Introduce the map read/write flags to the eBPF syscalls that returns the
map fd. The flags is used to set up the file mode when construct a new
file descriptor for bpf maps. To not break the backward capability, the
f_flags is set to O_RDWR if the flag passed by syscall is 0. Otherwise
it should be O_RDONLY or O_WRONLY. When the userspace want to modify or
read the map content, it will check the file mode to see if it is
allowed to make the change.
Signed-off-by: Chenbo Feng <fengc@google.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 2c16d60332 ("netfilter: xt_bpf: support ebpf") introduced
support for attaching an eBPF object by an fd, with the
'bpf_mt_check_v1' ABI expecting the '.fd' to be specified upon each
IPT_SO_SET_REPLACE call.
However this breaks subsequent iptables calls:
# iptables -A INPUT -m bpf --object-pinned /sys/fs/bpf/xxx -j ACCEPT
# iptables -A INPUT -s 5.6.7.8 -j ACCEPT
iptables: Invalid argument. Run `dmesg' for more information.
That's because iptables works by loading existing rules using
IPT_SO_GET_ENTRIES to userspace, then issuing IPT_SO_SET_REPLACE with
the replacement set.
However, the loaded 'xt_bpf_info_v1' has an arbitrary '.fd' number
(from the initial "iptables -m bpf" invocation) - so when 2nd invocation
occurs, userspace passes a bogus fd number, which leads to
'bpf_mt_check_v1' to fail.
One suggested solution [1] was to hack iptables userspace, to perform a
"entries fixup" immediatley after IPT_SO_GET_ENTRIES, by opening a new,
process-local fd per every 'xt_bpf_info_v1' entry seen.
However, in [2] both Pablo Neira Ayuso and Willem de Bruijn suggested to
depricate the xt_bpf_info_v1 ABI dealing with pinned ebpf objects.
This fix changes the XT_BPF_MODE_FD_PINNED behavior to ignore the given
'.fd' and instead perform an in-kernel lookup for the bpf object given
the provided '.path'.
It also defines an alias for the XT_BPF_MODE_FD_PINNED mode, named
XT_BPF_MODE_PATH_PINNED, to better reflect the fact that the user is
expected to provide the path of the pinned object.
Existing XT_BPF_MODE_FD_ELF behavior (non-pinned fd mode) is preserved.
References: [1] https://marc.info/?l=netfilter-devel&m=150564724607440&w=2
[2] https://marc.info/?l=netfilter-devel&m=150575727129880&w=2
Reported-by: Rafael Buchbinder <rafi@rbk.ms>
Signed-off-by: Shmulik Ladkani <shmulik.ladkani@gmail.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Implement the show_options superblock op for bpf as part of a bid to get
rid of s_options and generic_show_options() to make it easier to implement
a context-based mount where the mount options can be passed individually
over a file descriptor.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Alexei Starovoitov <ast@kernel.org>
cc: Daniel Borkmann <daniel@iogearbox.net>
cc: netdev@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
simple_fill_super() is passed an array of tree_descr structures which
describe the files to create in the filesystem's root directory. Since
these arrays are never modified intentionally, they should be 'const' so
that they are placed in .rodata and benefit from memory protection.
This patch updates the function signature and all users, and also
constifies tree_descr.name.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This work adds a number of tracepoints to paths that are either
considered slow-path or exception-like states, where monitoring or
inspecting them would be desirable.
For bpf(2) syscall, tracepoints have been placed for main commands
when they succeed. In XDP case, tracepoint is for exceptions, that
is, f.e. on abnormal BPF program exit such as unknown or XDP_ABORTED
return code, or when error occurs during XDP_TX action and the packet
could not be forwarded.
Both have been split into separate event headers, and can be further
extended. Worst case, if they unexpectedly should get into our way in
future, they can also removed [1]. Of course, these tracepoints (like
any other) can be analyzed by eBPF itself, etc. Example output:
# ./perf record -a -e bpf:* sleep 10
# ./perf script
sock_example 6197 [005] 283.980322: bpf:bpf_map_create: map type=ARRAY ufd=4 key=4 val=8 max=256 flags=0
sock_example 6197 [005] 283.980721: bpf:bpf_prog_load: prog=a5ea8fa30ea6849c type=SOCKET_FILTER ufd=5
sock_example 6197 [005] 283.988423: bpf:bpf_prog_get_type: prog=a5ea8fa30ea6849c type=SOCKET_FILTER
sock_example 6197 [005] 283.988443: bpf:bpf_map_lookup_elem: map type=ARRAY ufd=4 key=[06 00 00 00] val=[00 00 00 00 00 00 00 00]
[...]
sock_example 6197 [005] 288.990868: bpf:bpf_map_lookup_elem: map type=ARRAY ufd=4 key=[01 00 00 00] val=[14 00 00 00 00 00 00 00]
swapper 0 [005] 289.338243: bpf:bpf_prog_put_rcu: prog=a5ea8fa30ea6849c type=SOCKET_FILTER
[1] https://lwn.net/Articles/705270/
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since we recently converted the BPF filesystem over to use mount_nodev(),
we now have the possibility to also hold mount options in sb's s_fs_info.
