This allows guests to have a different timebase origin from the host.
This is needed for migration, where a guest can migrate from one host
to another and the two hosts might have a different timebase origin.
However, the timebase seen by the guest must not go backwards, and
should go forwards only by a small amount corresponding to the time
taken for the migration.
Therefore this provides a new per-vcpu value accessed via the one_reg
interface using the new KVM_REG_PPC_TB_OFFSET identifier. This value
defaults to 0 and is not modified by KVM. On entering the guest, this
value is added onto the timebase, and on exiting the guest, it is
subtracted from the timebase.
This is only supported for recent POWER hardware which has the TBU40
(timebase upper 40 bits) register. Writing to the TBU40 register only
alters the upper 40 bits of the timebase, leaving the lower 24 bits
unchanged. This provides a way to modify the timebase for guest
migration without disturbing the synchronization of the timebase
registers across CPU cores. The kernel rounds up the value given
to a multiple of 2^24.
Timebase values stored in KVM structures (struct kvm_vcpu, struct
kvmppc_vcore, etc.) are stored as host timebase values. The timebase
values in the dispatch trace log need to be guest timebase values,
however, since that is read directly by the guest. This moves the
setting of vcpu->arch.dec_expires on guest exit to a point after we
have restored the host timebase so that vcpu->arch.dec_expires is a
host timebase value.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This reserves space in get/set_one_reg ioctl for the extra guest state
needed for POWER8. It doesn't implement these at all, it just reserves
them so that the ABI is defined now.
A few things to note here:
- This add *a lot* state for transactional memory. TM suspend mode,
this is unavoidable, you can't simply roll back all transactions and
store only the checkpointed state. I've added this all to
get/set_one_reg (including GPRs) rather than creating a new ioctl
which returns a struct kvm_regs like KVM_GET_REGS does. This means we
if we need to extract the TM state, we are going to need a bucket load
of IOCTLs. Hopefully most of the time this will not be needed as we
can look at the MSR to see if TM is active and only grab them when
needed. If this becomes a bottle neck in future we can add another
ioctl to grab all this state in one go.
- The TM state is offset by 0x80000000.
- For TM, I've done away with VMX and FP and created a single 64x128 bit
VSX register space.
- I've left a space of 1 (at 0x9c) since Paulus needs to add a value
which applies to POWER7 as well.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQEcBAABAgAGBQJSXeGaAAoJEEtpOizt6ddyeyYH/AnWdKGUELjxC0lIBDkTitnD
znyzSxqXG6z1Z6d+EYI3XCL1eB3dtyOBSJsZj45adG4HXGkCmGqosgDzivGO6GcI
yhjYgXGhP8ZvIwky1ijbVQODaEE70SEYqKwyCpU4rLJw2uRkbfRaxTrpgnusL8Bg
RG37uaOS/sasLoNxCe5GEUjm8BFGbvZGVAjcL7yJTPBw5qd7GYBxndFSTILa2iRQ
ikoBD0bUVhoaBUqSNQenoNllUBwDpFJF1HiEXKMJkUIxX/FggrSvRp8A/MAWDBw0
6Ef1P8Pt/hMfMQpOOeu8QFWM2s+smh2rTkO/O9mqi/tSvEf5YcZHMAl48B8OR88=
=tJ2u
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-3.13-1' of git://git.linaro.org/people/cdall/linux-kvm-arm into next
Updates for KVM/ARM including cpu=host and Cortex-A7 support
Some strange character leaped into the documentation, which makes
git-send-email behave quite strangely. Get rid of this before it bites
anyone else.
Cc: Anup Patel <anup.patel@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
To implement CPU=Host we have added KVM_ARM_PREFERRED_TARGET
vm ioctl which provides information to user space required for
creating VCPU matching underlying Host.
This patch adds info related to this new KVM_ARM_PREFERRED_TARGET
vm ioctl in the KVM API documentation.
Signed-off-by: Anup Patel <anup.patel@linaro.org>
Signed-off-by: Pranavkumar Sawargaonkar <pranavkumar@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
In commit e935b8372c ("KVM: Convert kvm_lock to raw_spinlock"),
the kvm_lock was made a raw lock. However, the kvm mmu_shrink()
function tries to grab the (non-raw) mmu_lock within the scope of
the raw locked kvm_lock being held. This leads to the following:
BUG: sleeping function called from invalid context at kernel/rtmutex.c:659
in_atomic(): 1, irqs_disabled(): 0, pid: 55, name: kswapd0
Preemption disabled at:[<ffffffffa0376eac>] mmu_shrink+0x5c/0x1b0 [kvm]
Pid: 55, comm: kswapd0 Not tainted 3.4.34_preempt-rt
Call Trace:
[<ffffffff8106f2ad>] __might_sleep+0xfd/0x160
[<ffffffff817d8d64>] rt_spin_lock+0x24/0x50
[<ffffffffa0376f3c>] mmu_shrink+0xec/0x1b0 [kvm]
[<ffffffff8111455d>] shrink_slab+0x17d/0x3a0
[<ffffffff81151f00>] ? mem_cgroup_iter+0x130/0x260
[<ffffffff8111824a>] balance_pgdat+0x54a/0x730
[<ffffffff8111fe47>] ? set_pgdat_percpu_threshold+0xa7/0xd0
[<ffffffff811185bf>] kswapd+0x18f/0x490
[<ffffffff81070961>] ? get_parent_ip+0x11/0x50
[<ffffffff81061970>] ? __init_waitqueue_head+0x50/0x50
[<ffffffff81118430>] ? balance_pgdat+0x730/0x730
[<ffffffff81060d2b>] kthread+0xdb/0xe0
[<ffffffff8106e122>] ? finish_task_switch+0x52/0x100
[<ffffffff817e1e94>] kernel_thread_helper+0x4/0x10
[<ffffffff81060c50>] ? __init_kthread_worker+0x
After the previous patch, kvm_lock need not be a raw spinlock anymore,
so change it back.
Reported-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: kvm@vger.kernel.org
Cc: gleb@redhat.com
Cc: jan.kiszka@siemens.com
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The VM list need not be protected by a raw spinlock. Separate the
two so that kvm_lock can be made non-raw.
Cc: kvm@vger.kernel.org
Cc: gleb@redhat.com
Cc: jan.kiszka@siemens.com
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Thanks Michael S Tsirkin for rewriting the description and suggestions.
