F_SEAL_EXEC") which permits the setting of the memfd execute bit at
memfd creation time, with the option of sealing the state of the X bit.
- Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
thread-safe for pmd unshare") which addresses a rare race condition
related to PMD unsharing.
- Several folioification patch serieses from Matthew Wilcox, Vishal
Moola, Sidhartha Kumar and Lorenzo Stoakes
- Johannes Weiner has a series ("mm: push down lock_page_memcg()") which
does perform some memcg maintenance and cleanup work.
- SeongJae Park has added DAMOS filtering to DAMON, with the series
"mm/damon/core: implement damos filter". These filters provide users
with finer-grained control over DAMOS's actions. SeongJae has also done
some DAMON cleanup work.
- Kairui Song adds a series ("Clean up and fixes for swap").
- Vernon Yang contributed the series "Clean up and refinement for maple
tree".
- Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series. It
adds to MGLRU an LRU of memcgs, to improve the scalability of global
reclaim.
- David Hildenbrand has added some userfaultfd cleanup work in the
series "mm: uffd-wp + change_protection() cleanups".
- Christoph Hellwig has removed the generic_writepages() library
function in the series "remove generic_writepages".
- Baolin Wang has performed some maintenance on the compaction code in
his series "Some small improvements for compaction".
- Sidhartha Kumar is doing some maintenance work on struct page in his
series "Get rid of tail page fields".
- David Hildenbrand contributed some cleanup, bugfixing and
generalization of pte management and of pte debugging in his series "mm:
support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with swap
PTEs".
- Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
flag in the series "Discard __GFP_ATOMIC".
- Sergey Senozhatsky has improved zsmalloc's memory utilization with his
series "zsmalloc: make zspage chain size configurable".
- Joey Gouly has added prctl() support for prohibiting the creation of
writeable+executable mappings. The previous BPF-based approach had
shortcomings. See "mm: In-kernel support for memory-deny-write-execute
(MDWE)".
- Waiman Long did some kmemleak cleanup and bugfixing in the series
"mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".
- T.J. Alumbaugh has contributed some MGLRU cleanup work in his series
"mm: multi-gen LRU: improve".
- Jiaqi Yan has provided some enhancements to our memory error
statistics reporting, mainly by presenting the statistics on a per-node
basis. See the series "Introduce per NUMA node memory error
statistics".
- Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
regression in compaction via his series "Fix excessive CPU usage during
compaction".
- Christoph Hellwig does some vmalloc maintenance work in the series
"cleanup vfree and vunmap".
- Christoph Hellwig has removed block_device_operations.rw_page() in ths
series "remove ->rw_page".
- We get some maple_tree improvements and cleanups in Liam Howlett's
series "VMA tree type safety and remove __vma_adjust()".
- Suren Baghdasaryan has done some work on the maintainability of our
vm_flags handling in the series "introduce vm_flags modifier functions".
- Some pagemap cleanup and generalization work in Mike Rapoport's series
"mm, arch: add generic implementation of pfn_valid() for FLATMEM" and
"fixups for generic implementation of pfn_valid()"
- Baoquan He has done some work to make /proc/vmallocinfo and
/proc/kcore better represent the real state of things in his series
"mm/vmalloc.c: allow vread() to read out vm_map_ram areas".
- Jason Gunthorpe rationalized the GUP system's interface to the rest of
the kernel in the series "Simplify the external interface for GUP".
- SeongJae Park wishes to migrate people from DAMON's debugfs interface
over to its sysfs interface. To support this, we'll temporarily be
printing warnings when people use the debugfs interface. See the series
"mm/damon: deprecate DAMON debugfs interface".
- Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
and clean-ups" series.
- Huang Ying has provided a dramatic reduction in migration's TLB flush
IPI rates with the series "migrate_pages(): batch TLB flushing".
- Arnd Bergmann has some objtool fixups in "objtool warning fixes".
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY/PoPQAKCRDdBJ7gKXxA
jlvpAPsFECUBBl20qSue2zCYWnHC7Yk4q9ytTkPB/MMDrFEN9wD/SNKEm2UoK6/K
DmxHkn0LAitGgJRS/W9w81yrgig9tAQ=
=MlGs
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Daniel Verkamp has contributed a memfd series ("mm/memfd: add
F_SEAL_EXEC") which permits the setting of the memfd execute bit at
memfd creation time, with the option of sealing the state of the X
bit.
- Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
thread-safe for pmd unshare") which addresses a rare race condition
related to PMD unsharing.
- Several folioification patch serieses from Matthew Wilcox, Vishal
Moola, Sidhartha Kumar and Lorenzo Stoakes
- Johannes Weiner has a series ("mm: push down lock_page_memcg()")
which does perform some memcg maintenance and cleanup work.
- SeongJae Park has added DAMOS filtering to DAMON, with the series
"mm/damon/core: implement damos filter".
These filters provide users with finer-grained control over DAMOS's
actions. SeongJae has also done some DAMON cleanup work.
- Kairui Song adds a series ("Clean up and fixes for swap").
- Vernon Yang contributed the series "Clean up and refinement for maple
tree".
- Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series. It
adds to MGLRU an LRU of memcgs, to improve the scalability of global
reclaim.
- David Hildenbrand has added some userfaultfd cleanup work in the
series "mm: uffd-wp + change_protection() cleanups".
