede the 'call'
insn with mov rax, [rbp - (stack_depth + 8)]
Tail call related cases from test_verifier kselftest are also working
fine. Sample BPF programs that utilize tail calls (sockex3, tracex5)
work properly as well.
[1]: https://lore.kernel.org/bpf/20200517043227.2gpq22ifoq37ogst@ast-mbp.dhcp.thefacebook.com/
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Protect against potential stack overflow that might happen when bpf2bpf
calls get combined with tailcalls. Limit the caller's stack depth for
such case down to 256 so that the worst case scenario would result in 8k
stack size (32 which is tailcall limit * 256 = 8k).
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
There are multiple use-cases when it's convenient to have access to bpf
map fields, both `struct bpf_map` and map type specific struct-s such as
`struct bpf_array`, `struct bpf_htab`, etc.
For example while working with sock arrays it can be necessary to
calculate the key based on map->max_entries (some_hash % max_entries).
Currently this is solved by communicating max_entries via "out-of-band"
channel, e.g. via additional map with known key to get info about target
map. That works, but is not very convenient and error-prone while
working with many maps.
In other cases necessary data is dynamic (i.e. unknown at loading time)
and it's impossible to get it at all. For example while working with a
hash table it can be convenient to know how much capacity is already
used (bpf_htab.count.counter for BPF_F_NO_PREALLOC case).
At the same time kernel knows this info and can provide it to bpf
program.
Fill this gap by adding support to access bpf map fields from bpf
program for both `struct bpf_map` and map type specific fields.
Support is implemented via btf_struct_access() so that a user can define
their own `struct bpf_map` or map type specific struct in their program
with only necessary fields and preserve_access_index attribute, cast a
map to this struct and use a field.
For example:
struct bpf_map {
__u32 max_entries;
} __attribute__((preserve_access_index));
struct bpf_array {
struct bpf_map map;
__u32 elem_size;
} __attribute__((preserve_access_index));
struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__uint(max_entries, 4);
__type(key, __u32);
__type(value, __u32);
} m_array SEC(".maps");
SEC("cgroup_skb/egress")
int cg_skb(void *ctx)
{
struct bpf_array *array = (struct bpf_array *)&m_array;
struct bpf_map *map = (struct bpf_map *)&m_array;
/* .. use map->max_entries or array->map.max_entries .. */
}
Similarly to other btf_struct_access() use-cases (e.g. struct tcp_sock
in net/ipv4/bpf_tcp_ca.c) the patch allows access to any fields of
corresponding struct. Only reading from map fields is supported.
For btf_struct_access() to work there should be a way to know btf id of
a struct that corresponds to a map type. To get btf id there should be a
way to get a stringified name of map-specific struct, such as
"bpf_array", "bpf_htab", etc for a map type. Two new fields are added to
`struct bpf_map_ops` to handle it:
* .map_btf_name keeps a btf name of a struct returned by map_alloc();
* .map_btf_id is used to cache btf id of that struct.
To make btf ids calculation cheaper they're calculated once while
preparing btf_vmlinux and cached same way as it's done for btf_id field
of `struct bpf_func_proto`
While calculating btf ids, struct names are NOT checked for collision.
Collisions will be checked as a part of the work to prepare btf ids used
in verifier in compile time that should land soon. The only known
collision for `struct bpf_htab` (kernel/bpf/hashtab.c vs
net/core/sock_map.c) was fixed earlier.
Both new fields .map_btf_name and .map_btf_id must be set for a map type
for the feature to work. If neither is set for a map type, verifier will
return ENOTSUPP on a try to access map_ptr of corresponding type. If
just one of them set, it's verifier misconfiguration.
Only `struct bpf_array` for BPF_MAP_TYPE_ARRAY and `struct bpf_htab` for
BPF_MAP_TYPE_HASH are supported by this patch. Other map types will be
supported separately.