This work implements mount options support for specifying permissions on
the sb's inode, which will be used by tc when it manually needs to mount
the fs.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
While commit bb35a6ef7d ("bpf, inode: allow for rename and link ops")
added support for hard links that can be used for prog and map nodes,
this work adds simple symlink support, which can be used f.e. for
directories also when unpriviledged and works with cmdline tooling that
understands S_IFLNK anyway. Since the switch in e27f4a942a ("bpf: Use
mount_nodev not mount_ns to mount the bpf filesystem"), there can be
various mount instances with mount_nodev() and thus hierarchy can be
flattened to facilitate object sharing. Thus, we can keep bpf tooling
also working by repointing paths.
Most of the functionality can be used from vfs library operations. The
symlink is stored in the inode itself, that is in i_link, which is
sufficient in our case as opposed to storing it in the page cache.
While at it, I noticed that bpf_mkdir() and bpf_mkobj() don't update
the directories mtime and ctime, so add a common helper for it called
bpf_dentry_finalize() that takes care of it for all cases now.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
CURRENT_TIME macro is not appropriate for filesystems as it
doesn't use the right granularity for filesystem timestamps.
Use current_time() instead.
CURRENT_TIME is also not y2038 safe.
This is also in preparation for the patch that transitions
vfs timestamps to use 64 bit time and hence make them
y2038 safe. As part of the effort current_time() will be
extended to do range checks. Hence, it is necessary for all
file system timestamps to use current_time(). Also,
current_time() will be transitioned along with vfs to be
y2038 safe.
Note that whenever a single call to current_time() is used
to change timestamps in different inodes, it is because they
share the same time granularity.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Felipe Balbi <balbi@kernel.org>
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The Kconfig currently controlling compilation of this code is:
init/Kconfig:config BPF_SYSCALL
init/Kconfig: bool "Enable bpf() system call"
...meaning that it currently is not being built as a module by anyone.
Lets remove the couple traces of modular infrastructure use, so that
when reading the driver there is no doubt it is builtin-only.
Note that MODULE_ALIAS is a no-op for non-modular code.
We replace module.h with init.h since the file does use __init.
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: netdev@vger.kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Follow-up to commit e27f4a942a ("bpf: Use mount_nodev not mount_ns
to mount the bpf filesystem"), which removes the FS_USERNS_MOUNT flag.
The original idea was to have a per mountns instance instead of a
single global fs instance, but that didn't work out and we had to
switch to mount_nodev() model. The intent of that middle ground was
that we avoid users who don't play nice to create endless instances
of bpf fs which are difficult to control and discover from an admin
point of view, but at the same time it would have allowed us to be
more flexible with regard to namespaces.
Therefore, since we now did the switch to mount_nodev() as a fix
where individual instances are created, we also need to remove userns
mount flag along with it to avoid running into mentioned situation.
I don't expect any breakage at this early point in time with removing
the flag and we can revisit this later should the requirement for
this come up with future users. This and commit e27f4a942a have
been split to facilitate tracking should any of them run into the
unlikely case of causing a regression.
Fixes: b2197755b2 ("bpf: add support for persistent maps/progs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
While reviewing the filesystems that set FS_USERNS_MOUNT I spotted the
bpf filesystem. Looking at the code I saw a broken usage of mount_ns
with current->nsproxy->mnt_ns. As the code does not acquire a
reference to the mount namespace it can not possibly be correct to
store the mount namespace on the superblock as it does.
Replace mount_ns with mount_nodev so that each mount of the bpf
filesystem returns a distinct instance, and the code is not buggy.
In discussion with Hannes Frederic Sowa it was reported that the use
of mount_ns was an attempt to have one bpf instance per mount
namespace, in an attempt to keep resources that pin resources from
hiding. That intent simply does not work, the vfs is not built to
allow that kind of behavior. Which means that the bpf filesystem
really is buggy both semantically and in it's implemenation as it does
not nor can it implement the original intent.
This change is userspace visible, but my experience with similar
filesystems leads me to believe nothing will break with a model of each
mount of the bpf filesystem is distinct from all others.
Fixes: b2197755b2 ("bpf: add support for persistent maps/progs")
Cc: Hannes Frederic Sowa <hannes@stressinduktion.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull misc vfs cleanups from Al Viro:
"Assorted cleanups and fixes all over the place"
* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
coredump: only charge written data against RLIMIT_CORE
coredump: get rid of coredump_params->written
ecryptfs_lookup(): try either only encrypted or plaintext name
ecryptfs: avoid multiple aliases for directories
bpf: reject invalid names right in ->lookup()
__d_alloc(): treat NULL name as QSTR("/", 1)
mtd: switch ubi_open_volume_path() to vfs_stat()
mtd: switch open_mtd_by_chdev() to use of vfs_stat()
On a system with >32Gbyte of phyiscal memory and infinite RLIMIT_MEMLOCK,
the malicious application may overflow 32-bit bpf program refcnt.
It's also possible to overflow map refcnt on 1Tb system.