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
This patch documents the kvm->srcu lock (using the information from
a mail which has been posted by Marcelo Tosatti to the kvm mailing
list some months ago, see the following URL for details:
http://www.mail-archive.com/kvm@vger.kernel.org/msg90040.html )
Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull trivial tree from Jiri Kosina:
"The usual trivial updates all over the tree -- mostly typo fixes and
documentation updates"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (52 commits)
doc: Documentation/cputopology.txt fix typo
treewide: Convert retrun typos to return
Fix comment typo for init_cma_reserved_pageblock
Documentation/trace: Correcting and extending tracepoint documentation
mm/hotplug: fix a typo in Documentation/memory-hotplug.txt
power: Documentation: Update s2ram link
doc: fix a typo in Documentation/00-INDEX
Documentation/printk-formats.txt: No casts needed for u64/s64
doc: Fix typo "is is" in Documentations
treewide: Fix printks with 0x%#
zram: doc fixes
Documentation/kmemcheck: update kmemcheck documentation
doc: documentation/hwspinlock.txt fix typo
PM / Hibernate: add section for resume options
doc: filesystems : Fix typo in Documentations/filesystems
scsi/megaraid fixed several typos in comments
ppc: init_32: Fix error typo "CONFIG_START_KERNEL"
treewide: Add __GFP_NOWARN to k.alloc calls with v.alloc fallbacks
page_isolation: Fix a comment typo in test_pages_isolated()
doc: fix a typo about irq affinity
...
Pull trivial tree updates from Jiri Kosina:
"The usual stuff from trivial tree"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (34 commits)
treewide: relase -> release
Documentation/cgroups/memory.txt: fix stat file documentation
sysctl/net.txt: delete reference to obsolete 2.4.x kernel
spinlock_api_smp.h: fix preprocessor comments
treewide: Fix typo in printk
doc: device tree: clarify stuff in usage-model.txt.
open firmware: "/aliasas" -> "/aliases"
md: bcache: Fixed a typo with the word 'arithmetic'
irq/generic-chip: fix a few kernel-doc entries
frv: Convert use of typedef ctl_table to struct ctl_table
sgi: xpc: Convert use of typedef ctl_table to struct ctl_table
doc: clk: Fix incorrect wording
Documentation/arm/IXP4xx fix a typo
Documentation/networking/ieee802154 fix a typo
Documentation/DocBook/media/v4l fix a typo
Documentation/video4linux/si476x.txt fix a typo
Documentation/virtual/kvm/api.txt fix a typo
Documentation/early-userspace/README fix a typo
Documentation/video4linux/soc-camera.txt fix a typo
lguest: fix CONFIG_PAE -> CONFIG_x86_PAE in comment
...
On the x86 side, there are some optimizations and documentation updates.
The big ARM/KVM change for 3.11, support for AArch64, will come through
Catalin Marinas's tree. s390 and PPC have misc cleanups and bugfixes.
There is a conflict due to "s390/pgtable: fix ipte notify bit" having
entered 3.10 through Martin Schwidefsky's s390 tree. This pull request
has additional changes on top, so this tree's version is the correct one.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.13 (GNU/Linux)
iQIcBAABAgAGBQJR0oU6AAoJEBvWZb6bTYbynnsP/RSUrrHrA8Wu1tqVfAKu+1y5
6OIihqZ9x11/YMaNofAfv86jqxFu0/j7CzMGphNdjzujqKI+Q1tGe7oiVCmKzoG+
UvSctWsz0lpllgBtnnrm5tcfmG6rrddhLtpA7m320+xCVx8KV5P4VfyHZEU+Ho8h
ziPmb2mAQ65gBNX6nLHEJ3ITTgad6gt4NNbrKIYpyXuWZQJypzaRqT/vpc4md+Ed
dCebMXsL1xgyb98EcnOdrWH1wV30MfucR7IpObOhXnnMKeeltqAQPvaOlKzZh4dK
+QfxJfdRZVS0cepcxzx1Q2X3dgjoKQsHq1nlIyz3qu1vhtfaqBlixLZk0SguZ/R9
1S1YqucZiLRO57RD4q0Ak5oxwobu18ZoqJZ6nledNdWwDe8bz/W2wGAeVty19ky0
qstBdM9jnwXrc0qrVgZp3+s5dsx3NAm/KKZBoq4sXiDLd/yBzdEdWIVkIrU3X9wU
3X26wOmBxtsB7so/JR7ciTsQHelmLicnVeXohAEP9CjIJffB81xVXnXs0P0SYuiQ
RzbSCwjPzET4JBOaHWT0Dhv0DTS/EaI97KzlN32US3Bn3WiLlS1oDCoPFoaLqd2K
LxQMsXS8anAWxFvexfSuUpbJGPnKSidSQoQmJeMGBa9QhmZCht3IL16/Fb641ToN
xBohzi49L9FDbpOnTYfz
=1zpG
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"On the x86 side, there are some optimizations and documentation
updates. The big ARM/KVM change for 3.11, support for AArch64, will
come through Catalin Marinas's tree. s390 and PPC have misc cleanups
and bugfixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (87 commits)
KVM: PPC: Ignore PIR writes
KVM: PPC: Book3S PR: Invalidate SLB entries properly
KVM: PPC: Book3S PR: Allow guest to use 1TB segments
KVM: PPC: Book3S PR: Don't keep scanning HPTEG after we find a match
KVM: PPC: Book3S PR: Fix invalidation of SLB entry 0 on guest entry
KVM: PPC: Book3S PR: Fix proto-VSID calculations
KVM: PPC: Guard doorbell exception with CONFIG_PPC_DOORBELL
KVM: Fix RTC interrupt coalescing tracking
kvm: Add a tracepoint write_tsc_offset
KVM: MMU: Inform users of mmio generation wraparound
KVM: MMU: document fast invalidate all mmio sptes
KVM: MMU: document fast invalidate all pages
KVM: MMU: document fast page fault
KVM: MMU: document mmio page fault
KVM: MMU: document write_flooding_count
KVM: MMU: document clear_spte_count
KVM: MMU: drop kvm_mmu_zap_mmio_sptes
KVM: MMU: init kvm generation close to mmio wrap-around value
KVM: MMU: add tracepoint for check_mmio_spte
KVM: MMU: fast invalidate all mmio sptes
...
Document it to Documentation/virtual/kvm/mmu.txt
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Document it to Documentation/virtual/kvm/mmu.txt
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Document fast page fault to Documentation/virtual/kvm/mmu.txt
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Document it to Documentation/virtual/kvm/mmu.txt
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Document it to Documentation/virtual/kvm/mmu.txt
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Update the document to match the current reverse mapping of
parent_pte
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unsurprisingly, the arm64 userspace API is extremely similar to
the 32bit one, the only significant difference being the ONE_REG
register mapping.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Corrected the word appropariate to appropriate.