- Christoph Hellwig has removed the generic_writepages() library
function in the series "remove generic_writepages".
- Baolin Wang has performed some maintenance on the compaction code in
his series "Some small improvements for compaction".
- Sidhartha Kumar is doing some maintenance work on struct page in his
series "Get rid of tail page fields".
- David Hildenbrand contributed some cleanup, bugfixing and
generalization of pte management and of pte debugging in his series
"mm: support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with
swap PTEs".
- Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
flag in the series "Discard __GFP_ATOMIC".
- Sergey Senozhatsky has improved zsmalloc's memory utilization with
his series "zsmalloc: make zspage chain size configurable".
- Joey Gouly has added prctl() support for prohibiting the creation of
writeable+executable mappings.
The previous BPF-based approach had shortcomings. See "mm: In-kernel
support for memory-deny-write-execute (MDWE)".
- Waiman Long did some kmemleak cleanup and bugfixing in the series
"mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".
- T.J. Alumbaugh has contributed some MGLRU cleanup work in his series
"mm: multi-gen LRU: improve".
- Jiaqi Yan has provided some enhancements to our memory error
statistics reporting, mainly by presenting the statistics on a
per-node basis. See the series "Introduce per NUMA node memory error
statistics".
- Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
regression in compaction via his series "Fix excessive CPU usage
during compaction".
- Christoph Hellwig does some vmalloc maintenance work in the series
"cleanup vfree and vunmap".
- Christoph Hellwig has removed block_device_operations.rw_page() in
ths series "remove ->rw_page".
- We get some maple_tree improvements and cleanups in Liam Howlett's
series "VMA tree type safety and remove __vma_adjust()".
- Suren Baghdasaryan has done some work on the maintainability of our
vm_flags handling in the series "introduce vm_flags modifier
functions".
- Some pagemap cleanup and generalization work in Mike Rapoport's
series "mm, arch: add generic implementation of pfn_valid() for
FLATMEM" and "fixups for generic implementation of pfn_valid()"
- Baoquan He has done some work to make /proc/vmallocinfo and
/proc/kcore better represent the real state of things in his series
"mm/vmalloc.c: allow vread() to read out vm_map_ram areas".
- Jason Gunthorpe rationalized the GUP system's interface to the rest
of the kernel in the series "Simplify the external interface for
GUP".
- SeongJae Park wishes to migrate people from DAMON's debugfs interface
over to its sysfs interface. To support this, we'll temporarily be
printing warnings when people use the debugfs interface. See the
series "mm/damon: deprecate DAMON debugfs interface".
- Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
and clean-ups" series.
- Huang Ying has provided a dramatic reduction in migration's TLB flush
IPI rates with the series "migrate_pages(): batch TLB flushing".
- Arnd Bergmann has some objtool fixups in "objtool warning fixes".
* tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (505 commits)
include/linux/migrate.h: remove unneeded externs
mm/memory_hotplug: cleanup return value handing in do_migrate_range()
mm/uffd: fix comment in handling pte markers
mm: change to return bool for isolate_movable_page()
mm: hugetlb: change to return bool for isolate_hugetlb()
mm: change to return bool for isolate_lru_page()
mm: change to return bool for folio_isolate_lru()
objtool: add UACCESS exceptions for __tsan_volatile_read/write
kmsan: disable ftrace in kmsan core code
kasan: mark addr_has_metadata __always_inline
mm: memcontrol: rename memcg_kmem_enabled()
sh: initialize max_mapnr
m68k/nommu: add missing definition of ARCH_PFN_OFFSET
mm: percpu: fix incorrect size in pcpu_obj_full_size()
maple_tree: reduce stack usage with gcc-9 and earlier
mm: page_alloc: call panic() when memoryless node allocation fails
mm: multi-gen LRU: avoid futile retries
migrate_pages: move THP/hugetlb migration support check to simplify code
migrate_pages: batch flushing TLB
migrate_pages: share more code between _unmap and _move
...
This pull request contains the following branches:
doc.2023.01.05a: Documentation updates.
fixes.2023.01.23a: Miscellaneous fixes, perhaps most notably:
o Throttling callback invocation based on the number of callbacks
that are now ready to invoke instead of on the total number
of callbacks.
o Several patches that suppress false-positive boot-time
diagnostics, for example, due to lockdep not yet being
initialized.
o Make expedited RCU CPU stall warnings dump stacks of any tasks
that are blocking the stalled grace period. (Normal RCU CPU
stall warnings have doen this for mnay years.)
o Lazy-callback fixes to avoid delays during boot, suspend, and
resume. (Note that lazy callbacks must be explicitly enabled,
so this should not (yet) affect production use cases.)
kvfree.2023.01.03a: Cause kfree_rcu() and friends to take advantage of
polled grace periods, thus reducing memory footprint by almost
two orders of magnitude, admittedly on a microbenchmark.
This series also begins the transition from kfree_rcu(p) to
kfree_rcu_mightsleep(p). This transition was motivated by bugs
where kfree_rcu(p), which can block, was typed instead of the
intended kfree_rcu(p, rh).
srcu.2023.01.03a: SRCU updates, perhaps most notably fixing a bug that
causes SRCU to fail when booted on a system with a non-zero boot
CPU. This surprising situation actually happens for kdump kernels
on the powerpc architecture. It also adds an srcu_down_read()
and srcu_up_read(), which act like srcu_read_lock() and
srcu_read_unlock(), but allow an SRCU read-side critical section
to be handed off from one task to another.
srcu-always.2023.02.02a: Cleans up the now-useless SRCU Kconfig option.
