Fix typos and add the following to the scripts/spelling.txt:
algined||aligned
While we are here, fix the "appplication" in the touched line in
drivers/block/loop.c. Also, fix the "may not naturally ..." to
"may not be naturally ..." in the touched line in mm/page_alloc.
Link: http://lkml.kernel.org/r/1481573103-11329-9-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
arch_zone_lowest/highest_possible_pfn[] is set to 0 and [ZONE_MOVABLE]
is skipped in the loop. No need to reset them to 0 again.
This patch just removes the redundant code.
Link: http://lkml.kernel.org/r/20170209141731.60208-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When @node_reclaim_node isn't 0, the page allocator tries to reclaim
pages if the amount of free memory in the zones are below the low
watermark. On Power platform, none of NUMA nodes are scanned for page
reclaim because no nodes match the condition in zone_allows_reclaim().
On Power platform, RECLAIM_DISTANCE is set to 10 which is the distance
of Node-A to Node-A. So the preferred node even won't be scanned for
page reclaim.
__alloc_pages_nodemask()
get_page_from_freelist()
zone_allows_reclaim()
Anton proposed the test code as below:
# cat alloc.c
:
int main(int argc, char *argv[])
{
void *p;
unsigned long size;
unsigned long start, end;
start = time(NULL);
size = strtoul(argv[1], NULL, 0);
printf("To allocate %ldGB memory\n", size);
size <<= 30;
p = malloc(size);
assert(p);
memset(p, 0, size);
end = time(NULL);
printf("Used time: %ld seconds\n", end - start);
sleep(3600);
return 0;
}
The system I use for testing has two NUMA nodes. Both have 128GB
memory. In below scnario, the page caches on node#0 should be reclaimed
when it encounters pressure to accommodate request of allocation.
# echo 2 > /proc/sys/vm/zone_reclaim_mode; \
sync; \
echo 3 > /proc/sys/vm/drop_caches; \
# taskset -c 0 cat file.32G > /dev/null; \
grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 33619712 kB
# taskset -c 0 ./alloc 128
# grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 33619840 kB
# grep MemFree /sys/devices/system/node/node0/meminfo
Node 0 MemFree: 186816 kB
With the patch applied, the pagecache on node-0 is reclaimed when its
free memory is running out. It's the expected behaviour.
# echo 2 > /proc/sys/vm/zone_reclaim_mode; \
sync; \
echo 3 > /proc/sys/vm/drop_caches
# taskset -c 0 cat file.32G > /dev/null; \
grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 33605568 kB
# taskset -c 0 ./alloc 128
# grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 1379520 kB
# grep MemFree /sys/devices/system/node/node0/meminfo
Node 0 MemFree: 317120 kB
Fixes: 5f7a75acdb ("mm: page_alloc: do not cache reclaim distances")
Link: http://lkml.kernel.org/r/1486532455-29613-1-git-send-email-gwshan@linux.vnet.ibm.com
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: <stable@vger.kernel.org> [3.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently alloc_contig_range assumes that the compaction should be done
with the default GFP_KERNEL flags. This is probably right for all
current uses of this interface, but may change as CMA is used in more
use-cases (including being the default DMA memory allocator on some
platforms).
Change the function prototype, to allow for passing through the GFP mask
set by upper layers.
Also respect global restrictions by applying memalloc_noio_flags to the
passed in flags.
Link: http://lkml.kernel.org/r/20170127172328.18574-1-l.stach@pengutronix.de
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Alexander Graf <agraf@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We had considered all of the non-lru pages as unmovable before commit
bda807d444 ("mm: migrate: support non-lru movable page migration").
But now some of non-lru pages like zsmalloc, virtio-balloon pages also
become movable. So we can offline such blocks by using non-lru page
migration.
This patch straightforwardly adds non-lru migration code, which means
adding non-lru related code to the functions which scan over pfn and
collect pages to be migrated and isolate them before migration.
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As suggested by Vlastimil Babka and Tejun Heo, this patch uses a static
work_struct to co-ordinate the draining of per-cpu pages on the
workqueue. Only one task can drain at a time but this is better than
the previous scheme that allowed multiple tasks to send IPIs at a time.
One consideration is whether parallel requests should synchronise
against each other. This patch does not synchronise for a global drain
as the common case for such callers is expected to be multiple parallel
direct reclaimers competing for pages when the watermark is close to
min. Draining the per-cpu list is unlikely to make much progress and
serialising the drain is of dubious merit. Drains are synchonrised for
callers such as memory hotplug and CMA that care about the drain being
complete when the function returns.
Link: http://lkml.kernel.org/r/20170125083038.rzb5f43nptmk7aed@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Suggested-by: Tejun Heo <tj@kernel.org>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 682a3385e7 ("mm, page_alloc: inline the fast path of the
zonelist iterator") we replace a NULL nodemask with
cpuset_current_mems_allowed in the fast path, so that
get_page_from_freelist() filters nodes allowed by the cpuset via
for_next_zone_zonelist_nodemask().
In that case it's pointless to additionaly check __cpuset_zone_allowed()
in each iteration, which we can avoid by not adding ALLOC_CPUSET to
alloc_flags in that scenario.
This saves some cycles in the allocator fast path on systems with one or
more non-root cpuset configured. In the slow path, ALLOC_CPUSET is
reset according to __alloc_pages_slowpath(). Without configured
cpusets, this code is disabled by a static key.
Link: http://lkml.kernel.org/r/20170124150511.5710-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The allocation fast path contains two similar checks for zoneref->zone
being NULL, where zoneref points either to the first zone in the
zonelist, or to the preferred zone. These can be NULL either due to
empty zonelist, or no zone being compatible with given nodemask or
task's cpuset.
These checks are unnecessary, because the zonelist walks in
first_zones_zonelist() and get_page_from_freelist() handle a NULL
starting zoneref->zone or preferred_zoneref->zone safely. It's safe to
fallback to __alloc_pages_slowpath() where we also have the check early
enough.
Link: http://lkml.kernel.org/r/20170124150511.5710-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many workloads that allocate pages are not handling an interrupt at a
time. As allocation requests may be from IRQ context, it's necessary to
disable/enable IRQs for every page allocation. This cost is the bulk of
the free path but also a significant percentage of the allocation path.
This patch alters the locking and checks such that only irq-safe
allocation requests use the per-cpu allocator. All others acquire the
irq-safe zone->lock and allocate from the buddy allocator. It relies on
disabling preemption to safely access the per-cpu structures. It could
be slightly modified to avoid soft IRQs using it but it's not clear it's
worthwhile.
This modification may slow allocations from IRQ context slightly but the
main gain from the per-cpu allocator is that it scales better for
allocations from multiple contexts. There is an implicit assumption
that intensive allocations from IRQ contexts on multiple CPUs from a
single NUMA node are rare and that the fast majority of scaling issues
are encountered in !IRQ contexts such as page faulting. It's worth
noting that this patch is not required for a bulk page allocator but it
significantly reduces the overhead.