The feature is available only for CONFIG_DEBUG_INFO_BTF=y and gated by
perfmon_capable() so that unpriv programs won't have access to bpf map
fields.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/6479686a0cd1e9067993df57b4c3eef0e276fec9.1592600985.git.rdna@fb.com
This commit adds a new MPSC ring buffer implementation into BPF ecosystem,
which allows multiple CPUs to submit data to a single shared ring buffer. On
the consumption side, only single consumer is assumed.
Motivation
----------
There are two distinctive motivators for this work, which are not satisfied by
existing perf buffer, which prompted creation of a new ring buffer
implementation.
- more efficient memory utilization by sharing ring buffer across CPUs;
- preserving ordering of events that happen sequentially in time, even
across multiple CPUs (e.g., fork/exec/exit events for a task).
These two problems are independent, but perf buffer fails to satisfy both.
Both are a result of a choice to have per-CPU perf ring buffer. Both can be
also solved by having an MPSC implementation of ring buffer. The ordering
problem could technically be solved for perf buffer with some in-kernel
counting, but given the first one requires an MPSC buffer, the same solution
would solve the second problem automatically.
Semantics and APIs
------------------
Single ring buffer is presented to BPF programs as an instance of BPF map of
type BPF_MAP_TYPE_RINGBUF. Two other alternatives considered, but ultimately
rejected.
One way would be to, similar to BPF_MAP_TYPE_PERF_EVENT_ARRAY, make
BPF_MAP_TYPE_RINGBUF could represent an array of ring buffers, but not enforce
"same CPU only" rule. This would be more familiar interface compatible with
existing perf buffer use in BPF, but would fail if application needed more
advanced logic to lookup ring buffer by arbitrary key. HASH_OF_MAPS addresses
this with current approach. Additionally, given the performance of BPF
ringbuf, many use cases would just opt into a simple single ring buffer shared
among all CPUs, for which current approach would be an overkill.
Another approach could introduce a new concept, alongside BPF map, to
represent generic "container" object, which doesn't necessarily have key/value
interface with lookup/update/delete operations. This approach would add a lot
of extra infrastructure that has to be built for observability and verifier
support. It would also add another concept that BPF developers would have to
familiarize themselves with, new syntax in libbpf, etc. But then would really
provide no additional benefits over the approach of using a map.
BPF_MAP_TYPE_RINGBUF doesn't support lookup/update/delete operations, but so
doesn't few other map types (e.g., queue and stack; array doesn't support
delete, etc).
The approach chosen has an advantage of re-using existing BPF map
infrastructure (introspection APIs in kernel, libbpf support, etc), being
familiar concept (no need to teach users a new type of object in BPF program),
and utilizing existing tooling (bpftool). For common scenario of using
a single ring buffer for all CPUs, it's as simple and straightforward, as
would be with a dedicated "container" object. On the other hand, by being
a map, it can be combined with ARRAY_OF_MAPS and HASH_OF_MAPS map-in-maps to
implement a wide variety of topologies, from one ring buffer for each CPU
(e.g., as a replacement for perf buffer use cases), to a complicated
application hashing/sharding of ring buffers (e.g., having a small pool of
ring buffers with hashed task's tgid being a look up key to preserve order,
but reduce contention).
Key and value sizes are enforced to be zero. max_entries is used to specify
the size of ring buffer and has to be a power of 2 value.
There are a bunch of similarities between perf buffer
(BPF_MAP_TYPE_PERF_EVENT_ARRAY) and new BPF ring buffer semantics:
- variable-length records;
- if there is no more space left in ring buffer, reservation fails, no
blocking;
- memory-mappable data area for user-space applications for ease of
consumption and high performance;
- epoll notifications for new incoming data;
- but still the ability to do busy polling for new data to achieve the
lowest latency, if necessary.