There are a few more commits that are not yet acked or pulled
into maintainer trees, and these will be in a pull request for
a later merge window.
tasks.2023.01.03a: RCU-tasks updates, perhaps most notably these fixes:
o A strange interaction between PID-namespace unshare and the
RCU-tasks grace period that results in a low-probability but
very real hang.
o A race between an RCU tasks rude grace period on a single-CPU
system and CPU-hotplug addition of the second CPU that can result
in a too-short grace period.
o A race between shrinking RCU tasks down to a single callback list
and queuing a new callback to some other CPU, but where that
queuing is delayed for more than an RCU grace period. This can
result in that callback being stranded on the non-boot CPU.
torture.2023.01.05a: Torture-test updates and fixes.
torturescript.2023.01.03a: Torture-test scripting updates and fixes.
stall.2023.01.09a: Provide additional RCU CPU stall-warning information
in kernels built with CONFIG_RCU_CPU_STALL_CPUTIME=y, and
restore the full five-minute timeout limit for expedited RCU
CPU stall warnings.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmPq29UTHHBhdWxtY2tA
a2VybmVsLm9yZwAKCRCevxLzctn7jAhVEACEAKJY1VJ9IUqz7CwzAYkzgRJfiygh
oDUXmlqtm6ew9pr2GdLUVCVsUSldzBc0K7Djb/G1niv4JPs+v7YwupIV33+UbStU
Qxt6ztTdxc4lKospLm1+2vF9ZdzVEmiP4wVCc4iDarv5FM3FpWSTNc8+L7qmlC+X
myjv+GqMTxkXZBvYJOgJGFjDwN8noTd7Fr3mCCVLFm3PXMDa7tcwD6HRP5AqD2N8
qC5M6LEqepKVGmz0mYMLlSN1GPaqIsEcexIFEazRsPEivPh/iafyQCQ/cqxwhXmV
vEt7u+dXGZT/oiDq9cJ+/XRDS2RyKIS6dUE14TiiHolDCn1ONESahfA/gXWKykC2
BaGPfjWXrWv/hwbeZ+8xEdkAvTIV92tGpXir9Fby1Z5PjP3balvrnn6hs5AnQBJb
NdhRPLzy/dCnEF+CweAYYm1qvTo8cd5nyiNwBZHn7rEAIu3Axrecag1rhFl3AJ07
cpVMQXZtkQVa2X8aIRTUC+ijX6yIqNaHlu0HqNXgIUTDzL4nv5cMjOMzpNQP9/dZ
FwAMZYNiOk9IlMiKJ8ZiVcxeiA8ouIBlkYM3k6vGrmiONZ7a/EV/mSHoJqI8bvqr
AxUIJ2Ayhg3bxPboL5oKgCiLql0A7ZVvz6quX6McitWGMgaSvel1fDzT3TnZd41e
4AFBFd/+VedUGg==
=bBYK
-----END PGP SIGNATURE-----
Merge tag 'rcu.2023.02.10a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull RCU updates from Paul McKenney:
- Documentation updates
- Miscellaneous fixes, perhaps most notably:
- Throttling callback invocation based on the number of callbacks
that are now ready to invoke instead of on the total number of
callbacks
- Several patches that suppress false-positive boot-time
diagnostics, for example, due to lockdep not yet being
initialized
- Make expedited RCU CPU stall warnings dump stacks of any tasks
that are blocking the stalled grace period. (Normal RCU CPU
stall warnings have done this for many years)
- Lazy-callback fixes to avoid delays during boot, suspend, and
resume. (Note that lazy callbacks must be explicitly enabled, so
this should not (yet) affect production use cases)
- Make kfree_rcu() and friends take advantage of polled grace periods,
thus reducing memory footprint by almost two orders of magnitude,
admittedly on a microbenchmark
This also begins the transition from kfree_rcu(p) to
kfree_rcu_mightsleep(p). This transition was motivated by bugs where
kfree_rcu(p), which can block, was typed instead of the intended
kfree_rcu(p, rh)
- SRCU updates, perhaps most notably fixing a bug that causes SRCU to
fail when booted on a system with a non-zero boot CPU. This
surprising situation actually happens for kdump kernels on the
powerpc architecture
This also adds an srcu_down_read() and srcu_up_read(), which act like
srcu_read_lock() and srcu_read_unlock(), but allow an SRCU read-side
critical section to be handed off from one task to another
- Clean up the now-useless SRCU Kconfig option
There are a few more commits that are not yet acked or pulled into
maintainer trees, and these will be in a pull request for a later
merge window
- RCU-tasks updates, perhaps most notably these fixes:
- A strange interaction between PID-namespace unshare and the
RCU-tasks grace period that results in a low-probability but
very real hang
- A race between an RCU tasks rude grace period on a single-CPU
system and CPU-hotplug addition of the second CPU that can
result in a too-short grace period
- A race between shrinking RCU tasks down to a single callback
list and queuing a new callback to some other CPU, but where
that queuing is delayed for more than an RCU grace period. This
can result in that callback being stranded on the non-boot CPU
- Torture-test updates and fixes
- Torture-test scripting updates and fixes
- Provide additional RCU CPU stall-warning information in kernels built
with CONFIG_RCU_CPU_STALL_CPUTIME=y, and restore the full five-minute