Signed-off-by: Stefan Huber <steffhip@googlemail.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
* 'kvm-arm-for-3.10' of git://github.com/columbia/linux-kvm-arm:
ARM: KVM: iterate over all CPUs for CPU compatibility check
KVM: ARM: Fix spelling in error message
ARM: KVM: define KVM_ARM_MAX_VCPUS unconditionally
KVM: ARM: Fix API documentation for ONE_REG encoding
ARM: KVM: promote vfp_host pointer to generic host cpu context
ARM: KVM: add architecture specific hook for capabilities
ARM: KVM: perform HYP initilization for hotplugged CPUs
ARM: KVM: switch to a dual-step HYP init code
ARM: KVM: rework HYP page table freeing
ARM: KVM: enforce maximum size for identity mapped code
ARM: KVM: move to a KVM provided HYP idmap
ARM: KVM: fix HYP mapping limitations around zero
ARM: KVM: simplify HYP mapping population
ARM: KVM: arch_timer: use symbolic constants
ARM: KVM: add support for minimal host vs guest profiling
This adds the API for userspace to instantiate an XICS device in a VM
and connect VCPUs to it. The API consists of a new device type for
the KVM_CREATE_DEVICE ioctl, a new capability KVM_CAP_IRQ_XICS, which
functions similarly to KVM_CAP_IRQ_MPIC, and the KVM_IRQ_LINE ioctl,
which is used to assert and deassert interrupt inputs of the XICS.
The XICS device has one attribute group, KVM_DEV_XICS_GRP_SOURCES.
Each attribute within this group corresponds to the state of one
interrupt source. The attribute number is the same as the interrupt
source number.
This does not support irq routing or irqfd yet.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
The default routes were removed from the code during patchset
respinning, but were not removed from the documentation.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Unless I'm mistaken, the size field was encoded 4 bits off and a wrong
value was used for 64-bit FP registers.
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
This adds the ability for userspace to save and restore the state
of the XICS interrupt presentation controllers (ICPs) via the
KVM_GET/SET_ONE_REG interface. Since there is one ICP per vcpu, we
simply define a new 64-bit register in the ONE_REG space for the ICP
state. The state includes the CPU priority setting, the pending IPI
priority, and the priority and source number of any pending external
interrupt.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
For pseries machine emulation, in order to move the interrupt
controller code to the kernel, we need to intercept some RTAS
calls in the kernel itself. This adds an infrastructure to allow
in-kernel handlers to be registered for RTAS services by name.
A new ioctl, KVM_PPC_RTAS_DEFINE_TOKEN, then allows userspace to
associate token values with those service names. Then, when the
guest requests an RTAS service with one of those token values, it
will be handled by the relevant in-kernel handler rather than being
passed up to userspace as at present.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix warning]
Signed-off-by: Alexander Graf <agraf@suse.de>
Now that all the irq routing and irqfd pieces are generic, we can expose
real irqchip support to all of KVM's internal helpers.
This allows us to use irqfd with the in-kernel MPIC.
Signed-off-by: Alexander Graf <agraf@suse.de>
Enabling this capability connects the vcpu to the designated in-kernel
MPIC. Using explicit connections between vcpus and irqchips allows
for flexibility, but the main benefit at the moment is that it
simplifies the code -- KVM doesn't need vm-global state to remember
which MPIC object is associated with this vm, and it doesn't need to
care about ordering between irqchip creation and vcpu creation.
Signed-off-by: Scott Wood <scottwood@freescale.com>
[agraf: add stub functions for kvmppc_mpic_{dis,}connect_vcpu]
Signed-off-by: Alexander Graf <agraf@suse.de>
Hook the MPIC code up to the KVM interfaces, add locking, etc.
Signed-off-by: Scott Wood <scottwood@freescale.com>
[agraf: add stub function for kvmppc_mpic_set_epr, non-booke, 64bit]
Signed-off-by: Alexander Graf <agraf@suse.de>
Currently, devices that are emulated inside KVM are configured in a
hardcoded manner based on an assumption that any given architecture
only has one way to do it. If there's any need to access device state,
it is done through inflexible one-purpose-only IOCTLs (e.g.
KVM_GET/SET_LAPIC). Defining new IOCTLs for every little thing is
cumbersome and depletes a limited numberspace.
This API provides a mechanism to instantiate a device of a certain
type, returning an ID that can be used to set/get attributes of the
device. Attributes may include configuration parameters (e.g.
register base address), device state, operational commands, etc. It
is similar to the ONE_REG API, except that it acts on devices rather
than vcpus.
Both device types and individual attributes can be tested without having
to create the device or get/set the attribute, without the need for
separately managing enumerated capabilities.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
EPTCFG register defined by E.PT is accessed unconditionally by Linux guests
in the presence of MAV 2.0. Emulate it now.
Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add support for TLBnPS registers available in MMU Architecture Version
(MAV) 2.0.
Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
MMU registers were exposed to user-space using sregs interface. Add them
to ONE_REG interface using kvmppc_get_one_reg/kvmppc_set_one_reg delegation
mechanism.
Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
If userspace wants to change some specific bits of TSR
(timer status register) then it uses GET/SET_SREGS ioctl interface.
So the steps will be:
i) user-space will make get ioctl,
ii) change TSR in userspace
iii) then make set ioctl.
It can happen that TSR gets changed by kernel after step i) and
before step iii).
To avoid this we have added below one_reg ioctls for oring and clearing
specific bits in TSR. This patch adds one registerface for:
1) setting specific bit in TSR (timer status register)
2) clearing specific bit in TSR (timer status register)
3) setting/getting the TCR register. There are cases where we want to only
change TCR and not TSR. Although we can uses SREGS without
KVM_SREGS_E_UPDATE_TSR flag but I think one reg is better. I am open
if someone feels we should use SREGS only here.
4) getting/setting TSR register
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Enhance KVM_IOEVENTFD with a new flag that allows to attach to virtio-ccw
devices on s390 via the KVM_VIRTIO_CCW_NOTIFY_BUS.
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
User space defines the model to emulate to a guest and should therefore
decide which addresses are used for both the virtual CPU interface
directly mapped in the guest physical address space and for the emulated
distributor interface, which is mapped in software by the in-kernel VGIC
support.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
On ARM some bits are specific to the model being emulated for the guest and
user space needs a way to tell the kernel about those bits. An example is mmio
device base addresses, where KVM must know the base address for a given device
to properly emulate mmio accesses within a certain address range or directly
map a device with virtualiation extensions into the guest address space.
We make this API ARM-specific as we haven't yet reached a consensus for a
generic API for all KVM architectures that will allow us to do something like
this.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
As Xiao pointed out, there are a few problems with it:
- kvm_arch_commit_memory_region() write protects the memory slot only
for GET_DIRTY_LOG when modifying the flags.
- FNAME(sync_page) uses the old spte value to set a new one without
checking KVM_MEM_READONLY flag.