The following is results from a page allocator micro-benchmark. Only
order-0 is interesting as higher orders do not use the per-cpu allocator
4.10.0-rc2 4.10.0-rc2
vanilla irqsafe-v1r5
Amean alloc-odr0-1 287.15 ( 0.00%) 219.00 ( 23.73%)
Amean alloc-odr0-2 221.23 ( 0.00%) 183.23 ( 17.18%)
Amean alloc-odr0-4 187.00 ( 0.00%) 151.38 ( 19.05%)
Amean alloc-odr0-8 167.54 ( 0.00%) 132.77 ( 20.75%)
Amean alloc-odr0-16 156.00 ( 0.00%) 123.00 ( 21.15%)
Amean alloc-odr0-32 149.00 ( 0.00%) 118.31 ( 20.60%)
Amean alloc-odr0-64 138.77 ( 0.00%) 116.00 ( 16.41%)
Amean alloc-odr0-128 145.00 ( 0.00%) 118.00 ( 18.62%)
Amean alloc-odr0-256 136.15 ( 0.00%) 125.00 ( 8.19%)
Amean alloc-odr0-512 147.92 ( 0.00%) 121.77 ( 17.68%)
Amean alloc-odr0-1024 147.23 ( 0.00%) 126.15 ( 14.32%)
Amean alloc-odr0-2048 155.15 ( 0.00%) 129.92 ( 16.26%)
Amean alloc-odr0-4096 164.00 ( 0.00%) 136.77 ( 16.60%)
Amean alloc-odr0-8192 166.92 ( 0.00%) 138.08 ( 17.28%)
Amean alloc-odr0-16384 159.00 ( 0.00%) 138.00 ( 13.21%)
Amean free-odr0-1 165.00 ( 0.00%) 89.00 ( 46.06%)
Amean free-odr0-2 113.00 ( 0.00%) 63.00 ( 44.25%)
Amean free-odr0-4 99.00 ( 0.00%) 54.00 ( 45.45%)
Amean free-odr0-8 88.00 ( 0.00%) 47.38 ( 46.15%)
Amean free-odr0-16 83.00 ( 0.00%) 46.00 ( 44.58%)
Amean free-odr0-32 80.00 ( 0.00%) 44.38 ( 44.52%)
Amean free-odr0-64 72.62 ( 0.00%) 43.00 ( 40.78%)
Amean free-odr0-128 78.00 ( 0.00%) 42.00 ( 46.15%)
Amean free-odr0-256 80.46 ( 0.00%) 57.00 ( 29.16%)
Amean free-odr0-512 96.38 ( 0.00%) 64.69 ( 32.88%)
Amean free-odr0-1024 107.31 ( 0.00%) 72.54 ( 32.40%)
Amean free-odr0-2048 108.92 ( 0.00%) 78.08 ( 28.32%)
Amean free-odr0-4096 113.38 ( 0.00%) 82.23 ( 27.48%)
Amean free-odr0-8192 112.08 ( 0.00%) 82.85 ( 26.08%)
Amean free-odr0-16384 110.38 ( 0.00%) 81.92 ( 25.78%)
Amean total-odr0-1 452.15 ( 0.00%) 308.00 ( 31.88%)
Amean total-odr0-2 334.23 ( 0.00%) 246.23 ( 26.33%)
Amean total-odr0-4 286.00 ( 0.00%) 205.38 ( 28.19%)
Amean total-odr0-8 255.54 ( 0.00%) 180.15 ( 29.50%)
Amean total-odr0-16 239.00 ( 0.00%) 169.00 ( 29.29%)
Amean total-odr0-32 229.00 ( 0.00%) 162.69 ( 28.96%)
Amean total-odr0-64 211.38 ( 0.00%) 159.00 ( 24.78%)
Amean total-odr0-128 223.00 ( 0.00%) 160.00 ( 28.25%)
Amean total-odr0-256 216.62 ( 0.00%) 182.00 ( 15.98%)
Amean total-odr0-512 244.31 ( 0.00%) 186.46 ( 23.68%)
Amean total-odr0-1024 254.54 ( 0.00%) 198.69 ( 21.94%)
Amean total-odr0-2048 264.08 ( 0.00%) 208.00 ( 21.24%)
Amean total-odr0-4096 277.38 ( 0.00%) 219.00 ( 21.05%)
Amean total-odr0-8192 279.00 ( 0.00%) 220.92 ( 20.82%)
Amean total-odr0-16384 269.38 ( 0.00%) 219.92 ( 18.36%)
This is the alloc, free and total overhead of allocating order-0 pages
in batches of 1 page up to 16384 pages. Avoiding disabling/enabling
overhead massively reduces overhead. Alloc overhead is roughly reduced
by 14-20% in most cases. The free path is reduced by 26-46% and the
total reduction is significant.
Many users require zeroing of pages from the page allocator which is the
vast cost of allocation. Hence, the impact on a basic page faulting
benchmark is not that significant
4.10.0-rc2 4.10.0-rc2
vanilla irqsafe-v1r5
Hmean page_test 656632.98 ( 0.00%) 675536.13 ( 2.88%)
Hmean brk_test 3845502.67 ( 0.00%) 3867186.94 ( 0.56%)
Stddev page_test 10543.29 ( 0.00%) 4104.07 ( 61.07%)
Stddev brk_test 33472.36 ( 0.00%) 15538.39 ( 53.58%)
CoeffVar page_test 1.61 ( 0.00%) 0.61 ( 62.15%)
CoeffVar brk_test 0.87 ( 0.00%) 0.40 ( 53.84%)
Max page_test 666513.33 ( 0.00%) 678640.00 ( 1.82%)
Max brk_test 3882800.00 ( 0.00%) 3887008.66 ( 0.11%)
This is from aim9 and the most notable outcome is that fault variability
is reduced by the patch. The headline improvement is small as the
overall fault cost, zeroing, page table insertion etc dominate relative
to disabling/enabling IRQs in the per-cpu allocator.
Similarly, little benefit was seen on networking benchmarks both
localhost and between physical server/clients where other costs
dominate. It's possible that this will only be noticable on very high
speed networks.
Jesper Dangaard Brouer independently tested this with a separate
microbenchmark from
https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/mm/bench
Micro-benchmarked with [1] page_bench02:
modprobe page_bench02 page_order=0 run_flags=$((2#010)) loops=$((10**8)); \
rmmod page_bench02 ; dmesg --notime | tail -n 4
Compared to baseline: 213 cycles(tsc) 53.417 ns
- against this : 184 cycles(tsc) 46.056 ns
- Saving : -29 cycles
- Very close to expected 27 cycles saving [see below [2]]
Micro benchmarking via time_bench_sample[3], we get the cost of these
operations:
time_bench: Type:for_loop Per elem: 0 cycles(tsc) 0.232 ns (step:0)
time_bench: Type:spin_lock_unlock Per elem: 33 cycles(tsc) 8.334 ns (step:0)
time_bench: Type:spin_lock_unlock_irqsave Per elem: 62 cycles(tsc) 15.607 ns (step:0)
time_bench: Type:irqsave_before_lock Per elem: 57 cycles(tsc) 14.344 ns (step:0)
time_bench: Type:spin_lock_unlock_irq Per elem: 34 cycles(tsc) 8.560 ns (step:0)
time_bench: Type:simple_irq_disable_before_lock Per elem: 37 cycles(tsc) 9.289 ns (step:0)
time_bench: Type:local_BH_disable_enable Per elem: 19 cycles(tsc) 4.920 ns (step:0)
time_bench: Type:local_IRQ_disable_enable Per elem: 7 cycles(tsc) 1.864 ns (step:0)
time_bench: Type:local_irq_save_restore Per elem: 38 cycles(tsc) 9.665 ns (step:0)
[Mel's patch removes a ^^^^^^^^^^^^^^^^] ^^^^^^^^^ expected saving - preempt cost
time_bench: Type:preempt_disable_enable Per elem: 11 cycles(tsc) 2.794 ns (step:0)
[adds a preempt ^^^^^^^^^^^^^^^^^^^^^^] ^^^^^^^^^ adds this cost
time_bench: Type:funcion_call_cost Per elem: 6 cycles(tsc) 1.689 ns (step:0)
time_bench: Type:func_ptr_call_cost Per elem: 11 cycles(tsc) 2.767 ns (step:0)
time_bench: Type:page_alloc_put Per elem: 211 cycles(tsc) 52.803 ns (step:0)
Thus, expected improvement is: 38-11 = 27 cycles.