timeout limit for expedited RCU CPU stall warnings
* tag 'rcu.2023.02.10a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (80 commits)
rcu/kvfree: Add kvfree_rcu_mightsleep() and kfree_rcu_mightsleep()
kernel/notifier: Remove CONFIG_SRCU
init: Remove "select SRCU"
fs/quota: Remove "select SRCU"
fs/notify: Remove "select SRCU"
fs/btrfs: Remove "select SRCU"
fs: Remove CONFIG_SRCU
drivers/pci/controller: Remove "select SRCU"
drivers/net: Remove "select SRCU"
drivers/md: Remove "select SRCU"
drivers/hwtracing/stm: Remove "select SRCU"
drivers/dax: Remove "select SRCU"
drivers/base: Remove CONFIG_SRCU
rcu: Disable laziness if lazy-tracking says so
rcu: Track laziness during boot and suspend
rcu: Remove redundant call to rcu_boost_kthread_setaffinity()
rcu: Allow up to five minutes expedited RCU CPU stall-warning timeouts
rcu: Align the output of RCU CPU stall warning messages
rcu: Add RCU stall diagnosis information
sched: Add helper nr_context_switches_cpu()
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmPzxWcACgkQxWXV+ddt
WDt+fRAAg5pz7gWNMtIK30gp/uojjAkCWXymxRtK2tZU3naI+6IYSAKxuKq8Iz1Y
drdlpSvTX/Gv3XlGB9QuoH6digTjQzeVzjAm0eP6w8t8354KGSRUYdtoFp8I8E5Z
q0JUuZ6w/KvpZfOIsmcgpOScgcl+8+UlOxs2iuSrOvAqP8Dg1VCt5vBm7htIb0tm
5ClbgmIacxWrOII55XGuY0mWuZSlS4hdyWdYMelvtM8aPPG+e8eEzKjscVOOueLz
Smi1kN5QU3o+m4oKjN1OJlKfeURdbcZUwva9zOsegSbPHUzNwIao44cQ5cQhMR0r
kI3nCpJwGKdUd6IblEdcqBN5F4V64edLSruOLuGYzxySnEWhFE2YU2xW/v5b1eQW
GHurI52FGrPqcX9FgQNzfTjQzk341iQ0QIs5exycJH7xeohEZnlaK2yNUngKSo1C
naqczEMMMcxNjQaooUuxRkL/zz36D/Dkyo2YOCODtWyu61XY9LqvaxMvClFI20lL
40dzzYnnMQwkXJrQ/MVQhz1BBaPVqizt8+ErL7GQp2CWr9miD6mcA5b2pyZm5Q3r
hHadzeTXXS7P9g9UnuDxpZqkhvadGC2Sy4l/D6jURyKFzr8mtplaRRwUS2gSuP3z
zxavvP4UukwNWXxDz755NAhiGbA+xpSMATKCrZ/Sdogvxe8IhRg=
=NCpw
-----END PGP SIGNATURE-----
Merge tag 'for-6.3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"The usual mix of performance improvements and new features.
The core change is reworking how checksums are processed, with
followup cleanups and simplifications. There are two minor changes in
block layer and iomap code.
Features:
- block group allocation class heuristics:
- pack files by size (up to 128k, up to 8M, more) to avoid
fragmentation in block groups, assuming that file size and life
time is correlated, in particular this may help during balance
- with tracepoints and extensible in the future
Performance:
- send: cache directory utimes and only emit the command when
necessary
- speedup up to 10x
- smaller final stream produced (no redundant utimes commands
issued)
- compatibility not affected
- fiemap: skip backref checks for shared leaves
- speedup 3x on sample filesystem with all leaves shared (e.g. on
snapshots)
- micro optimized b-tree key lookup, speedup in metadata operations
(sample benchmark: fs_mark +10% of files/sec)
Core changes:
- change where checksumming is done in the io path:
- checksum and read repair does verification at lower layer
- cascaded cleanups and simplifications
- raid56 refactoring and cleanups
Fixes:
- sysfs: make sure that a run-time change of a feature is correctly
tracked by the feature files
- scrub: better reporting of tree block errors
Other:
- locally enable -Wmaybe-uninitialized after fixing all warnings
- misc cleanups, spelling fixes
Other code:
- block: export bio_split_rw
- iomap: remove IOMAP_F_ZONE_APPEND"
* tag 'for-6.3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (109 commits)
btrfs: make kobj_type structures constant
btrfs: remove the bdev argument to btrfs_rmap_block
btrfs: don't rely on unchanging ->bi_bdev for zone append remaps
btrfs: never return true for reads in btrfs_use_zone_append
btrfs: pass a btrfs_bio to btrfs_use_append
btrfs: set bbio->file_offset in alloc_new_bio
btrfs: use file_offset to limit bios size in calc_bio_boundaries
btrfs: do unsigned integer division in the extent buffer binary search loop
btrfs: eliminate extra call when doing binary search on extent buffer
btrfs: raid56: handle endio in scrub_rbio
btrfs: raid56: handle endio in recover_rbio
btrfs: raid56: handle endio in rmw_rbio
btrfs: raid56: submit the read bios from scrub_assemble_read_bios
btrfs: raid56: fold rmw_read_wait_recover into rmw_read_bios
btrfs: raid56: fold recover_assemble_read_bios into recover_rbio
btrfs: raid56: add a bio_list_put helper
btrfs: raid56: wait for I/O completion in submit_read_bios
btrfs: raid56: simplify code flow in rmw_rbio
btrfs: raid56: simplify error handling and code flow in raid56_parity_write
btrfs: replace btrfs_wait_tree_block_writeback by wait_on_extent_buffer_writeback
...