BPF ringbuf provides two sets of APIs to BPF programs:
- bpf_ringbuf_output() allows to *copy* data from one place to a ring
buffer, similarly to bpf_perf_event_output();
- bpf_ringbuf_reserve()/bpf_ringbuf_commit()/bpf_ringbuf_discard() APIs
split the whole process into two steps. First, a fixed amount of space is
reserved. If successful, a pointer to a data inside ring buffer data area
is returned, which BPF programs can use similarly to a data inside
array/hash maps. Once ready, this piece of memory is either committed or
discarded. Discard is similar to commit, but makes consumer ignore the
record.
bpf_ringbuf_output() has disadvantage of incurring extra memory copy, because
record has to be prepared in some other place first. But it allows to submit
records of the length that's not known to verifier beforehand. It also closely
matches bpf_perf_event_output(), so will simplify migration significantly.
bpf_ringbuf_reserve() avoids the extra copy of memory by providing a memory
pointer directly to ring buffer memory. In a lot of cases records are larger
than BPF stack space allows, so many programs have use extra per-CPU array as
a temporary heap for preparing sample. bpf_ringbuf_reserve() avoid this needs
completely. But in exchange, it only allows a known constant size of memory to
be reserved, such that verifier can verify that BPF program can't access
memory outside its reserved record space. bpf_ringbuf_output(), while slightly
slower due to extra memory copy, covers some use cases that are not suitable
for bpf_ringbuf_reserve().
The difference between commit and discard is very small. Discard just marks
a record as discarded, and such records are supposed to be ignored by consumer
code. Discard is useful for some advanced use-cases, such as ensuring
all-or-nothing multi-record submission, or emulating temporary malloc()/free()
within single BPF program invocation.
Each reserved record is tracked by verifier through existing
reference-tracking logic, similar to socket ref-tracking. It is thus
impossible to reserve a record, but forget to submit (or discard) it.
bpf_ringbuf_query() helper allows to query various properties of ring buffer.
Currently 4 are supported:
- BPF_RB_AVAIL_DATA returns amount of unconsumed data in ring buffer;
- BPF_RB_RING_SIZE returns the size of ring buffer;
- BPF_RB_CONS_POS/BPF_RB_PROD_POS returns current logical possition of
consumer/producer, respectively.
Returned values are momentarily snapshots of ring buffer state and could be
off by the time helper returns, so this should be used only for
debugging/reporting reasons or for implementing various heuristics, that take
into account highly-changeable nature of some of those characteristics.
One such heuristic might involve more fine-grained control over poll/epoll
notifications about new data availability in ring buffer. Together with
BPF_RB_NO_WAKEUP/BPF_RB_FORCE_WAKEUP flags for output/commit/discard helpers,
it allows BPF program a high degree of control and, e.g., more efficient
batched notifications. Default self-balancing strategy, though, should be
adequate for most applications and will work reliable and efficiently already.
Design and implementation
-------------------------
This reserve/commit schema allows a natural way for multiple producers, either
on different CPUs or even on the same CPU/in the same BPF program, to reserve
independent records and work with them without blocking other producers. This
means that if BPF program was interruped by another BPF program sharing the
same ring buffer, they will both get a record reserved (provided there is
enough space left) and can work with it and submit it independently. This
applies to NMI context as well, except that due to using a spinlock during
reservation, in NMI context, bpf_ringbuf_reserve() might fail to get a lock,
in which case reservation will fail even if ring buffer is not full.
The ring buffer itself internally is implemented as a power-of-2 sized
circular buffer, with two logical and ever-increasing counters (which might
wrap around on 32-bit architectures, that's not a problem):
- consumer counter shows up to which logical position consumer consumed the
data;
- producer counter denotes amount of data reserved by all producers.
Each time a record is reserved, producer that "owns" the record will
successfully advance producer counter. At that point, data is still not yet
ready to be consumed, though. Each record has 8 byte header, which contains
the length of reserved record, as well as two extra bits: busy bit to denote
that record is still being worked on, and discard bit, which might be set at
commit time if record is discarded. In the latter case, consumer is supposed
to skip the record and move on to the next one. Record header also encodes
record's relative offset from the beginning of ring buffer data area (in
pages). This allows bpf_ringbuf_commit()/bpf_ringbuf_discard() to accept only
the pointer to the record itself, without requiring also the pointer to ring
buffer itself. Ring buffer memory location will be restored from record
metadata header. This significantly simplifies verifier, as well as improving
API usability.