Impose 32k hard limit which means that the same bpf program or
map cannot be shared by more than 32k processes.
Fixes: 1be7f75d16 ("bpf: enable non-root eBPF programs")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add support for renaming and hard links to the fs. Most of this can be
implemented by using simple library operations under the same constraints
that we don't use a reserved name like elsewhere. Linking can be useful
to share/manage things like maps across subsystem users. It works within
the file system boundary, but is not allowed for directories.
Symbolic links are explicitly not implemented here, as it can be better
done already by doing bind mounts inside bpf fs to set up shared directories
f.e. useful when using volumes in docker containers that map a private
working directory into /sys/fs/bpf/ which contains itself a bind mounted
path from the host's /sys/fs/bpf/ mount that is shared among multiple
containers. For single maps instead of whole directory, hard links can
be easily used to do the same.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, when having map file descriptors pointing to program arrays,
there's still the issue that we unconditionally flush program array
contents via bpf_fd_array_map_clear() in bpf_map_release(). This happens
when such a file descriptor is released and is independent of the map's
refcount.
Having this flush independent of the refcount is for a reason: there
can be arbitrary complex dependency chains among tail calls, also circular
ones (direct or indirect, nesting limit determined during runtime), and
we need to make sure that the map drops all references to eBPF programs
it holds, so that the map's refcount can eventually drop to zero and
initiate its freeing. Btw, a walk of the whole dependency graph would
not be possible for various reasons, one being complexity and another
one inconsistency, i.e. new programs can be added to parts of the graph
at any time, so there's no guaranteed consistent state for the time of
such a walk.
Now, the program array pinning itself works, but the issue is that each
derived file descriptor on close would nevertheless call unconditionally
into bpf_fd_array_map_clear(). Instead, keep track of users and postpone
this flush until the last reference to a user is dropped. As this only
concerns a subset of references (f.e. a prog array could hold a program
that itself has reference on the prog array holding it, etc), we need to
track them separately.
Short analysis on the refcounting: on map creation time usercnt will be
one, so there's no change in behaviour for bpf_map_release(), if unpinned.
If we already fail in map_create(), we are immediately freed, and no
file descriptor has been made public yet. In bpf_obj_pin_user(), we need
to probe for a possible map in bpf_fd_probe_obj() already with a usercnt
reference, so before we drop the reference on the fd with fdput().
Therefore, if actual pinning fails, we need to drop that reference again
in bpf_any_put(), otherwise we keep holding it. When last reference
drops on the inode, the bpf_any_put() in bpf_evict_inode() will take
care of dropping the usercnt again. In the bpf_obj_get_user() case, the
bpf_any_get() will grab a reference on the usercnt, still at a time when
we have the reference on the path. Should we later on fail to grab a new
file descriptor, bpf_any_put() will drop it, otherwise we hold it until
bpf_map_release() time.
Joint work with Alexei.
Fixes: b2197755b2 ("bpf: add support for persistent maps/progs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This work adds support for "persistent" eBPF maps/programs. The term
"persistent" is to be understood that maps/programs have a facility
that lets them survive process termination. This is desired by various
eBPF subsystem users.
Just to name one example: tc classifier/action. Whenever tc parses
the ELF object, extracts and loads maps/progs into the kernel, these
file descriptors will be out of reach after the tc instance exits.
So a subsequent tc invocation won't be able to access/relocate on this
resource, and therefore maps cannot easily be shared, f.e. between the
ingress and egress networking data path.
The current workaround is that Unix domain sockets (UDS) need to be
instrumented in order to pass the created eBPF map/program file
descriptors to a third party management daemon through UDS' socket
passing facility. This makes it a bit complicated to deploy shared
eBPF maps or programs (programs f.e. for tail calls) among various
processes.
We've been brainstorming on how we could tackle this issue and various
approches have been tried out so far, which can be read up further in
the below reference.
The architecture we eventually ended up with is a minimal file system
that can hold map/prog objects. The file system is a per mount namespace
singleton, and the default mount point is /sys/fs/bpf/. Any subsequent
mounts within a given namespace will point to the same instance. The
file system allows for creating a user-defined directory structure.
The objects for maps/progs are created/fetched through bpf(2) with
two new commands (BPF_OBJ_PIN/BPF_OBJ_GET). I.e. a bpf file descriptor
along with a pathname is being passed to bpf(2) that in turn creates
(we call it eBPF object pinning) the file system nodes. Only the pathname
is being passed to bpf(2) for getting a new BPF file descriptor to an
existing node. The user can use that to access maps and progs later on,
through bpf(2). Removal of file system nodes is being managed through
normal VFS functions such as unlink(2), etc. The file system code is
kept to a very minimum and can be further extended later on.
The next step I'm working on is to add dump eBPF map/prog commands
to bpf(2), so that a specification from a given file descriptor can
be retrieved. This can be used by things like CRIU but also applications
can inspect the meta data after calling BPF_OBJ_GET.
Big thanks also to Alexei and Hannes who significantly contributed
in the design discussion that eventually let us end up with this
architecture here.
Reference: https://lkml.org/lkml/2015/10/15/925
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>