[mgorman@techsingularity.net: s/preempt_enable_no_resched/preempt_enable/]
Link: http://lkml.kernel.org/r/20170208143128.25ahymqlyspjcixu@techsingularity.net
Link: http://lkml.kernel.org/r/20170123153906.3122-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dmitry has reported the following lockdep splat
lock_acquire+0x2a1/0x630 kernel/locking/lockdep.c:3753
__mutex_lock_common kernel/locking/mutex.c:521 [inline]
mutex_lock_nested+0x24e/0xff0 kernel/locking/mutex.c:621
pcpu_alloc+0xbda/0x1280 mm/percpu.c:896
__alloc_percpu+0x24/0x30 mm/percpu.c:1075
smpcfd_prepare_cpu+0x73/0xd0 kernel/smp.c:44
cpuhp_invoke_callback+0x254/0x1480 kernel/cpu.c:136
cpuhp_up_callbacks+0x81/0x2a0 kernel/cpu.c:493
_cpu_up+0x1e3/0x2a0 kernel/cpu.c:1057
do_cpu_up+0x73/0xa0 kernel/cpu.c:1087
cpu_up+0x18/0x20 kernel/cpu.c:1095
smp_init+0xe9/0xee kernel/smp.c:564
kernel_init_freeable+0x439/0x690 init/main.c:1010
kernel_init+0x13/0x180 init/main.c:941
ret_from_fork+0x2a/0x40 arch/x86/entry/entry_64.S:433
cpu_hotplug_begin
cpu_hotplug.lock
pcpu_alloc
pcpu_alloc_mutex
get_online_cpus+0x62/0x90 kernel/cpu.c:248
drain_all_pages+0xf8/0x710 mm/page_alloc.c:2385
__alloc_pages_direct_reclaim mm/page_alloc.c:3440 [inline]
__alloc_pages_slowpath+0x8fd/0x2370 mm/page_alloc.c:3778
__alloc_pages_nodemask+0x8f5/0xc60 mm/page_alloc.c:3980
__alloc_pages include/linux/gfp.h:426 [inline]
__alloc_pages_node include/linux/gfp.h:439 [inline]
alloc_pages_node include/linux/gfp.h:453 [inline]
pcpu_alloc_pages mm/percpu-vm.c:93 [inline]
pcpu_populate_chunk+0x1e1/0x900 mm/percpu-vm.c:282
pcpu_alloc+0xe01/0x1280 mm/percpu.c:998
__alloc_percpu_gfp+0x27/0x30 mm/percpu.c:1062
bpf_array_alloc_percpu kernel/bpf/arraymap.c:34 [inline]
array_map_alloc+0x532/0x710 kernel/bpf/arraymap.c:99
find_and_alloc_map kernel/bpf/syscall.c:34 [inline]
map_create kernel/bpf/syscall.c:188 [inline]
SYSC_bpf kernel/bpf/syscall.c:870 [inline]
SyS_bpf+0xd64/0x2500 kernel/bpf/syscall.c:827
entry_SYSCALL_64_fastpath+0x1f/0xc2
pcpu_alloc
pcpu_alloc_mutex
drain_all_pages
get_online_cpus
cpu_hotplug.lock
cpu_hotplug_begin+0x206/0x2e0 kernel/cpu.c:304
_cpu_up+0xca/0x2a0 kernel/cpu.c:1011
do_cpu_up+0x73/0xa0 kernel/cpu.c:1087
cpu_up+0x18/0x20 kernel/cpu.c:1095
smp_init+0xe9/0xee kernel/smp.c:564
kernel_init_freeable+0x439/0x690 init/main.c:1010
kernel_init+0x13/0x180 init/main.c:941
ret_from_fork+0x2a/0x40 arch/x86/entry/entry_64.S:433
cpu_hotplug_begin
cpu_hotplug.lock
Pulling cpu hotplug locks inside the page allocator is just too
dangerous. Let's remove the dependency by dropping get_online_cpus()
from drain_all_pages. This is not so simple though because now we do
not have a protection against cpu hotplug which means 2 things:
- the work item might be executed on a different cpu in worker from
unbound pool so it doesn't run on pinned on the cpu
- we have to make sure that we do not race with page_alloc_cpu_dead
calling drain_pages_zone
Disabling preemption in drain_local_pages_wq will solve the first
problem drain_local_pages will determine its local CPU from the WQ
context which will be stable after that point, page_alloc_cpu_dead is
pinned to the CPU already. The later condition is achieved by disabling
IRQs in drain_pages_zone.
Fixes: mm, page_alloc: drain per-cpu pages from workqueue context
Link: http://lkml.kernel.org/r/20170207201950.20482-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The per-cpu page allocator can be drained immediately via
drain_all_pages() which sends IPIs to every CPU. In the next patch, the
per-cpu allocator will only be used for interrupt-safe allocations which
prevents draining it from IPI context. This patch uses workqueues to
drain the per-cpu lists instead.
This is slower but no slowdown during intensive reclaim was measured and
the paths that use drain_all_pages() are not that sensitive to
performance. This is particularly true as the path would only be
triggered when reclaim is failing. It also makes a some sense to avoid
storming a machine with IPIs when it's under memory pressure. Arguably,
it should be further adjusted so that only one caller at a time is
draining pages but it's beyond the scope of the current patch.
Link: http://lkml.kernel.org/r/20170123153906.3122-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_pages_nodemask does a number of preperation steps that determine
what zones can be used for the allocation depending on a variety of
factors. This is fine but a hypothetical caller that wanted multiple
order-0 pages has to do the preparation steps multiple times. This
patch structures __alloc_pages_nodemask such that it's relatively easy
to build a bulk order-0 page allocator. There is no functional change.
Link: http://lkml.kernel.org/r/20170123153906.3122-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Use per-cpu allocator for !irq requests and prepare for a
bulk allocator", v5.
This series is motivated by a conversation led by Jesper Dangaard Brouer
at the last LSF/MM proposing a generic page pool for DMA-coherent pages.
Part of his motivation was due to the overhead of allocating multiple
order-0 that led some drivers to use high-order allocations and
splitting them. This is very slow in some cases.
The first two patches in this series restructure the page allocator such
that it is relatively easy to introduce an order-0 bulk page allocator.
A patch exists to do that and has been handed over to Jesper until an
in-kernel users is created. The third patch prevents the per-cpu
allocator being drained from IPI context as that can potentially corrupt
the list after patch four is merged. The final patch alters the per-cpu
alloctor to make it exclusive to !irq requests. This cuts
allocation/free overhead by roughly 30%.