Producer counter increments are serialized under spinlock, so there is
a strict ordering between reservations. Commits, on the other hand, are
completely lockless and independent. All records become available to consumer
in the order of reservations, but only after all previous records where
already committed. It is thus possible for slow producers to temporarily hold
off submitted records, that were reserved later.
Reservation/commit/consumer protocol is verified by litmus tests in
Documentation/litmus-test/bpf-rb.
One interesting implementation bit, that significantly simplifies (and thus
speeds up as well) implementation of both producers and consumers is how data
area is mapped twice contiguously back-to-back in the virtual memory. This
allows to not take any special measures for samples that have to wrap around
at the end of the circular buffer data area, because the next page after the
last data page would be first data page again, and thus the sample will still
appear completely contiguous in virtual memory. See comment and a simple ASCII
diagram showing this visually in bpf_ringbuf_area_alloc().
Another feature that distinguishes BPF ringbuf from perf ring buffer is
a self-pacing notifications of new data being availability.
bpf_ringbuf_commit() implementation will send a notification of new record
being available after commit only if consumer has already caught up right up
to the record being committed. If not, consumer still has to catch up and thus
will see new data anyways without needing an extra poll notification.
Benchmarks (see tools/testing/selftests/bpf/benchs/bench_ringbuf.c) show that
this allows to achieve a very high throughput without having to resort to
tricks like "notify only every Nth sample", which are necessary with perf
buffer. For extreme cases, when BPF program wants more manual control of
notifications, commit/discard/output helpers accept BPF_RB_NO_WAKEUP and
BPF_RB_FORCE_WAKEUP flags, which give full control over notifications of data
availability, but require extra caution and diligence in using this API.
Comparison to alternatives
--------------------------
Before considering implementing BPF ring buffer from scratch existing
alternatives in kernel were evaluated, but didn't seem to meet the needs. They
largely fell into few categores:
- per-CPU buffers (perf, ftrace, etc), which don't satisfy two motivations
outlined above (ordering and memory consumption);
- linked list-based implementations; while some were multi-producer designs,
consuming these from user-space would be very complicated and most
probably not performant; memory-mapping contiguous piece of memory is
simpler and more performant for user-space consumers;
- io_uring is SPSC, but also requires fixed-sized elements. Naively turning
SPSC queue into MPSC w/ lock would have subpar performance compared to
locked reserve + lockless commit, as with BPF ring buffer. Fixed sized
elements would be too limiting for BPF programs, given existing BPF
programs heavily rely on variable-sized perf buffer already;
- specialized implementations (like a new printk ring buffer, [0]) with lots
of printk-specific limitations and implications, that didn't seem to fit
well for intended use with BPF programs.
[0] https://lwn.net/Articles/779550/
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-2-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Implement permissions as stated in uapi/linux/capability.h
In order to do that the verifier allow_ptr_leaks flag is split
into four flags and they are set as:
env->allow_ptr_leaks = bpf_allow_ptr_leaks();
env->bypass_spec_v1 = bpf_bypass_spec_v1();
env->bypass_spec_v4 = bpf_bypass_spec_v4();
env->bpf_capable = bpf_capable();
The first three currently equivalent to perfmon_capable(), since leaking kernel
pointers and reading kernel memory via side channel attacks is roughly
equivalent to reading kernel memory with cap_perfmon.
'bpf_capable' enables bounded loops, precision tracking, bpf to bpf calls and
other verifier features. 'allow_ptr_leaks' enable ptr leaks, ptr conversions,
subtraction of pointers. 'bypass_spec_v1' disables speculative analysis in the
verifier, run time mitigations in bpf array, and enables indirect variable
access in bpf programs. 'bypass_spec_v4' disables emission of sanitation code
by the verifier.