Since we flush all shadow pages when creating a new slot, the simplest
fix is to disallow such problematic flag changes: this is safe because
no one is doing such things.
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Implement the PSCI specification (ARM DEN 0022A) to control
virtual CPUs being "powered" on or off.
PSCI/KVM is detected using the KVM_CAP_ARM_PSCI capability.
A virtual CPU can now be initialized in a "powered off" state,
using the KVM_ARM_VCPU_POWER_OFF feature flag.
The guest can use either SMC or HVC to execute a PSCI function.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
We use space #18 for floating point regs.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
The Cache Size Selection Register (CSSELR) selects the current Cache
Size ID Register (CCSIDR). You write which cache you are interested
in to CSSELR, and read the information out of CCSIDR.
Which cache numbers are valid is known by reading the Cache Level ID
Register (CLIDR).
To export this state to userspace, we add a KVM_REG_ARM_DEMUX
numberspace (17), which uses 8 bits to represent which register is
being demultiplexed (0 for CCSIDR), and the lower 8 bits to represent
this demultiplexing (in our case, the CSSELR value, which is 4 bits).
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
The following three ioctls are implemented:
- KVM_GET_REG_LIST
- KVM_GET_ONE_REG
- KVM_SET_ONE_REG
Now we have a table for all the cp15 registers, we can drive a generic
API.
The register IDs carry the following encoding:
ARM registers are mapped using the lower 32 bits. The upper 16 of that
is the register group type, or coprocessor number:
ARM 32-bit CP15 registers have the following id bit patterns:
0x4002 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
ARM 64-bit CP15 registers have the following id bit patterns:
0x4003 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
For futureproofing, we need to tell QEMU about the CP15 registers the
host lets the guest access.
It will need this information to restore a current guest on a future
CPU or perhaps a future KVM which allow some of these to be changed.
We use a separate table for these, as they're only for the userspace API.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
All interrupt injection is now based on the VM ioctl KVM_IRQ_LINE. This
works semantically well for the GIC as we in fact raise/lower a line on
a machine component (the gic). The IOCTL uses the follwing struct.
struct kvm_irq_level {
union {
__u32 irq; /* GSI */
__s32 status; /* not used for KVM_IRQ_LEVEL */
};
__u32 level; /* 0 or 1 */
};
ARM can signal an interrupt either at the CPU level, or at the in-kernel irqchip
(GIC), and for in-kernel irqchip can tell the GIC to use PPIs designated for
specific cpus. The irq field is interpreted like this:
bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
field: | irq_type | vcpu_index | irq_number |
The irq_type field has the following values:
- irq_type[0]: out-of-kernel GIC: irq_number 0 is IRQ, irq_number 1 is FIQ
- irq_type[1]: in-kernel GIC: SPI, irq_number between 32 and 1019 (incl.)
(the vcpu_index field is ignored)
- irq_type[2]: in-kernel GIC: PPI, irq_number between 16 and 31 (incl.)
The irq_number thus corresponds to the irq ID in as in the GICv2 specs.
This is documented in Documentation/kvm/api.txt.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Targets KVM support for Cortex A-15 processors.
Contains all the framework components, make files, header files, some
tracing functionality, and basic user space API.
Only supported core is Cortex-A15 for now.
Most functionality is in arch/arm/kvm/* or arch/arm/include/asm/kvm_*.h.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
We need to be able to read and write the contents of the EPR register
from user space.
This patch implements that logic through the ONE_REG API and declares
its (never implemented) SREGS counterpart as deprecated.
Signed-off-by: Alexander Graf <agraf@suse.de>
The External Proxy Facility in FSL BookE chips allows the interrupt
controller to automatically acknowledge an interrupt as soon as a
core gets its pending external interrupt delivered.
Today, user space implements the interrupt controller, so we need to
check on it during such a cycle.
This patch implements logic for user space to enable EPR exiting,
disable EPR exiting and EPR exiting itself, so that user space can
acknowledge an interrupt when an external interrupt has successfully
been delivered into the guest vcpu.
Signed-off-by: Alexander Graf <agraf@suse.de>
Reflect the uapi folder change in SREGS API documentation.
Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
Reviewed-by: Amos Kong <kongjianjun@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add a new capability, KVM_CAP_S390_CSS_SUPPORT, which will pass
intercepts for channel I/O instructions to userspace. Only I/O
instructions interacting with I/O interrupts need to be handled
in-kernel:
- TEST PENDING INTERRUPTION (tpi) dequeues and stores pending
interrupts entirely in-kernel.
- TEST SUBCHANNEL (tsch) dequeues pending interrupts in-kernel
and exits via KVM_EXIT_S390_TSCH to userspace for subchannel-
related processing.
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Reviewed-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Add support for injecting machine checks (only repressible
conditions for now).
This is a bit more involved than I/O interrupts, for these reasons:
- Machine checks come in both floating and cpu varieties.
- We don't have a bit for machine checks enabling, but have to use
a roundabout approach with trapping PSW changing instructions and
watching for opened machine checks.
Reviewed-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Add support for handling I/O interrupts (standard, subchannel-related
ones and rudimentary adapter interrupts).
The subchannel-identifying parameters are encoded into the interrupt
type.
I/O interrupts are floating, so they can't be injected on a specific
vcpu.
Reviewed-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Implement ONE_REG interface for EPCR register adding KVM_REG_PPC_EPCR to
the list of ONE_REG PPC supported registers.
Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
[agraf: remove HV dependency, use get/put_user]
Signed-off-by: Alexander Graf <agraf@suse.de>
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
All user space offloaded instruction emulation needs to reenter kvm
to produce consistent state again. Fix the section in the documentation
to mention all of them.
Signed-off-by: Alexander Graf <agraf@suse.de>
The PAPR paravirtualization interface lets guests register three
different types of per-vCPU buffer areas in its memory for communication
with the hypervisor. These are called virtual processor areas (VPAs).
Currently the hypercalls to register and unregister VPAs are handled
by KVM in the kernel, and userspace has no way to know about or save
and restore these registrations across a migration.
This adds "register" codes for these three areas that userspace can
use with the KVM_GET/SET_ONE_REG ioctls to see what addresses have
been registered, and to register or unregister them. This will be
needed for guest hibernation and migration, and is also needed so
that userspace can unregister them on reset (otherwise we corrupt
guest memory after reboot by writing to the VPAs registered by the
previous kernel).
The "register" for the VPA is a 64-bit value containing the address,
since the length of the VPA is fixed. The "registers" for the SLB
shadow buffer and dispatch trace log (DTL) are 128 bits long,
consisting of the guest physical address in the high (first) 64 bits
and the length in the low 64 bits.