Performance tests from both Jesper and me are included in the patch.
This patch (of 4):
buffered_rmqueue removes a page from a given zone and uses the per-cpu
list for order-0. This is fine but a hypothetical caller that wanted
multiple order-0 pages has to disable/reenable interrupts multiple
times. This patch structures buffere_rmqueue such that it's relatively
easy to build a bulk order-0 page allocator. There is no functional
change.
[mgorman@techsingularity.net: failed per-cpu refill may blow up]
Link: http://lkml.kernel.org/r/20170124112723.mshmgwq2ihxku2um@techsingularity.net
Link: http://lkml.kernel.org/r/20170123153906.3122-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The patch "mm, page_alloc: warn_alloc print nodemask" implicitly sets
the allocation nodemask to cpuset_current_mems_allowed when there is no
effective mempolicy. cpuset_current_mems_allowed is only effective when
cpusets are enabled, which is also printed by warn_alloc(), so setting
the nodemask to cpuset_current_mems_allowed is redundant and prevents
debugging issues where ac->nodemask is not set properly in the page
allocator.
This provides better debugging output since
cpuset_print_current_mems_allowed() is already provided.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701181347320.142399@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that __GFP_NOFAIL doesn't override decisions to skip the oom killer
we are left with requests which require to loop inside the allocator
without invoking the oom killer (e.g. GFP_NOFS|__GFP_NOFAIL used by fs
code) and so they might, in very unlikely situations, loop for ever -
e.g. other parallel request could starve them.
This patch tries to limit the likelihood of such a lockup by giving
these __GFP_NOFAIL requests a chance to move on by consuming a small
part of memory reserves. We are using ALLOC_HARDER which should be
enough to prevent from the starvation by regular allocation requests,
yet it shouldn't consume enough from the reserves to disrupt high
priority requests (ALLOC_HIGH).
While we are at it, let's introduce a helper __alloc_pages_cpuset_fallback
which enforces the cpusets but allows to fallback to ignore them if the
first attempt fails. __GFP_NOFAIL requests can be considered important
enough to allow cpuset runaway in order for the system to move on. It
is highly unlikely that any of these will be GFP_USER anyway.
Link: http://lkml.kernel.org/r/20161220134904.21023-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__alloc_pages_may_oom makes sure to skip the OOM killer depending on the
allocation request. This includes lowmem requests, costly high order
requests and others. For a long time __GFP_NOFAIL acted as an override
for all those rules. This is not documented and it can be quite
surprising as well. E.g. GFP_NOFS requests are not invoking the OOM
killer but GFP_NOFS|__GFP_NOFAIL does so if we try to convert some of
the existing open coded loops around allocator to nofail request (and we
have done that in the past) then such a change would have a non trivial
side effect which is far from obvious. Note that the primary motivation
for skipping the OOM killer is to prevent from pre-mature invocation.
The exception has been added by commit 82553a937f ("oom: invoke oom
killer for __GFP_NOFAIL"). The changelog points out that the oom killer
has to be invoked otherwise the request would be looping for ever. But
this argument is rather weak because the OOM killer doesn't really
guarantee a forward progress for those exceptional cases:
- it will hardly help to form costly order which in turn can result in
the system panic because of no oom killable task in the end - I believe
we certainly do not want to put the system down just because there is a
nasty driver asking for order-9 page with GFP_NOFAIL not realizing all
the consequences. It is much better this request would loop for ever
than the massive system disruption
- lowmem is also highly unlikely to be freed during OOM killer
- GFP_NOFS request could trigger while there is still a lot of memory
pinned by filesystems.
This patch simply removes the __GFP_NOFAIL special case in order to have a
more clear semantic without surprising side effects.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Nils Holland <nholland@tisys.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tetsuo Handa has pointed out that commit 0a0337e0d1 ("mm, oom: rework
oom detection") has subtly changed semantic for costly high order
requests with __GFP_NOFAIL and withtout __GFP_REPEAT and those can fail
right now. My code inspection didn't reveal any such users in the tree
but it is true that this might lead to unexpected allocation failures
and subsequent OOPs.
__alloc_pages_slowpath wrt. GFP_NOFAIL is hard to follow currently.
There are few special cases but we are lacking a catch all place to be
sure we will not miss any case where the non failing allocation might
fail. This patch reorganizes the code a bit and puts all those special
cases under nopage label which is the generic go-to-fail path. Non
failing allocations are retried or those that cannot retry like
non-sleeping allocation go to the failure point directly. This should
make the code flow much easier to follow and make it less error prone
for future changes.
While we are there we have to move the stall check up to catch
potentially looping non-failing allocations.
[akpm@linux-foundation.org: fix alloc_flags may-be-used-uninitalized]
Link: http://lkml.kernel.org/r/20161220134904.21023-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
show_mem() allows to filter out node specific data which is irrelevant
to the allocation request via SHOW_MEM_FILTER_NODES. The filtering is
done in skip_free_areas_node which skips all nodes which are not in the
mems_allowed of the current process. This works most of the time as
expected because the nodemask shouldn't be outside of the allocating
task but there are some exceptions. E.g. memory hotplug might want to
request allocations from outside of the allowed nodes (see
new_node_page).
Get rid of this hardcoded behavior and push the allocation mask down the
show_mem path and use it instead of cpuset_current_mems_allowed. NULL
nodemask is interpreted as cpuset_current_mems_allowed.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20170117091543.25850-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
warn_alloc is currently used for to report an allocation failure or an
allocation stall. We print some details of the allocation request like
the gfp mask and the request order. We do not print the allocation
nodemask which is important when debugging the reason for the allocation
failure as well. We alreaddy print the nodemask in the OOM report.
Add nodemask to warn_alloc and print it in warn_alloc as well.
Link: http://lkml.kernel.org/r/20170117091543.25850-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "show_mem updates", v2.
This is a mixture of one bug fix (patch 1), an enhancement (patch 2) and
cleanups (the rest of the series). First two patches should be really
straightforward. Patch 3 removes some arch specific show_mem
implementations because I think they are quite outdated and do not
really serve any useful purpose anymore. I think we should really
strive to have a consistent show_mem output regardless of the
architecture. If some architecture is really special and wants to dump
something additional we should do that via an arch specific hook.
The last patch adds nodemask parameter so that we do not rely on the
hardcoded mems_allowed of the current task when doing the node
filtering. I consider this more a cleanup than a fix because basically
all users use a nodemask which is a subset of mems_allowed. There is
only one call path in the memory hotplug which doesn't comply with this
but that is hardly something to worry about.
This patch (of 4):
Commit 599d0c954f ("mm, vmscan: move LRU lists to node") has added per
numa node statistics to show_mem but it forgot to add
skip_free_areas_node to filter out nodes which are outside of the
allocating task numa policy. Add this check to not pollute the output
with the pointless information.
Link: http://lkml.kernel.org/r/20170117091543.25850-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When using a sparse memory model memmap_init_zone() when invoked with
the MEMMAP_EARLY context will skip over pages which aren't valid - ie.
which aren't in a populated region of the sparse memory map. However if
the memory map is extremely sparse then it can spend a long time
linearly checking each PFN in a large non-populated region of the memory
map & skipping it in turn.