That means that the networking BPF program loaded with CAP_BPF + CAP_NET_ADMIN
will have speculative checks done by the verifier and other spectre mitigation
applied. Such networking BPF program will not be able to leak kernel pointers
and will not be able to access arbitrary kernel memory.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200513230355.7858-3-alexei.starovoitov@gmail.com
It is not possible for the current verifier to track ALU32 and JMP ops
correctly. This can result in the verifier aborting with errors even though
the program should be verifiable. BPF codes that hit this can work around
it by changin int variables to 64-bit types, marking variables volatile,
etc. But this is all very ugly so it would be better to avoid these tricks.
But, the main reason to address this now is do_refine_retval_range() was
assuming return values could not be negative. Once we fixed this code that
was previously working will no longer work. See do_refine_retval_range()
patch for details. And we don't want to suddenly cause programs that used
to work to fail.
The simplest example code snippet that illustrates the problem is likely
this,
53: w8 = w0 // r8 <- [0, S32_MAX],
// w8 <- [-S32_MIN, X]
54: w8 <s 0 // r8 <- [0, U32_MAX]
// w8 <- [0, X]
The expected 64-bit and 32-bit bounds after each line are shown on the
right. The current issue is without the w* bounds we are forced to use
the worst case bound of [0, U32_MAX]. To resolve this type of case,
jmp32 creating divergent 32-bit bounds from 64-bit bounds, we add explicit
32-bit register bounds s32_{min|max}_value and u32_{min|max}_value. Then
from branch_taken logic creating new bounds we can track 32-bit bounds
explicitly.
The next case we observed is ALU ops after the jmp32,
53: w8 = w0 // r8 <- [0, S32_MAX],
// w8 <- [-S32_MIN, X]
54: w8 <s 0 // r8 <- [0, U32_MAX]
// w8 <- [0, X]
55: w8 += 1 // r8 <- [0, U32_MAX+1]
// w8 <- [0, X+1]
In order to keep the bounds accurate at this point we also need to track
ALU32 ops. To do this we add explicit ALU32 logic for each of the ALU
ops, mov, add, sub, etc.
Finally there is a question of how and when to merge bounds. The cases
enumerate here,
1. MOV ALU32 - zext 32-bit -> 64-bit
2. MOV ALU64 - copy 64-bit -> 32-bit
3. op ALU32 - zext 32-bit -> 64-bit
4. op ALU64 - n/a
5. jmp ALU32 - 64-bit: var32_off | upper_32_bits(var64_off)
6. jmp ALU64 - 32-bit: (>> (<< var64_off))
Details for each case,
For "MOV ALU32" BPF arch zero extends so we simply copy the bounds
from 32-bit into 64-bit ensuring we truncate var_off and 64-bit
bounds correctly. See zext_32_to_64.
For "MOV ALU64" copy all bounds including 32-bit into new register. If
the src register had 32-bit bounds the dst register will as well.
For "op ALU32" zero extend 32-bit into 64-bit the same as move,
see zext_32_to_64.
For "op ALU64" calculate both 32-bit and 64-bit bounds no merging
is done here. Except we have a special case. When RSH or ARSH is
done we can't simply ignore shifting bits from 64-bit reg into the
32-bit subreg. So currently just push bounds from 64-bit into 32-bit.
This will be correct in the sense that they will represent a valid
state of the register. However we could lose some accuracy if an
ARSH is following a jmp32 operation. We can handle this special
case in a follow up series.
For "jmp ALU32" mark 64-bit reg unknown and recalculate 64-bit bounds
from tnum by setting var_off to ((<<(>>var_off)) | var32_off). We
special case if 64-bit bounds has zero'd upper 32bits at which point
we can simply copy 32-bit bounds into 64-bit register. This catches
a common compiler trick where upper 32-bits are zeroed and then
32-bit ops are used followed by a 64-bit compare or 64-bit op on
a pointer. See __reg_combine_64_into_32().
For "jmp ALU64" cast the bounds of the 64bit to their 32-bit
counterpart. For example s32_min_value = (s32)reg->smin_value. For
tnum use only the lower 32bits via, (>>(<<var_off)). See
__reg_combine_64_into_32().
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/158560419880.10843.11448220440809118343.stgit@john-Precision-5820-Tower