Fix the longstanding implementation limitation that fsverity was only
supported when the Merkle tree block size, filesystem block size, and
PAGE_SIZE were all equal. Specifically, add support for Merkle tree
block sizes less than PAGE_SIZE, and make ext4 support fsverity on
filesystems where the filesystem block size is less than PAGE_SIZE.
Effectively, this means that fsverity can now be used on systems with
non-4K pages, at least on ext4. These changes have been tested using
the verity group of xfstests, newly updated to cover the new code paths.
Also update fs/verity/ to support verifying data from large folios.
There's also a similar patch for fs/crypto/, to support decrypting data
from large folios, which I'm including in this pull request to avoid a
merge conflict between the fscrypt and fsverity branches.
There will be a merge conflict in fs/buffer.c with some of the foliation
work in the mm tree. Please use the merge resolution from linux-next.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQSacvsUNc7UX4ntmEPzXCl4vpKOKwUCY/KJtRQcZWJpZ2dlcnNA
Z29vZ2xlLmNvbQAKCRDzXCl4vpKOK/A/AP0RUlCClBRuHwXPRG0we8R1L153ga4s
Vl+xRpCr+SswXwEAiOEpYN5cXoVKzNgxbEXo2pQzxi5lrpjZgUI6CL3DuQs=
=ZRFX
-----END PGP SIGNATURE-----
Merge tag 'fsverity-for-linus' of git://git.kernel.org/pub/scm/fs/fsverity/linux
Pull fsverity updates from Eric Biggers:
"Fix the longstanding implementation limitation that fsverity was only
supported when the Merkle tree block size, filesystem block size, and
PAGE_SIZE were all equal.
Specifically, add support for Merkle tree block sizes less than
PAGE_SIZE, and make ext4 support fsverity on filesystems where the
filesystem block size is less than PAGE_SIZE.
Effectively, this means that fsverity can now be used on systems with
non-4K pages, at least on ext4. These changes have been tested using
the verity group of xfstests, newly updated to cover the new code
paths.
Also update fs/verity/ to support verifying data from large folios.
There's also a similar patch for fs/crypto/, to support decrypting
data from large folios, which I'm including in here to avoid a merge
conflict between the fscrypt and fsverity branches"
* tag 'fsverity-for-linus' of git://git.kernel.org/pub/scm/fs/fsverity/linux:
fscrypt: support decrypting data from large folios
fsverity: support verifying data from large folios
fsverity.rst: update git repo URL for fsverity-utils
ext4: allow verity with fs block size < PAGE_SIZE
fs/buffer.c: support fsverity in block_read_full_folio()
f2fs: simplify f2fs_readpage_limit()
ext4: simplify ext4_readpage_limit()
fsverity: support enabling with tree block size < PAGE_SIZE
fsverity: support verification with tree block size < PAGE_SIZE
fsverity: replace fsverity_hash_page() with fsverity_hash_block()
fsverity: use EFBIG for file too large to enable verity
fsverity: store log2(digest_size) precomputed
fsverity: simplify Merkle tree readahead size calculation
fsverity: use unsigned long for level_start
fsverity: remove debug messages and CONFIG_FS_VERITY_DEBUG
fsverity: pass pos and size to ->write_merkle_tree_block
fsverity: optimize fsverity_cleanup_inode() on non-verity files
fsverity: optimize fsverity_prepare_setattr() on non-verity files
fsverity: optimize fsverity_file_open() on non-verity files
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCY+5NlQAKCRCRxhvAZXjc
orOaAP9i2h3OJy95nO2Fpde0Bt2UT+oulKCCcGlvXJ8/+TQpyQD/ZQq47gFQ0EAz
Br5NxeyGeecAb0lHpFz+CpLGsxMrMwQ=
=+BG5
-----END PGP SIGNATURE-----
Merge tag 'fs.idmapped.v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping
Pull vfs idmapping updates from Christian Brauner:
- Last cycle we introduced the dedicated struct mnt_idmap type for
mount idmapping and the required infrastucture in 256c8aed2b ("fs:
introduce dedicated idmap type for mounts"). As promised in last
cycle's pull request message this converts everything to rely on
struct mnt_idmap.
Currently we still pass around the plain namespace that was attached
to a mount. This is in general pretty convenient but it makes it easy
to conflate namespaces that are relevant on the filesystem with
namespaces that are relevant on the mount level. Especially for
non-vfs developers without detailed knowledge in this area this was a
potential source for bugs.
This finishes the conversion. Instead of passing the plain namespace
around this updates all places that currently take a pointer to a
mnt_userns with a pointer to struct mnt_idmap.