This also fixes a bug where we were calling init_vpa unconditionally,
leading to an oops when unregistering the VPA.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This enables userspace to get and set all the guest floating-point
state using the KVM_[GS]ET_ONE_REG ioctls. The floating-point state
includes all of the traditional floating-point registers and the
FPSCR (floating point status/control register), all the VMX/Altivec
vector registers and the VSCR (vector status/control register), and
on POWER7, the vector-scalar registers (note that each FP register
is the high-order half of the corresponding VSR).
Most of these are implemented in common Book 3S code, except for VSX
on POWER7. Because HV and PR differ in how they store the FP and VSX
registers on POWER7, the code for these cases is not common. On POWER7,
the FP registers are the upper halves of the VSX registers vsr0 - vsr31.
PR KVM stores vsr0 - vsr31 in two halves, with the upper halves in the
arch.fpr[] array and the lower halves in the arch.vsr[] array, whereas
HV KVM on POWER7 stores the whole VSX register in arch.vsr[].
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix whitespace, vsx compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
This enables userspace to get and set various SPRs (special-purpose
registers) using the KVM_[GS]ET_ONE_REG ioctls. With this, userspace
can get and set all the SPRs that are part of the guest state, either
through the KVM_[GS]ET_REGS ioctls, the KVM_[GS]ET_SREGS ioctls, or
the KVM_[GS]ET_ONE_REG ioctls.
The SPRs that are added here are:
- DABR: Data address breakpoint register
- DSCR: Data stream control register
- PURR: Processor utilization of resources register
- SPURR: Scaled PURR
- DAR: Data address register
- DSISR: Data storage interrupt status register
- AMR: Authority mask register
- UAMOR: User authority mask override register
- MMCR0, MMCR1, MMCRA: Performance monitor unit control registers
- PMC1..PMC8: Performance monitor unit counter registers
In order to reduce code duplication between PR and HV KVM code, this
moves the kvm_vcpu_ioctl_[gs]et_one_reg functions into book3s.c and
centralizes the copying between user and kernel space there. The
registers that are handled differently between PR and HV, and those
that exist only in one flavor, are handled in kvmppc_[gs]et_one_reg()
functions that are specific to each flavor.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: minimal style fixes]
Signed-off-by: Alexander Graf <agraf@suse.de>
Patch to access the debug registers (IACx/DACx) using ONE_REG api
was sent earlier. But that missed the respective documentation.
Also corrected the index number referencing in section 4.69
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
And add a new flag definition in kvm_ppc_pvinfo to indicate
whether the host supports the EV_IDLE hcall.
Signed-off-by: Liu Yu <yu.liu@freescale.com>
[stuart.yoder@freescale.com: cleanup,fixes for conditions allowing idle]
Signed-off-by: Stuart Yoder <stuart.yoder@freescale.com>
[agraf: fix typo]
Signed-off-by: Alexander Graf <agraf@suse.de>
To emulate level triggered interrupts, add a resample option to
KVM_IRQFD. When specified, a new resamplefd is provided that notifies
the user when the irqchip has been resampled by the VM. This may, for
instance, indicate an EOI. Also in this mode, posting of an interrupt
through an irqfd only asserts the interrupt. On resampling, the
interrupt is automatically de-asserted prior to user notification.
This enables level triggered interrupts to be posted and re-enabled
from vfio with no userspace intervention.
All resampling irqfds can make use of a single irq source ID, so we
reserve a new one for this interface.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
- mention that system time needs to be added to wallclock time
- positive tsc_shift means left shift, not right
- mention additional 32bit right shift
Signed-off-by: Stefan Fritsch <sf@sfritsch.de>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
In current code, if we map a readonly memory space from host to guest
and the page is not currently mapped in the host, we will get a fault
pfn and async is not allowed, then the vm will crash
We introduce readonly memory region to map ROM/ROMD to the guest, read access
is happy for readonly memslot, write access on readonly memslot will cause
KVM_EXIT_MMIO exit
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Thanks Alex for KVM_HC_FEATURES inputs and Jan for VAPIC_POLL_IRQ,
and Peter (HPA) for suggesting hypercall ABI addition.
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJQDRDNAAoJEI7yEDeUysxlkl8P/3C2AHx2webOU8sVzhfU6ONZ
ZoGevwBjyZIeJEmiWVpFTTEew1l0PXtpyOocXGNUXIddVnhXTQOKr/Scj4uFbmx8
ROqgK8NSX9+xOGrBPCoN7SlJkmp+m6uYtwYkl2SGnsEVLWMKkc7J7oqmszCcTQvN
UXMf7G47/Ul2NUSBdv4Yvizhl4kpvWxluiweDw3E/hIQKN0uyP7CY58qcAztw8nG
csZBAnnuPFwIAWxHXW3eBBv4UP138HbNDqJ/dujjocM6GnOxmXJmcZ6b57gh+Y64
3+w9IR4qrRWnsErb/I8inKLJ1Jdcf7yV2FmxYqR4pIXay2Yzo1BsvFd6EB+JavUv
pJpixrFiDDFoQyXlh4tGpsjpqdXNMLqyG4YpqzSZ46C8naVv9gKE7SXqlXnjyDlb
Llx3hb9Fop8O5ykYEGHi+gIISAK5eETiQl4yw9RUBDpxydH4qJtqGIbLiDy8y9wi
Xyi8PBlNl+biJFsK805lxURqTp/SJTC3+Zb7A7CzYEQm5xZw3W/CKZx1ZYBfpaa/
pWaP6tB7JwgLIVXi4HQayLWqMVwH0soZIn9yazpOEFv6qO8d5QH5RAxAW2VXE3n5
JDlrajar/lGIdiBVWfwTJLb86gv3QDZtIWoR9mZuLKeKWE/6PRLe7HQpG1pJovsm
2AsN5bS0BWq+aqPpZHa5
=pECD
-----END PGP SIGNATURE-----
Merge tag 'kvm-3.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Avi Kivity:
"Highlights include
- full big real mode emulation on pre-Westmere Intel hosts (can be
disabled with emulate_invalid_guest_state=0)
- relatively small ppc and s390 updates
- PCID/INVPCID support in guests
- EOI avoidance; 3.6 guests should perform better on 3.6 hosts on
interrupt intensive workloads)
- Lockless write faults during live migration
- EPT accessed/dirty bits support for new Intel processors"
Fix up conflicts in:
- Documentation/virtual/kvm/api.txt:
Stupid subchapter numbering, added next to each other.
- arch/powerpc/kvm/booke_interrupts.S:
PPC asm changes clashing with the KVM fixes
- arch/s390/include/asm/sigp.h, arch/s390/kvm/sigp.c:
Duplicated commits through the kvm tree and the s390 tree, with
subsequent edits in the KVM tree.