When CONFIG_HAVE_MEMBLOCK_NODE_MAP is enabled, we have sufficient
information to quickly discover the next valid PFN given an invalid one
by searching through the list of memory regions & skipping forwards to
the first PFN covered by the memory region to the right of the
non-populated region. Implement this in order to speed up
memmap_init_zone() for systems with extremely sparse memory maps.
James said "I have tested this patch on a virtual model of a Samurai CPU
with a sparse memory map. The kernel boot time drops from 109 to
62 seconds. "
Link: http://lkml.kernel.org/r/20161125185518.29885-1-paul.burton@imgtec.com
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Tested-by: James Hartley <james.hartley@imgtec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Higher order requests oom debugging is currently quite hard. We do have
some compaction points which can tell us how the compaction is operating
but there is no trace point to tell us about compaction retry logic.
This patch adds a one which will have the following format
bash-3126 [001] .... 1498.220001: compact_retry: order=9 priority=COMPACT_PRIO_SYNC_LIGHT compaction_result=withdrawn retries=0 max_retries=16 should_retry=0
we can see that the order 9 request is not retried even though we are in
the highest compaction priority mode becase the last compaction attempt
was withdrawn. This means that compaction_zonelist_suitable must have
returned false and there is no suitable zone to compact for this request
and so no need to retry further.
another example would be
<...>-3137 [001] .... 81.501689: compact_retry: order=9 priority=COMPACT_PRIO_SYNC_LIGHT compaction_result=failed retries=0 max_retries=16 should_retry=0
in this case the order-9 compaction failed to find any suitable block.
We do not retry anymore because this is a costly request and those do
not go below COMPACT_PRIO_SYNC_LIGHT priority.
Link: http://lkml.kernel.org/r/20161220130135.15719-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
should_reclaim_retry is the central decision point for declaring the
OOM. It might be really useful to expose data used for this decision
making when debugging an unexpected oom situations.
Say we have an OOM report:
[ 52.264001] mem_eater invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), nodemask=0, order=0, oom_score_adj=0
[ 52.267549] CPU: 3 PID: 3148 Comm: mem_eater Tainted: G W 4.8.0-oomtrace3-00006-gb21338b386d2 #1024
Now we can check the tracepoint data to see how we have ended up in this
situation:
mem_eater-3148 [003] .... 52.432801: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11134 min_wmark=11084 no_progress_loops=1 wmark_check=1
mem_eater-3148 [003] .... 52.433269: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11103 min_wmark=11084 no_progress_loops=1 wmark_check=1
mem_eater-3148 [003] .... 52.433712: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11100 min_wmark=11084 no_progress_loops=2 wmark_check=1
mem_eater-3148 [003] .... 52.434067: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11097 min_wmark=11084 no_progress_loops=3 wmark_check=1
mem_eater-3148 [003] .... 52.434414: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11094 min_wmark=11084 no_progress_loops=4 wmark_check=1
mem_eater-3148 [003] .... 52.434761: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11091 min_wmark=11084 no_progress_loops=5 wmark_check=1
mem_eater-3148 [003] .... 52.435108: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11087 min_wmark=11084 no_progress_loops=6 wmark_check=1
mem_eater-3148 [003] .... 52.435478: reclaim_retry_zone: node=0 zone=DMA32 order=0 reclaimable=51 available=11084 min_wmark=11084 no_progress_loops=7 wmark_check=0
mem_eater-3148 [003] .... 52.435478: reclaim_retry_zone: node=0 zone=DMA order=0 reclaimable=0 available=1126 min_wmark=179 no_progress_loops=7 wmark_check=0
The above shows that we can quickly deduce that the reclaim stopped
making any progress (see no_progress_loops increased in each round) and
while there were still some 51 reclaimable pages they couldn't be
dropped for some reason (vmscan trace points would tell us more about
that part). available will represent reclaimable + free_pages scaled
down per no_progress_loops factor. This is essentially an optimistic
estimate of how much memory we would have when reclaiming everything.
This can be compared to min_wmark to get a rought idea but the
wmark_check tells the result of the watermark check which is more
precise (includes lowmem reserves, considers the order etc.). As we can
see no zone is eligible in the end and that is why we have triggered the
oom in this situation.
Please note that higher order requests might fail on the wmark_check
even when there is much more memory available than min_wmark - e.g.
when the memory is fragmented. A follow up tracepoint will help to
debug those situations.
Link: http://lkml.kernel.org/r/20161220130135.15719-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On architectures that allow memory holes, page_is_buddy() has to perform
page_to_pfn() to check for the memory hole. After the previous patch,
we have the pfn already available in __free_one_page(), which is the
only caller of page_is_buddy(), so move the check there and avoid
page_to_pfn().
Link: http://lkml.kernel.org/r/20161216120009.20064-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In __free_one_page() we do the buddy merging arithmetics on "page/buddy
index", which is just the lower MAX_ORDER bits of pfn. The operations
we do that affect the higher bits are bitwise AND and subtraction (in
that order), where the final result will be the same with the higher
bits left unmasked, as long as these bits are equal for both buddies -
which must be true by the definition of a buddy.
We can therefore use pfn's directly instead of "index" and skip the
zeroing of >MAX_ORDER bits. This can help a bit by itself, although
compiler might be smart enough already. It also helps the next patch to
avoid page_to_pfn() for memory hole checks.
Link: http://lkml.kernel.org/r/20161216120009.20064-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tetsuo has been stressing OOM killer path with many parallel allocation
requests when he has noticed that it is not all that hard to swamp
kernel logs with warn_alloc messages caused by allocation stalls. Even
though the allocation stall message is triggered only once in 10s there
might be many different tasks hitting it roughly around the same time.
A big part of the output is show_mem() which can generate a lot of
output even on a small machines. There is no reason to show the state
of memory counter for each allocation stall, especially when multiple of
them are reported in a short time period. Chances are that not much has
changed since the last report. This patch simply rate limits show_mem
called from warn_alloc to only dump something once per second. This
should be enough to give us a clue why an allocation might be stalling
while burst of warnings will not swamp log with too much data.
While we are at it, extract all the show_mem related handling (filters)
into a separate function warn_alloc_show_mem. This will make the code
cleaner and as a bonus point we can distinguish which part of warn_alloc
got throttled due to rate limiting as ___ratelimit dumps the caller.
[akpm@linux-foundation.org: reduce scope of the ratelimit_states]
Link: http://lkml.kernel.org/r/20161215101510.9030-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ganapatrao Kulkarni reported that the LTP test cpuset01 in stress mode
triggers OOM killer in few seconds, despite lots of free memory. The
test attempts to repeatedly fault in memory in one process in a cpuset,
while changing allowed nodes of the cpuset between 0 and 1 in another
process.
The problem comes from insufficient protection against cpuset changes,
which can cause get_page_from_freelist() to consider all zones as
non-eligible due to nodemask and/or current->mems_allowed. This was
masked in the past by sufficient retries, but since commit 682a3385e7
("mm, page_alloc: inline the fast path of the zonelist iterator") we fix
the preferred_zoneref once, and don't iterate over the whole zonelist in
further attempts, thus the only eligible zones might be placed in the
zonelist before our starting point and we always miss them.