Now that the conversion is done all helpers down to the really
low-level helpers only accept a struct mnt_idmap argument instead of
two namespace arguments.
Conflating mount and other idmappings will now cause the compiler to
complain loudly thus eliminating the possibility of any bugs. This
makes it impossible for filesystem developers to mix up mount and
filesystem idmappings as they are two distinct types and require
distinct helpers that cannot be used interchangeably.
Everything associated with struct mnt_idmap is moved into a single
separate file. With that change no code can poke around in struct
mnt_idmap. It can only be interacted with through dedicated helpers.
That means all filesystems are and all of the vfs is completely
oblivious to the actual implementation of idmappings.
We are now also able to extend struct mnt_idmap as we see fit. For
example, we can decouple it completely from namespaces for users that
don't require or don't want to use them at all. We can also extend
the concept of idmappings so we can cover filesystem specific
requirements.
In combination with the vfs{g,u}id_t work we finished in v6.2 this
makes this feature substantially more robust and thus difficult to
implement wrong by a given filesystem and also protects the vfs.
- Enable idmapped mounts for tmpfs and fulfill a longstanding request.
A long-standing request from users had been to make it possible to
create idmapped mounts for tmpfs. For example, to share the host's
tmpfs mount between multiple sandboxes. This is a prerequisite for
some advanced Kubernetes cases. Systemd also has a range of use-cases
to increase service isolation. And there are more users of this.
However, with all of the other work going on this was way down on the
priority list but luckily someone other than ourselves picked this
up.
As usual the patch is tiny as all the infrastructure work had been
done multiple kernel releases ago. In addition to all the tests that
we already have I requested that Rodrigo add a dedicated tmpfs
testsuite for idmapped mounts to xfstests. It is to be included into
xfstests during the v6.3 development cycle. This should add a slew of
additional tests.
* tag 'fs.idmapped.v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping: (26 commits)
shmem: support idmapped mounts for tmpfs
fs: move mnt_idmap
fs: port vfs{g,u}id helpers to mnt_idmap
fs: port fs{g,u}id helpers to mnt_idmap
fs: port i_{g,u}id_into_vfs{g,u}id() to mnt_idmap
fs: port i_{g,u}id_{needs_}update() to mnt_idmap
quota: port to mnt_idmap
fs: port privilege checking helpers to mnt_idmap
fs: port inode_owner_or_capable() to mnt_idmap
fs: port inode_init_owner() to mnt_idmap
fs: port acl to mnt_idmap
fs: port xattr to mnt_idmap
fs: port ->permission() to pass mnt_idmap
fs: port ->fileattr_set() to pass mnt_idmap
fs: port ->set_acl() to pass mnt_idmap
fs: port ->get_acl() to pass mnt_idmap
fs: port ->tmpfile() to pass mnt_idmap
fs: port ->rename() to pass mnt_idmap
fs: port ->mknod() to pass mnt_idmap
fs: port ->mkdir() to pass mnt_idmap
...
Since commit ee6d3dd4ed ("driver core: make kobj_type constant.")
the driver core allows the usage of const struct kobj_type.
Take advantage of this to constify the structure definitions to prevent
modification at runtime.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The only user in the zoned remap code is gone now, so remove the argument.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_record_physical_zoned relies on a bio->bi_bdev samples in the
bio_end_io handler to find the reverse map for remapping the zone append
write, but stacked block device drivers can and usually do change bi_bdev
when sending on the bio to a lower device. This can happen e.g. with the
nvme-multipath driver when a NVMe SSD sets the shared namespace bit.
But there is no real need for the bdev in btrfs_record_physical_zoned,
as it is only passed to btrfs_rmap_block, which uses it to pick the
mapping to report if there are multiple reverse mappings. As zone
writes can only do simple non-mirror writes right now, and anything
more complex will use the stripe tree there is no chance of the multiple
mappings case actually happening.
Instead open code the subset of btrfs_rmap_block in
btrfs_record_physical_zoned, which also removes a memory allocation and
remove the bdev field in the ordered extent.
Fixes: d8e3fb106f ("btrfs: zoned: use ZONE_APPEND write for zoned mode")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Using Zone Append only makes sense for writes to the device, so check
that in btrfs_use_zone_append. This avoids the possibility of
artificially limited read size on zoned file systems.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
struct btrfs_bio has all the information needed for btrfs_use_append, so
pass that instead of a btrfs_inode and file_offset.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of digging into the bio_vec in submit_one_bio, set file_offset at
bio allocation time from the provided parameter. This also ensures that
the file_offset is available all the time when building up the bio
payload.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_ordered_extent->disk_bytenr can be rewritten by the zoned I/O
completion handler, and thus in general is not a good idea to limit I/O
size. But the maximum bio size calculation can easily be done using the
file_offset fields in the btrfs_ordered_extent and btrfs_bio structures,
so switch to that instead.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
In the search loop of the binary search function, we are doing a division
by 2 of the sum of the high and low slots. Because the slots are integers,
the generated assembly code for it is the following on x86_64:
0x00000000000141f1 <+145>: mov %eax,%ebx
0x00000000000141f3 <+147>: shr $0x1f,%ebx
0x00000000000141f6 <+150>: add %eax,%ebx
0x00000000000141f8 <+152>: sar %ebx
It's a few more instructions than a simple right shift, because signed
integer division needs to round towards zero. However we know that slots
can never be negative (btrfs_header_nritems() returns an u32), so we
can instead use unsigned types for the low and high slots and therefore
use unsigned integer division, which results in a single instruction on
x86_64:
0x00000000000141f0 <+144>: shr %ebx
So use unsigned types for the slots and therefore unsigned division.