* tag 'kvm-3.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (93 commits)
KVM: fix race with level interrupts
x86, hyper: fix build with !CONFIG_KVM_GUEST
Revert "apic: fix kvm build on UP without IOAPIC"
KVM guest: switch to apic_set_eoi_write, apic_write
apic: add apic_set_eoi_write for PV use
KVM: VMX: Implement PCID/INVPCID for guests with EPT
KVM: Add x86_hyper_kvm to complete detect_hypervisor_platform check
KVM: PPC: Critical interrupt emulation support
KVM: PPC: e500mc: Fix tlbilx emulation for 64-bit guests
KVM: PPC64: booke: Set interrupt computation mode for 64-bit host
KVM: PPC: bookehv: Add ESR flag to Data Storage Interrupt
KVM: PPC: bookehv64: Add support for std/ld emulation.
booke: Added crit/mc exception handler for e500v2
booke/bookehv: Add host crit-watchdog exception support
KVM: MMU: document mmu-lock and fast page fault
KVM: MMU: fix kvm_mmu_pagetable_walk tracepoint
KVM: MMU: trace fast page fault
KVM: MMU: fast path of handling guest page fault
KVM: MMU: introduce SPTE_MMU_WRITEABLE bit
KVM: MMU: fold tlb flush judgement into mmu_spte_update
...
Document fast page fault and mmu-lock in locking.txt
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Document the new EOI MSR. Couldn't decide whether this change belongs
conceptually on guest or host side, so a separate patch.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
If there is pending critical or machine check interrupt then guest
would like to capture it when guest enable MSR.CE and MSR_ME respectively.
Also as mostly MSR_CE and MSR_ME are updated with rfi/rfci/rfmii
which anyway traps so removing the the paravirt optimization for MSR.CE
and MSR.ME.
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
PPC updates from Alex.
* 'for-upstream' of git://github.com/agraf/linux-2.6:
KVM: PPC: Emulator: clean up SPR reads and writes
KVM: PPC: Emulator: clean up instruction parsing
kvm/powerpc: Add new ioctl to retreive server MMU infos
kvm/book3s: Make kernel emulated H_PUT_TCE available for "PR" KVM
KVM: PPC: bookehv: Fix r8/r13 storing in level exception handler
KVM: PPC: Book3S: Enable IRQs during exit handling
KVM: PPC: Fix PR KVM on POWER7 bare metal
KVM: PPC: Fix stbux emulation
KVM: PPC: bookehv: Use lwz/stw instead of PPC_LL/PPC_STL for 32-bit fields
KVM: PPC: Book3S: PR: No isync in slbie path
KVM: PPC: Book3S: PR: Optimize entry path
KVM: PPC: booke(hv): Fix save/restore of guest accessible SPRGs.
KVM: PPC: Restrict PPC_[L|ST]D macro to asm code
KVM: PPC: bookehv: Use a Macro for saving/restoring guest registers to/from their 64 bit copies.
KVM: PPC: Use clockevent multiplier and shifter for decrementer
KVM: Use minimum and maximum address mapped by TLB1
Signed-off-by: Avi Kivity <avi@redhat.com>
This is necessary for qemu to be able to pass the right information
to the guest, such as the supported page sizes and corresponding
encodings in the SLB and hash table, which can vary depending
on the processor type, the type of KVM used (PR vs HV) and the
version of KVM
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[agraf: fix compilation on hv, adjust for newer ioctl numbers]
Signed-off-by: Alexander Graf <agraf@suse.de>
cpuid eax should return the max leaf so that
guests can find out the valid range.
This matches Xen et al.
Update documentation to match.
Tested with -cpu host.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
We can't run PIT IRQ injection work in the interrupt context of the host
timer. This would allow the user to influence the handler complexity by
asking for a broadcast to a large number of VCPUs. Therefore, this work
was pushed into workqueue context in 9d244caf2e. However, this prevents
prioritizing the PIT injection over other task as workqueues share
kernel threads.
This replaces the workqueue with a kthread worker and gives that thread
a name in the format "kvm-pit/<owner-process-pid>". That allows to
identify and adjust the kthread priority according to the VM process
parameters.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Add descriptions for KVM_CREATE_PIT2 and KVM_GET/SET_PIT2.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This helps to identify sections and it also fixes the numbering from
4.54 to 4.61.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Currently, MSI messages can only be injected to in-kernel irqchips by
defining a corresponding IRQ route for each message. This is not only
unhandy if the MSI messages are generated "on the fly" by user space,
IRQ routes are a limited resource that user space has to manage
carefully.
By providing a direct injection path, we can both avoid using up limited
resources and simplify the necessary steps for user land.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Now that we have a flag that will tell the guest it was suspended, create an
interface for that communication using a KVM ioctl.
Signed-off-by: Eric B Munson <emunson@mgebm.net>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Pull kvm updates from Avi Kivity:
"Changes include timekeeping improvements, support for assigning host
PCI devices that share interrupt lines, s390 user-controlled guests, a
large ppc update, and random fixes."
This is with the sign-off's fixed, hopefully next merge window we won't
have rebased commits.
* 'kvm-updates/3.4' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (130 commits)
KVM: Convert intx_mask_lock to spin lock
KVM: x86: fix kvm_write_tsc() TSC matching thinko
x86: kvmclock: abstract save/restore sched_clock_state
KVM: nVMX: Fix erroneous exception bitmap check
KVM: Ignore the writes to MSR_K7_HWCR(3)
KVM: MMU: make use of ->root_level in reset_rsvds_bits_mask
KVM: PMU: add proper support for fixed counter 2
KVM: PMU: Fix raw event check
KVM: PMU: warn when pin control is set in eventsel msr
KVM: VMX: Fix delayed load of shared MSRs
KVM: use correct tlbs dirty type in cmpxchg
KVM: Allow host IRQ sharing for assigned PCI 2.3 devices
KVM: Ensure all vcpus are consistent with in-kernel irqchip settings
KVM: x86 emulator: Allow PM/VM86 switch during task switch
KVM: SVM: Fix CPL updates
KVM: x86 emulator: VM86 segments must have DPL 3
KVM: x86 emulator: Fix task switch privilege checks
arch/powerpc/kvm/book3s_hv.c: included linux/sched.h twice
KVM: x86 emulator: correctly mask pmc index bits in RDPMC instruction emulation
KVM: mmu_notifier: Flush TLBs before releasing mmu_lock
...
PCI 2.3 allows to generically disable IRQ sources at device level. This
enables us to share legacy IRQs of such devices with other host devices
when passing them to a guest.