A previous patch fixed this problem for current->mems_allowed. However,
cpuset changes also update the task's mempolicy nodemask. The fix has
two parts. We have to repeat the preferred_zoneref search when we
detect cpuset update by way of seqcount, and we have to check the
seqcount before considering OOM.
[akpm@linux-foundation.org: fix typo in comment]
Link: http://lkml.kernel.org/r/20170120103843.24587-5-vbabka@suse.cz
Fixes: c33d6c06f6 ("mm, page_alloc: avoid looking up the first zone in a zonelist twice")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Ganapatrao Kulkarni <gpkulkarni@gmail.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a preparation for the following patch to make review simpler.
While the primary motivation is a bug fix, this also simplifies the fast
path, although the moved code is only enabled when cpusets are in use.
Link: http://lkml.kernel.org/r/20170120103843.24587-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Ganapatrao Kulkarni <gpkulkarni@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ganapatrao Kulkarni reported that the LTP test cpuset01 in stress mode
triggers OOM killer in few seconds, despite lots of free memory. The
test attempts to repeatedly fault in memory in one process in a cpuset,
while changing allowed nodes of the cpuset between 0 and 1 in another
process.
One possible cause is that in the fast path we find the preferred
zoneref according to current mems_allowed, so that it points to the
middle of the zonelist, skipping e.g. zones of node 1 completely. If
the mems_allowed is updated to contain only node 1, we never reach it in
the zonelist, and trigger OOM before checking the cpuset_mems_cookie.
This patch fixes the particular case by redoing the preferred zoneref
search if we switch back to the original nodemask. The condition is
also slightly changed so that when the last non-root cpuset is removed,
we don't miss it.
Note that this is not a full fix, and more patches will follow.
Link: http://lkml.kernel.org/r/20170120103843.24587-3-vbabka@suse.cz
Fixes: 682a3385e7 ("mm, page_alloc: inline the fast path of the zonelist iterator")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Ganapatrao Kulkarni <gpkulkarni@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "fix premature OOM regression in 4.7+ due to cpuset races".
This is v2 of my attempt to fix the recent report based on LTP cpuset
stress test [1]. The intention is to go to stable 4.9 LTSS with this,
as triggering repeated OOMs is not nice. That's why the patches try to
be not too intrusive.
Unfortunately why investigating I found that modifying the testcase to
use per-VMA policies instead of per-task policies will bring the OOM's
back, but that seems to be much older and harder to fix problem. I have
posted a RFC [2] but I believe that fixing the recent regressions has a
higher priority.
Longer-term we might try to think how to fix the cpuset mess in a better
and less error prone way. I was for example very surprised to learn,
that cpuset updates change not only task->mems_allowed, but also
nodemask of mempolicies. Until now I expected the parameter to
alloc_pages_nodemask() to be stable. I wonder why do we then treat
cpusets specially in get_page_from_freelist() and distinguish HARDWALL
etc, when there's unconditional intersection between mempolicy and
cpuset. I would expect the nodemask adjustment for saving overhead in
g_p_f(), but that clearly doesn't happen in the current form. So we
have both crazy complexity and overhead, AFAICS.
[1] https://lkml.kernel.org/r/CAFpQJXUq-JuEP=QPidy4p_=FN0rkH5Z-kfB4qBvsf6jMS87Edg@mail.gmail.com
[2] https://lkml.kernel.org/r/7c459f26-13a6-a817-e508-b65b903a8378@suse.cz
This patch (of 4):
Since commit c33d6c06f6 ("mm, page_alloc: avoid looking up the first
zone in a zonelist twice") we have a wrong check for NULL preferred_zone,
which can theoretically happen due to concurrent cpuset modification. We
check the zoneref pointer which is never NULL and we should check the zone
pointer. Also document this in first_zones_zonelist() comment per Michal
Hocko.
Fixes: c33d6c06f6 ("mm, page_alloc: avoid looking up the first zone in a zonelist twice")
Link: http://lkml.kernel.org/r/20170120103843.24587-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Ganapatrao Kulkarni <gpkulkarni@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 73e64c51af ("mm, compaction: allow compaction for GFP_NOFS
requests") changed compation to skip FS pages if not explicitly allowed
to touch them, but missed to update the CMA compact_control.
This leads to a very high isolation failure rate, crippling performance
of CMA even on a lightly loaded system. Re-allow CMA to compact FS
pages by setting the correct GFP flags, restoring CMA behavior and
performance to the kernel 4.9 level.
Fixes: 73e64c51af (mm, compaction: allow compaction for GFP_NOFS requests)
Link: http://lkml.kernel.org/r/20170113115155.24335-1-l.stach@pengutronix.de
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch does two things.
First it goes through and renames the __page_frag prefixed functions to
__page_frag_cache so that we can be clear that we are draining or
refilling the cache, not the frags themselves.
Second we drop the order parameter from __page_frag_cache_drain since we
don't actually need to pass it since all fragments are either order 0 or
must be a compound page.
Link: http://lkml.kernel.org/r/20170104023954.13451.5678.stgit@localhost.localdomain
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Page fragment updates", v4.
This patch series takes care of a few cleanups for the page fragments
API.
First we do some renames so that things are much more consistent. First
we move the page_frag_ portion of the name to the front of the functions
names. Secondly we split out the cache specific functions from the
other page fragment functions by adding the word "cache" to the name.
Finally I added a bit of documentation that will hopefully help to
explain some of this. I plan to revisit this later as we get things
more ironed out in the near future with the changes planned for the DMA
setup to support eXpress Data Path.
This patch (of 3):
This patch renames the page frag functions to be more consistent with
other APIs. Specifically we place the name page_frag first in the name
and then have either an alloc or free call name that we append as the
suffix. This makes it a bit clearer in terms of naming.
In addition we drop the leading double underscores since we are
technically no longer a backing interface and instead the front end that
is called from the networking APIs.
Link: http://lkml.kernel.org/r/20170104023854.13451.67390.stgit@localhost.localdomain
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VM_BUG_ON() check in move_freepages() checks whether the node id of
a page matches the node id of its zone. However, it does this before
having checked whether the struct page pointer refers to a valid struct
page to begin with. This is guaranteed in most cases, but may not be
the case if CONFIG_HOLES_IN_ZONE=y.
So reorder the VM_BUG_ON() with the pfn_valid_within() check.
Link: http://lkml.kernel.org/r/1481706707-6211-2-git-send-email-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Hanjun Guo <hanjun.guo@linaro.org>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Robert Richter <rrichter@cavium.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The flag was introduced by commit 78afd5612d ("mm: add
__GFP_OTHER_NODE flag") to allow proper accounting of remote node
allocations done by kernel daemons on behalf of a process - e.g.
khugepaged.
After "mm: fix remote numa hits statistics" we do not need and actually
use the flag so we can safely remove it because all allocations which
are satisfied from their "home" node are accounted properly.
[mhocko@suse.com: fix build]
Link: http://lkml.kernel.org/r/20170106122225.GK5556@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170102153057.9451-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jia He has noticed that commit b9f00e147f ("mm, page_alloc: reduce
branches in zone_statistics") has an unintentional side effect that
remote node allocation requests are accounted as NUMA_MISS rathat than
NUMA_HIT and NUMA_OTHER if such a request doesn't use __GFP_OTHER_NODE.
There are many of these potentially because the flag is used very rarely
while we have many users of __alloc_pages_node.