This is part of a small patchset comprised of the following two patches:
btrfs: eliminate extra call when doing binary search on extent buffer
btrfs: do unsigned integer division in the extent buffer binary search loop
The following fs_mark test was run on a non-debug kernel (Debian's default
kernel config) before and after applying the patchset:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-O no-holes -R free-space-tree"
FILES=100000
THREADS=$(nproc --all)
FILE_SIZE=0
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 6 -n $FILES -s $FILE_SIZE -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Results before applying patchset:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 174472.0 11549868
4 2400000 0 253503.0 11694618
4 3600000 0 257833.1 11611508
6 4800000 0 247089.5 11665983
6 6000000 0 211296.1 12121244
10 7200000 0 187330.6 12548565
Results after applying patchset:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 207556.0 11393252
4 2400000 0 266751.1 11347909
4 3600000 0 274397.5 11270058
6 4800000 0 259608.4 11442250
6 6000000 0 238895.8 11635921
8 7200000 0 211942.2 11873825
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_bin_search() is just a wrapper around the function
generic_bin_search(), which passes the same arguments plus a default
low slot with a value of 0. This adds an unnecessary extra function
call, since btrfs_bin_search() is not static. So improve on this by
making btrfs_bin_search() an inline function that calls
generic_bin_search(), renaming the later to btrfs_generic_bin_search()
and exporting it.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The only caller of scrub_rbio calls rbio_orig_end_io right after it,
move it into scrub_rbio to match the other work item helpers.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Both callers of recover_rbio call rbio_orig_end_io right after it, so
move the call into the shared function.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Both callers of rmv_rbio call rbio_orig_end_io right after it, so
move the call into the shared function.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of filling in a bio_list and submitting the bios in the only
caller, do that in scrub_assemble_read_bios. This removes the
need to pass the bio_list, and also makes it clear that the extra
bio_list cleanup in the caller is entirely pointless. Rename the
function to scrub_read_bios to make it clear that the bios are not
only assembled.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is very little extra code in rmw_read_bios, and a large part of it
is the superfluous extra cleanup of the bio list. Merge the two
functions, and only clean up the bio list after it has been added to
but before it has been emptied again by submit_read_wait_bio_list.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is very little extra code in recover_rbio, and a large part of it
is the superfluous extra cleanup of the bio list. Merge the two
functions, and only clean up the bio list after it has been added to
but before it has been emptied again by submit_read_wait_bio_list.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a helper to put all bios in a list. This does not need to be added
to block layer as there are no other users of such code.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In addition to setting up the end_io handler and submitting the bios in
submit_read_bios, also wait for them to be completed instead of waiting
for the completion manually in all three callers.
Rename submit_read_bios to submit_read_wait_bio_list to make it clear
it waits for the bios as well.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove the write goto label by moving the data page allocation and data
read into the branch.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Handle the error return on alloc_rbio failure directly instead of using
a goto and remove the queue_rbio goto label by moving the plugged
check into the if branch.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is used in the tree-log code and is a holdover from previous
iterations of extent buffer writeback. We can simply use
wait_on_extent_buffer_writeback here, and remove
btrfs_wait_tree_block_writeback completely as it's equivalent (waiting
on page write writeback).
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_clear_buffer_dirty just does the test_clear_bit() and then calls
clear_extent_buffer_dirty and does the dirty metadata accounting.
Combine this into clear_extent_buffer_dirty and make the result
btrfs_clear_buffer_dirty.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_clean_tree_block is a misnomer, it's just
clear_extent_buffer_dirty with some extra accounting around it. Rename
this to btrfs_clear_buffer_dirty to make it more clear it belongs with
it's setter, btrfs_mark_buffer_dirty.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We only add if we set the extent buffer dirty, and we subtract when we
clear the extent buffer dirty. If we end up in set_btree_ioerr we have
already cleared the buffer dirty, and we aren't resetting dirty on the
extent buffer, so this is simply wrong.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we're passing in the trans into btrfs_clean_tree_block, we can
easily roll in the handling of the !trans case and replace all
occurrences of
if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
clear_extent_buffer_dirty(eb);
with
btrfs_tree_lock(eb);
btrfs_clean_tree_block(eb);
btrfs_tree_unlock(eb);
We need the lock because if we are actually dirty we need to make sure
we aren't racing with anything that's starting writeout currently. This
also makes sure that we're accounting fs_info->dirty_metadata_bytes
appropriately.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We check the header generation in the extent buffer against the current
running transaction id to see if it's safe to clear DIRTY on this
buffer. Generally speaking if we're clearing the buffer dirty we're
holding the transaction open, but in the case of cleaning up an aborted
transaction we don't, so we have extra checks in that path to check the
transid. To allow for a future cleanup go ahead and pass in the trans
handle so we don't have to rely on ->running_transaction being set.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We want to clean up the dirty handling for extent buffers so it's a
little more consistent, so skip the check for generation == transid and
simply always lock the extent buffer before calling btrfs_clean_tree_block.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The current btrfs zoned device support is a little cumbersome in the data
I/O path as it requires the callers to not issue I/O larger than the
supported ZONE_APPEND size of the underlying device. This leads to a lot