The new IRQ sharing feature introduced here is optional, user space has
to request it explicitly. Moreover, user space can inform us about its
view of PCI_COMMAND_INTX_DISABLE so that we can avoid unmasking the
interrupt and signaling it if the guest masked it via the virtualized
PCI config space.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Instead of keeping separate copies of struct kvm_vcpu_arch_shared (one in
the code, one in the docs) that inevitably fail to be kept in sync
(already sr[] is missing from the doc version), just point to the header
file as the source of documentation on the contents of the magic page.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Acked-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Until now, we always set HIOR based on the PVR, but this is just wrong.
Instead, we should be setting HIOR explicitly, so user space can decide
what the initial HIOR value is - just like on real hardware.
We keep the old PVR based way around for backwards compatibility, but
once user space uses the SET_ONE_REG based method, we drop the PVR logic.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Right now we transfer a static struct every time we want to get or set
registers. Unfortunately, over time we realize that there are more of
these than we thought of before and the extensibility and flexibility of
transferring a full struct every time is limited.
So this is a new approach to the problem. With these new ioctls, we can
get and set a single register that is identified by an ID. This allows for
very precise and limited transmittal of data. When we later realize that
it's a better idea to shove over multiple registers at once, we can reuse
most of the infrastructure and simply implement a GET_MANY_REGS / SET_MANY_REGS
interface.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
This implements a shared-memory API for giving host userspace access to
the guest's TLB.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
On some cpus the overhead for virtualization instructions is in the same
range as a system call. Having to call multiple ioctls to get set registers
will make certain userspace handled exits more expensive than necessary.
Lets provide a section in kvm_run that works as a shared save area
for guest registers.
We also provide two 64bit flags fields (architecture specific), that will
specify
1. which parts of these fields are valid.
2. which registers were modified by userspace
Each bit for these flag fields will define a group of registers (like
general purpose) or a single register.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch allows the user to fault in pages on a virtual cpus
address space for user controlled virtual machines. Typically this
is superfluous because userspace can just create a mapping and
let the kernel's page fault logic take are of it. There is one
exception: SIE won't start if the lowcore is not present. Normally
the kernel takes care of this [handle_validity() in
arch/s390/kvm/intercept.c] but since the kernel does not handle
intercepts for user controlled virtual machines, userspace needs to
be able to handle this condition.
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch exports the s390 SIE hardware control block to userspace
via the mapping of the vcpu file descriptor. In order to do so,
a new arch callback named kvm_arch_vcpu_fault is introduced for all
architectures. It allows to map architecture specific pages.
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch introduces a new exit reason in the kvm_run structure
named KVM_EXIT_S390_UCONTROL. This exit indicates, that a virtual cpu
has regognized a fault on the host page table. The idea is that
userspace can handle this fault by mapping memory at the fault
location into the cpu's address space and then continue to run the
virtual cpu.
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch introduces two ioctls for virtual cpus, that are only
valid for kernel virtual machines that are controlled by userspace.
Each virtual cpu has its individual address space in this mode of
operation, and each address space is backed by the gmap
implementation just like the address space for regular KVM guests.
KVM_S390_UCAS_MAP allows to map a part of the user's virtual address
space to the vcpu. Starting offset and length in both the user and
the vcpu address space need to be aligned to 1M.
KVM_S390_UCAS_UNMAP can be used to unmap a range of memory from a
virtual cpu in a similar way.
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch introduces a new config option for user controlled kernel
virtual machines. It introduces a parameter to KVM_CREATE_VM that
allows to set bits that alter the capabilities of the newly created
virtual machine.
The parameter is passed to kvm_arch_init_vm for all architectures.
The only valid modifier bit for now is KVM_VM_S390_UCONTROL.
This requires CAP_SYS_ADMIN privileges and creates a user controlled
virtual machine on s390 architectures.
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Unlike all of the other cpuid bits, the TSC deadline timer bit is set
unconditionally, regardless of what userspace wants.
This is broken in several ways:
- if userspace doesn't use KVM_CREATE_IRQCHIP, and doesn't emulate the TSC
deadline timer feature, a guest that uses the feature will break
- live migration to older host kernels that don't support the TSC deadline
timer will cause the feature to be pulled from under the guest's feet;
breaking it
- guests that are broken wrt the feature will fail.
Fix by not enabling the feature automatically; instead report it to userspace.
Because the feature depends on KVM_CREATE_IRQCHIP, which we cannot guarantee
will be called, we expose it via a KVM_CAP_TSC_DEADLINE_TIMER and not
KVM_GET_SUPPORTED_CPUID.
Fixes the Illumos guest kernel, which uses the TSC deadline timer feature.
[avi: add the KVM_CAP + documentation]
Reported-by: Alexey Zaytsev <alexey.zaytsev@gmail.com>
Tested-by: Alexey Zaytsev <alexey.zaytsev@gmail.com>
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Only allow KVM device assignment to attach to devices which:
- Are not bridges
- Have BAR resources (assume others are special devices)
- The user has permissions to use
Assigning a bridge is a configuration error, it's not supported, and
typically doesn't result in the behavior the user is expecting anyway.
Devices without BAR resources are typically chipset components that
also don't have host drivers. We don't want users to hold such devices
captive or cause system problems by fencing them off into an iommu
domain. We determine "permission to use" by testing whether the user
has access to the PCI sysfs resource files. By default a normal user
will not have access to these files, so it provides a good indication
that an administration agent has granted the user access to the device.
[Yang Bai: add missing #include]
[avi: fix comment style]
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Yang Bai <hamo.by@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This option has no users and it exposes a security hole that we
can allow devices to be assigned without iommu protection. Make
KVM_DEV_ASSIGN_ENABLE_IOMMU a mandatory option.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
We have an ioctl that enables capabilities individually, but no description
on what exactly happens when we enable a capability using this ioctl.
This patch adds documentation for capability enabling in a new section
of the API documentation.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
The patch raises the hard limit of VCPU count to 254.
This will allow developers to easily work on scalability
and will allow users to test high VCPU setups easily without
patching the kernel.
To prevent possible issues with current setups, KVM_CAP_NR_VCPUS
now returns the recommended VCPU limit (which is still 64) - this
should be a safe value for everybody, while a new KVM_CAP_MAX_VCPUS
returns the hard limit which is now 254.
Cc: Avi Kivity <avi@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Suggested-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
To implement steal time, we need the hypervisor to pass the guest information
about how much time was spent running other processes outside the VM.
This is per-vcpu, and using the kvmclock structure for that is an abuse
we decided not to make.
In this patchset, I am introducing a new msr, KVM_MSR_STEAL_TIME, that
holds the memory area address containing information about steal time
This patch contains the headers for it. I am keeping it separate to facilitate
backports to people who wants to backport the kernel part but not the
hypervisor, or the other way around.