Fix this by simply ignoring __GFP_OTHER_NODE (it can be removed in a
follow up patch) and treat all allocations that were satisfied from the
preferred zone's node as NUMA_HITS because this is the same node we
requested the allocation from in most cases. If this is not the local
node then we just account it as NUMA_OTHER rather than NUMA_LOCAL.
One downsize would be that an allocation request for a node which is
outside of the mempolicy nodemask would be reported as a hit which is a
bit weird but that was the case before b9f00e147f already.
Fixes: b9f00e147f ("mm, page_alloc: reduce branches in zone_statistics")
Link: http://lkml.kernel.org/r/20170102153057.9451-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Jia He <hejianet@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz> # with cbmc[1] superpowers
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a function that allows us to batch free a page that has multiple
references outstanding. Specifically this function can be used to drop
a page being used in the page frag alloc cache. With this drivers can
make use of functionality similar to the page frag alloc cache without
having to do any workarounds for the fact that there is no function that
frees multiple references.
Link: http://lkml.kernel.org/r/20161110113606.76501.70752.stgit@ahduyck-blue-test.jf.intel.com
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no>
Cc: Helge Deller <deller@gmx.de>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Keguang Zhang <keguang.zhang@gmail.com>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Tobias Klauser <tklauser@distanz.ch>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge updates from Andrew Morton:
- various misc bits
- most of MM (quite a lot of MM material is awaiting the merge of
linux-next dependencies)
- kasan
- printk updates
- procfs updates
- MAINTAINERS
- /lib updates
- checkpatch updates
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (123 commits)
init: reduce rootwait polling interval time to 5ms
binfmt_elf: use vmalloc() for allocation of vma_filesz
checkpatch: don't emit unified-diff error for rename-only patches
checkpatch: don't check c99 types like uint8_t under tools
checkpatch: avoid multiple line dereferences
checkpatch: don't check .pl files, improve absolute path commit log test
scripts/checkpatch.pl: fix spelling
checkpatch: don't try to get maintained status when --no-tree is given
lib/ida: document locking requirements a bit better
lib/rbtree.c: fix typo in comment of ____rb_erase_color
lib/Kconfig.debug: make CONFIG_STRICT_DEVMEM depend on CONFIG_DEVMEM
MAINTAINERS: add drm and drm/i915 irc channels
MAINTAINERS: add "C:" for URI for chat where developers hang out
MAINTAINERS: add drm and drm/i915 bug filing info
MAINTAINERS: add "B:" for URI where to file bugs
get_maintainer: look for arbitrary letter prefixes in sections
printk: add Kconfig option to set default console loglevel
printk/sound: handle more message headers
printk/btrfs: handle more message headers
printk/kdb: handle more message headers
...
Pull smp hotplug updates from Thomas Gleixner:
"This is the final round of converting the notifier mess to the state
machine. The removal of the notifiers and the related infrastructure
will happen around rc1, as there are conversions outstanding in other
trees.
The whole exercise removed about 2000 lines of code in total and in
course of the conversion several dozen bugs got fixed. The new
mechanism allows to test almost every hotplug step standalone, so
usage sites can exercise all transitions extensively.
There is more room for improvement, like integrating all the
pointlessly different architecture mechanisms of synchronizing,
setting cpus online etc into the core code"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
tracing/rb: Init the CPU mask on allocation
soc/fsl/qbman: Convert to hotplug state machine
soc/fsl/qbman: Convert to hotplug state machine
zram: Convert to hotplug state machine
KVM/PPC/Book3S HV: Convert to hotplug state machine
arm64/cpuinfo: Convert to hotplug state machine
arm64/cpuinfo: Make hotplug notifier symmetric
mm/compaction: Convert to hotplug state machine
iommu/vt-d: Convert to hotplug state machine
mm/zswap: Convert pool to hotplug state machine
mm/zswap: Convert dst-mem to hotplug state machine
mm/zsmalloc: Convert to hotplug state machine
mm/vmstat: Convert to hotplug state machine
mm/vmstat: Avoid on each online CPU loops
mm/vmstat: Drop get_online_cpus() from init_cpu_node_state/vmstat_cpu_dead()
tracing/rb: Convert to hotplug state machine
oprofile/nmi timer: Convert to hotplug state machine
net/iucv: Use explicit clean up labels in iucv_init()
x86/pci/amd-bus: Convert to hotplug state machine
x86/oprofile/nmi: Convert to hotplug state machine
...
Vlastimil Babka pointed out that commit 479f854a20 ("mm, page_alloc:
defer debugging checks of pages allocated from the PCP") will allow the
per-cpu list counter to be out of sync with the per-cpu list contents if
a struct page is corrupted.
The consequence is an infinite loop if the per-cpu lists get fully
drained by free_pcppages_bulk because all the lists are empty but the
count is positive. The infinite loop occurs here
do {
batch_free++;
if (++migratetype == MIGRATE_PCPTYPES)
migratetype = 0;
list = &pcp->lists[migratetype];
} while (list_empty(list));
What the user sees is a bad page warning followed by a soft lockup with
interrupts disabled in free_pcppages_bulk().
This patch keeps the accounting in sync.
Fixes: 479f854a20 ("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
Link: http://lkml.kernel.org/r/20161202112951.23346-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org> [4.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, unreserve_highatomic_pageblock bails out if it found
highatomic pageblock regardless of really moving free pages from the one
so that it could mitigate unreserve logic's goal which saves OOM of a
process.
This patch makes unreserve functions bail out only if it moves some
pages out of !highatomic free list to avoid such false positive.
Another potential problem is that by race between page freeing and
reserve highatomic function, pages could be in highatomic free list even
though the pageblock is !high atomic migratetype. In that case,
unreserve_highatomic_pageblock can be void if count of highatomic
reserve is less than pageblock_nr_pages. We could solve it simply via
draining all of reserved pages before the OOM. It would have a
safeguard role to exhuast reserved pages before converging to OOM.
Link: http://lkml.kernel.org/r/1476259429-18279-5-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is race between page freeing and unreserved highatomic.
CPU 0 CPU 1
free_hot_cold_page
mt = get_pfnblock_migratetype
set_pcppage_migratetype(page, mt)
unreserve_highatomic_pageblock
spin_lock_irqsave(&zone->lock)
move_freepages_block
set_pageblock_migratetype(page)
spin_unlock_irqrestore(&zone->lock)
free_pcppages_bulk
__free_one_page(mt) <- mt is stale
By above race, a page on CPU 0 could go non-highorderatomic free list
since the pageblock's type is changed. By that, unreserve logic of
highorderatomic can decrease reserved count on a same pageblock severak
times and then it will make mismatch between nr_reserved_highatomic and
the number of reserved pageblock.
So, this patch verifies whether the pageblock is highatomic or not and
decrease the count only if the pageblock is highatomic.
Link: http://lkml.kernel.org/r/1476259429-18279-3-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "use up highorder free pages before OOM", v3.
I got OOM report from production team with v4.4 kernel. It had enough
free memory but failed to allocate GFP_KERNEL order-0 page and finally
encountered OOM kill. It occured during QA process which launches
several apps, switching and so on. It happned rarely. IOW, In normal
situation, it was not a problem but if we are unluck so that several
apps uses peak memory at the same time, it can happen. If we manage to
pass the phase, the system can go working well.