of extra accounting. Instead change btrfs_submit_bio so that it can take
write bios of arbitrary size and form from the upper layers, and just
split them internally to the ZONE_APPEND queue limits. Then remove all
the upper layer warts catering to limited write sized on zoned devices,
including the extra refcount in the compressed_bio.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
To be able to split a write into properly sized zone append commands,
we need a queue_limits structure that contains the least common
denominator suitable for all devices.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Call btrfs_submit_bio and btrfs_submit_compressed_read directly from
submit_one_bio now that all additional functionality has moved into
btrfs_submit_bio.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_submit_bio can derive it trivially from bbio->inode, so stop
bothering in the callers.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Open code the functionality in the only caller and remove the now
superfluous error handling there.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that btrfs_get_io_geometry has a single caller, we can massage it
into a form that is more suitable for that caller and remove the
marshalling into and out of struct btrfs_io_geometry.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Stop looking at the stripe boundary in
btrfs_encoded_read_regular_fill_pages() now that btrfs_submit_bio can
split bios.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Stop looking at the stripe boundary in alloc_compressed_bio() now that
that btrfs_submit_bio can split bios, open code the now trivial code
from alloc_compressed_bio() in btrfs_submit_compressed_read and stop
maintaining the pending_ios count for reads as there is always just
a single bio now.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
[hch: remove more cruft in btrfs_submit_compressed_read,
use btrfs_zoned_get_device in alloc_compressed_bio]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove btrfs_bio_ctrl::len_to_stripe_boundary, so that buffer
I/O will no longer limit its bio size according to stripe length
now that btrfs_submit_bio can split bios at stripe boundaries.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
[hch: simplify calc_bio_boundaries a little more]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that btrfs_submit_bio splits the bio when crossing stripe boundaries,
there is no need for the higher level code to do that manually.
For direct I/O this is really helpful, as btrfs_submit_io can now simply
take the bio allocated by iomap and send it on to btrfs_submit_bio
instead of allocating clones.
For that to work, the bio embedded into struct btrfs_dio_private needs to
become a full btrfs_bio as expected by btrfs_submit_bio.
With this change there is a single work item to offload the entire iomap
bio so the heuristics to skip async processing for bios that were split
isn't needed anymore either.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the I/O submitters have to split bios according to the chunk
stripe boundaries. This leads to extra lookups in the extent trees and
a lot of boilerplate code.
To drop this requirement, split the bio when __btrfs_map_block returns a
mapping that is smaller than the requested size and keep a count of
pending bios in the original btrfs_bio so that the upper level
completion is only invoked when all clones have completed.
Based on a patch from Qu Wenruo.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
To allow splitting bios in btrfs_submit_bio, btree_csum_one_bio needs to
be able to handle cloned bios. As btree_csum_one_bio is always called
before handing the bio to the block layer that is trivially done by using
bio_for_each_segment instead of bio_for_each_segment_all. Also switch
the function to take a btrfs_bio and use that to derive the fs_info.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move the code that splits the ordered extents and records the physical
location for them to the storage layer so that the higher level consumers
don't have to care about physical block numbers at all. This will also
allow to eventually remove accounting for the zone append write sizes in
the upper layer with a little bit more block layer work.
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of letting the callers of btrfs_submit_bio deal with checksumming
the (meta)data in the bio and making decisions on when to offload the
checksumming to the bio, leave that to btrfs_submit_bio. Do do so the
existing btrfs_submit_bio function is split into an upper and a lower
half, so that the lower half can be offloaded to a workqueue.
Note that this changes the behavior for direct writes to raid56 volumes so
that async checksum offloading is not skipped when more I/O is expected.
This runs counter to the argument explaining why it was done, although I
can't measure any affects of the change. Commits later in this series
will make sure the entire direct writes is offloaded to the workqueue
at once and thus make sure it is sent to the raid56 code from a single
thread.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
To prepare for further bio submission changes btrfs_csum_one_bio
should be able to take all it's arguments from the btrfs_bio structure.
It can always use the bbio->inode already, and once the compression code
is updated to set ->file_offset that one can be used unconditionally
as well instead of looking at the page mapping now that btrfs doesn't
allow ordered extents to span discontiguous data ranges.
The only slightly tricky bit is the one_ordered flag set by the
compressed writes. Replace that one with the driver private bio
flag, which gets cleared before the bio is handed off to the block layer
so that we don't get in the way of driver use.
Note: this leaves an argument and a flag to btrfs_wq_submit_bio unused.
But that whole mechanism will be removed in its current form in the
next patch.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The submit helpers are now trivial and can be called directly. Note
that btree_csum_one_bio has to be moved up in the file a bit to avoid a
forward declaration.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This flag is unused now, so remove it. Re-expand the mirror_num field
to 8 bits, and move it to the I/O completion internal section of the
structure.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rename iter to saved_iter and move it next to the repair internals
and nothing outside of bio.c should be touching it.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
struct io_failure_record and the io_failure_tree tree are unused now,
so remove them. This in turn makes struct btrfs_inode smaller by 16
bytes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>