Signed-off-by: Glauber Costa <glommer@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Tested-by: Eric B Munson <emunson@mgebm.net>
CC: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This adds infrastructure which will be needed to allow book3s_hv KVM to
run on older POWER processors, including PPC970, which don't support
the Virtual Real Mode Area (VRMA) facility, but only the Real Mode
Offset (RMO) facility. These processors require a physically
contiguous, aligned area of memory for each guest. When the guest does
an access in real mode (MMU off), the address is compared against a
limit value, and if it is lower, the address is ORed with an offset
value (from the Real Mode Offset Register (RMOR)) and the result becomes
the real address for the access. The size of the RMA has to be one of
a set of supported values, which usually includes 64MB, 128MB, 256MB
and some larger powers of 2.
Since we are unlikely to be able to allocate 64MB or more of physically
contiguous memory after the kernel has been running for a while, we
allocate a pool of RMAs at boot time using the bootmem allocator. The
size and number of the RMAs can be set using the kvm_rma_size=xx and
kvm_rma_count=xx kernel command line options.
KVM exports a new capability, KVM_CAP_PPC_RMA, to signal the availability
of the pool of preallocated RMAs. The capability value is 1 if the
processor can use an RMA but doesn't require one (because it supports
the VRMA facility), or 2 if the processor requires an RMA for each guest.
This adds a new ioctl, KVM_ALLOCATE_RMA, which allocates an RMA from the
pool and returns a file descriptor which can be used to map the RMA. It
also returns the size of the RMA in the argument structure.
Having an RMA means we will get multiple KMV_SET_USER_MEMORY_REGION
ioctl calls from userspace. To cope with this, we now preallocate the
kvm->arch.ram_pginfo array when the VM is created with a size sufficient
for up to 64GB of guest memory. Subsequently we will get rid of this
array and use memory associated with each memslot instead.
This moves most of the code that translates the user addresses into
host pfns (page frame numbers) out of kvmppc_prepare_vrma up one level
to kvmppc_core_prepare_memory_region. Also, instead of having to look
up the VMA for each page in order to check the page size, we now check
that the pages we get are compound pages of 16MB. However, if we are
adding memory that is mapped to an RMA, we don't bother with calling
get_user_pages_fast and instead just offset from the base pfn for the
RMA.
Typically the RMA gets added after vcpus are created, which makes it
inconvenient to have the LPCR (logical partition control register) value
in the vcpu->arch struct, since the LPCR controls whether the processor
uses RMA or VRMA for the guest. This moves the LPCR value into the
kvm->arch struct and arranges for the MER (mediated external request)
bit, which is the only bit that varies between vcpus, to be set in
assembly code when going into the guest if there is a pending external
interrupt request.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7. The host still has to run single-threaded.
This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability. The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.
To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode. KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline). To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it. Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.
When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host. This number is exported
to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.
We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host. We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked. This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.
When a vcore starts to run, it executes in the context of one of the
vcpu threads. The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).
It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running. In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest. It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.
Note that there is no fixed relationship between the hardware thread
number and the vcpu number. Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This improves I/O performance for guests using the PAPR
paravirtualization interface by making the H_PUT_TCE hcall faster, by
implementing it in real mode. H_PUT_TCE is used for updating virtual
IOMMU tables, and is used both for virtual I/O and for real I/O in the
PAPR interface.
Since this moves the IOMMU tables into the kernel, we define a new
KVM_CREATE_SPAPR_TCE ioctl to allow qemu to create the tables. The
ioctl returns a file descriptor which can be used to mmap the newly
created table. The qemu driver models use them in the same way as
userspace managed tables, but they can be updated directly by the
guest with a real-mode H_PUT_TCE implementation, reducing the number
of host/guest context switches during guest IO.
There are certain circumstances where it is useful for userland qemu
to write to the TCE table even if the kernel H_PUT_TCE path is used
most of the time. Specifically, allowing this will avoid awkwardness
when we need to reset the table. More importantly, we will in the
future need to write the table in order to restore its state after a
checkpoint resume or migration.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This is a shared page used for paravirtualization. It is always present
in the guest kernel's effective address space at the address indicated
by the hypercall that enables it.
The physical address specified by the hypercall is not used, as
e500 does not have real mode.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
When CR0.WP=0, we sometimes map user pages as kernel pages (to allow
the kernel to write to them). Unfortunately this also allows the kernel
to fetch from these pages, even if CR4.SMEP is set.
Adjust for this by also setting NX on the spte in these circumstances.
Signed-off-by: Avi Kivity <avi@redhat.com>
The documented behavior did not match the implemented one (which also
never changed).
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Neither host_irq nor the guest_msi struct are used anymore today.
Tag the former, drop the latter to avoid confusion.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Document KVM_IOEVENTFD that can be used to receive
notifications of PIO/MMIO events without triggering
an exit.
Signed-off-by: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch includes a brief introduction to the nested vmx feature in the
Documentation/kvm directory. The document also includes a copy of the
vmcs12 structure, as requested by Avi Kivity.
[marcelo: move to Documentation/virtual/kvm]
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
* 'kvm-updates/2.6.40' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (131 commits)
KVM: MMU: Use ptep_user for cmpxchg_gpte()
KVM: Fix kvm mmu_notifier initialization order
KVM: Add documentation for KVM_CAP_NR_VCPUS
KVM: make guest mode entry to be rcu quiescent state
KVM: x86 emulator: Make jmp far emulation into a separate function
KVM: x86 emulator: Rename emulate_grpX() to em_grpX()
KVM: x86 emulator: Remove unused arg from emulate_pop()
KVM: x86 emulator: Remove unused arg from writeback()
KVM: x86 emulator: Remove unused arg from read_descriptor()
KVM: x86 emulator: Remove unused arg from seg_override()
KVM: Validate userspace_addr of memslot when registered
KVM: MMU: Clean up gpte reading with copy_from_user()
KVM: PPC: booke: add sregs support
KVM: PPC: booke: save/restore VRSAVE (a.k.a. USPRG0)
KVM: PPC: use ticks, not usecs, for exit timing
KVM: PPC: fix exit accounting for SPRs, tlbwe, tlbsx
KVM: PPC: e500: emulate SVR
KVM: VMX: Cache vmcs segment fields
KVM: x86 emulator: consolidate segment accessors
KVM: VMX: Avoid reading %rip unnecessarily when handling exceptions
...
- Documentation/kvm/ to Documentation/virtual/kvm
- Documentation/uml/ to Documentation/virtual/uml
- Documentation/lguest/ to Documentation/virtual/lguest
throughout the kernel source tree.
Signed-off-by: Rob Landley <rob@landley.net>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>