I could reproduce it with my test(memory spike easily. Look at below.
The reason is free pages(19M) of DMA32 zone are reserved for
HIGHORDERATOMIC and doesn't unreserved before the OOM.
balloon invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), order=0, oom_score_adj=0
balloon cpuset=/ mems_allowed=0
CPU: 1 PID: 8473 Comm: balloon Tainted: G W OE 4.8.0-rc7-00219-g3f74c9559583-dirty #3161
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
dump_stack+0x63/0x90
dump_header+0x5c/0x1ce
oom_kill_process+0x22e/0x400
out_of_memory+0x1ac/0x210
__alloc_pages_nodemask+0x101e/0x1040
handle_mm_fault+0xa0a/0xbf0
__do_page_fault+0x1dd/0x4d0
trace_do_page_fault+0x43/0x130
do_async_page_fault+0x1a/0xa0
async_page_fault+0x28/0x30
Mem-Info:
active_anon:383949 inactive_anon:106724 isolated_anon:0
active_file:15 inactive_file:44 isolated_file:0
unevictable:0 dirty:0 writeback:24 unstable:0
slab_reclaimable:2483 slab_unreclaimable:3326
mapped:0 shmem:0 pagetables:1906 bounce:0
free:6898 free_pcp:291 free_cma:0
Node 0 active_anon:1535796kB inactive_anon:426896kB active_file:60kB inactive_file:176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:0kB dirty:0kB writeback:96kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1418 all_unreclaimable? no
DMA free:8188kB min:44kB low:56kB high:68kB active_anon:7648kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:20kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 1952 1952 1952
DMA32 free:19404kB min:5628kB low:7624kB high:9620kB active_anon:1528148kB inactive_anon:426896kB active_file:60kB inactive_file:420kB unevictable:0kB writepending:96kB present:2080640kB managed:2030092kB mlocked:0kB slab_reclaimable:9932kB slab_unreclaimable:13284kB kernel_stack:2496kB pagetables:7624kB bounce:0kB free_pcp:900kB local_pcp:112kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 2*4096kB (H) = 8192kB
DMA32: 7*4kB (H) 8*8kB (H) 30*16kB (H) 31*32kB (H) 14*64kB (H) 9*128kB (H) 2*256kB (H) 2*512kB (H) 4*1024kB (H) 5*2048kB (H) 0*4096kB = 19484kB
51131 total pagecache pages
50795 pages in swap cache
Swap cache stats: add 3532405601, delete 3532354806, find 124289150/1822712228
Free swap = 8kB
Total swap = 255996kB
524158 pages RAM
0 pages HighMem/MovableOnly
12658 pages reserved
0 pages cma reserved
0 pages hwpoisoned
Another example exceeded the limit by the race is
in:imklog: page allocation failure: order:0, mode:0x2280020(GFP_ATOMIC|__GFP_NOTRACK)
CPU: 0 PID: 476 Comm: in:imklog Tainted: G E 4.8.0-rc7-00217-g266ef83c51e5-dirty #3135
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
dump_stack+0x63/0x90
warn_alloc_failed+0xdb/0x130
__alloc_pages_nodemask+0x4d6/0xdb0
new_slab+0x339/0x490
___slab_alloc.constprop.74+0x367/0x480
__slab_alloc.constprop.73+0x20/0x40
__kmalloc+0x1a4/0x1e0
alloc_indirect.isra.14+0x1d/0x50
virtqueue_add_sgs+0x1c4/0x470
__virtblk_add_req+0xae/0x1f0
virtio_queue_rq+0x12d/0x290
__blk_mq_run_hw_queue+0x239/0x370
blk_mq_run_hw_queue+0x8f/0xb0
blk_mq_insert_requests+0x18c/0x1a0
blk_mq_flush_plug_list+0x125/0x140
blk_flush_plug_list+0xc7/0x220
blk_finish_plug+0x2c/0x40
__do_page_cache_readahead+0x196/0x230
filemap_fault+0x448/0x4f0
ext4_filemap_fault+0x36/0x50
__do_fault+0x75/0x140
handle_mm_fault+0x84d/0xbe0
__do_page_fault+0x1dd/0x4d0
trace_do_page_fault+0x43/0x130
do_async_page_fault+0x1a/0xa0
async_page_fault+0x28/0x30
Mem-Info:
active_anon:363826 inactive_anon:121283 isolated_anon:32
active_file:65 inactive_file:152 isolated_file:0
unevictable:0 dirty:0 writeback:46 unstable:0
slab_reclaimable:2778 slab_unreclaimable:3070
mapped:112 shmem:0 pagetables:1822 bounce:0
free:9469 free_pcp:231 free_cma:0
Node 0 active_anon:1455304kB inactive_anon:485132kB active_file:260kB inactive_file:608kB unevictable:0kB isolated(anon):128kB isolated(file):0kB mapped:448kB dirty:0kB writeback:184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:13641 all_unreclaimable? no
DMA free:7748kB min:44kB low:56kB high:68kB active_anon:7944kB inactive_anon:104kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:108kB kernel_stack:0kB pagetables:4kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 1952 1952 1952
DMA32 free:30128kB min:5628kB low:7624kB high:9620kB active_anon:1447360kB inactive_anon:485028kB active_file:260kB inactive_file:608kB unevictable:0kB writepending:184kB present:2080640kB managed:2030132kB mlocked:0kB slab_reclaimable:11112kB slab_unreclaimable:12172kB kernel_stack:2400kB pagetables:7284kB bounce:0kB free_pcp:924kB local_pcp:72kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 7*4kB (UE) 3*8kB (UH) 1*16kB (M) 0*32kB 2*64kB (U) 1*128kB (M) 1*256kB (U) 0*512kB 1*1024kB (U) 1*2048kB (U) 1*4096kB (H) = 7748kB
DMA32: 10*4kB (H) 3*8kB (H) 47*16kB (H) 38*32kB (H) 5*64kB (H) 1*128kB (H) 2*256kB (H) 3*512kB (H) 3*1024kB (H) 3*2048kB (H) 4*4096kB (H) = 30128kB
2775 total pagecache pages
2536 pages in swap cache
Swap cache stats: add 206786828, delete 206784292, find 7323106/106686077
Free swap = 108744kB
Total swap = 255996kB
524158 pages RAM
0 pages HighMem/MovableOnly
12648 pages reserved
0 pages cma reserved
0 pages hwpoisoned
During the investigation, I found some problems with highatomic so this
patch aims to solve the problems and the final goal is to unreserve
every highatomic free pages before the OOM kill.
This patch (of 4):
In page freeing path, migratetype is racy so that a highorderatomic page
could free into non-highorderatomic free list. If that page is
allocated, VM can change the pageblock from higorderatomic to something.
In that case, highatomic pageblock accounting is broken so it doesn't
work(e.g., VM cannot reserve highorderatomic pageblocks any more
although it doesn't reach 1% limit).
So, this patch prohibits the changing from highatomic to other type.
It's no problem because MIGRATE_HIGHATOMIC is not listed in fallback
array so stealing will only happen due to unexpected races which is
really rare. Also, such prohibiting keeps highatomic pageblock more
longer so it would be better for highorderatomic page allocation.
Link: http://lkml.kernel.org/r/1476259429-18279-2-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>