All updates that occur under STRIPE_ACTIVE should be globally visible
when STRIPE_ACTIVE clears. test_and_set_bit() implies a barrier, but
clear_bit() does not.
This is suitable for 3.1-stable.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: stable@kernel.org
When the number of failed devices exceeds the allowed number
we must abort any active parity operations (checks or updates) as they
are no longer meaningful, and can lead to a BUG_ON in
handle_parity_checks6.
This bug was introduce by commit 6c0069c0ae
in 2.6.29.
Reported-by: Manish Katiyar <mkatiyar@gmail.com>
Tested-by: Manish Katiyar <mkatiyar@gmail.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: stable@kernel.org
* 'modsplit-Oct31_2011' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux: (230 commits)
Revert "tracing: Include module.h in define_trace.h"
irq: don't put module.h into irq.h for tracking irqgen modules.
bluetooth: macroize two small inlines to avoid module.h
ip_vs.h: fix implicit use of module_get/module_put from module.h
nf_conntrack.h: fix up fallout from implicit moduleparam.h presence
include: replace linux/module.h with "struct module" wherever possible
include: convert various register fcns to macros to avoid include chaining
crypto.h: remove unused crypto_tfm_alg_modname() inline
uwb.h: fix implicit use of asm/page.h for PAGE_SIZE
pm_runtime.h: explicitly requires notifier.h
linux/dmaengine.h: fix implicit use of bitmap.h and asm/page.h
miscdevice.h: fix up implicit use of lists and types
stop_machine.h: fix implicit use of smp.h for smp_processor_id
of: fix implicit use of errno.h in include/linux/of.h
of_platform.h: delete needless include <linux/module.h>
acpi: remove module.h include from platform/aclinux.h
miscdevice.h: delete unnecessary inclusion of module.h
device_cgroup.h: delete needless include <linux/module.h>
net: sch_generic remove redundant use of <linux/module.h>
net: inet_timewait_sock doesnt need <linux/module.h>
...
Fix up trivial conflicts (other header files, and removal of the ab3550 mfd driver) in
- drivers/media/dvb/frontends/dibx000_common.c
- drivers/media/video/{mt9m111.c,ov6650.c}
- drivers/mfd/ab3550-core.c
- include/linux/dmaengine.h
* 'for-3.2/core' of git://git.kernel.dk/linux-block: (29 commits)
block: don't call blk_drain_queue() if elevator is not up
blk-throttle: use queue_is_locked() instead of lockdep_is_held()
blk-throttle: Take blkcg->lock while traversing blkcg->policy_list
blk-throttle: Free up policy node associated with deleted rule
block: warn if tag is greater than real_max_depth.
block: make gendisk hold a reference to its queue
blk-flush: move the queue kick into
blk-flush: fix invalid BUG_ON in blk_insert_flush
block: Remove the control of complete cpu from bio.
block: fix a typo in the blk-cgroup.h file
block: initialize the bounce pool if high memory may be added later
block: fix request_queue lifetime handling by making blk_queue_cleanup() properly shutdown
block: drop @tsk from attempt_plug_merge() and explain sync rules
block: make get_request[_wait]() fail if queue is dead
block: reorganize throtl_get_tg() and blk_throtl_bio()
block: reorganize queue draining
block: drop unnecessary blk_get/put_queue() in scsi_cmd_ioctl() and blk_get_tg()
block: pass around REQ_* flags instead of broken down booleans during request alloc/free
block: move blk_throtl prototypes to block/blk.h
block: fix genhd refcounting in blkio_policy_parse_and_set()
...
Fix up trivial conflicts due to "mddev_t" -> "struct mddev" conversion
and making the request functions be of type "void" instead of "int" in
- drivers/md/{faulty.c,linear.c,md.c,md.h,multipath.c,raid0.c,raid1.c,raid10.c,raid5.c}
- drivers/staging/zram/zram_drv.c
A pending cleanup will mean that module.h won't be implicitly
everywhere anymore. Make sure the modular drivers in md dir
are actually calling out for <module.h> explicitly in advance.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
In 3.0 we changed the way recovery_disabled was handle so that instead
of testing against zero, we test an mddev-> value against a conf->
value.
Two problems:
1/ one place in raid1 was missed and still sets to '1'.
2/ We didn't explicitly set the conf-> value at array creation
time.
It defaulted to '0' just like the mddev value does so they
could appear equal and thus disable recovery.
This did not affect normal 'md' as it calls bind_rdev_to_array
which changes the mddev value. However the dmraid interface
doesn't call this and so doesn't change ->recovery_disabled; so at
array start all recovery is incorrectly disabled.
So initialise the 'conf' value to one less that the mddev value, so
the will only be the same when explicitly set that way.
Reported-by: Jonathan Brassow <jbrassow@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.de>
This bug was introduced in 415e72d034
which was in 2.6.36.
There is a small window of time between when a device fails and when
it is removed from the array. During this time we might still read
from it, but we won't write to it - so it is possible that we could
read stale data.
We didn't need the test of 'Faulty' before because the test on
In_sync is sufficient. Since we started allowing reads from the early
part of non-In_sync devices we need a test on Faulty too.
This is suitable for any kernel from 2.6.36 onwards, though the patch
might need a bit of tweaking in 3.0 and earlier.
Cc: stable@kernel.org
Signed-off-by: NeilBrown <neilb@suse.de>
The typedefs are just annoying. 'mdk' probably refers to 'md_k.h'
which used to be an include file that defined this thing.
Signed-off-by: NeilBrown <neilb@suse.de>
In the 'abort' branch of run(), 'conf' cannot possibly be NULL,
so remove the test.
Reported-by: Zdenek Kabelac <zdenek.kabelac@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Two related problems:
1/ some error paths call "md_unregister_thread(mddev->thread)"
without subsequently clearing ->thread. A subsequent call
to mddev_unlock will try to wake the thread, and crash.
2/ Most calls to md_wakeup_thread are protected against the thread
disappeared either by:
- holding the ->mutex
- having an active request, so something else must be keeping
the array active.
However mddev_unlock calls md_wakeup_thread after dropping the
mutex and without any certainty of an active request, so the
->thread could theoretically disappear.
So we need a spinlock to provide some protections.
So change md_unregister_thread to take a pointer to the thread
pointer, and ensure that it always does the required locking, and
clears the pointer properly.
Reported-by: "Moshe Melnikov" <moshe@zadarastorage.com>
Signed-off-by: NeilBrown <neilb@suse.de>
cc: stable@kernel.org
There is very little benefit in allowing to let a ->make_request
instance update the bios device and sector and loop around it in
__generic_make_request when we can archive the same through calling
generic_make_request from the driver and letting the loop in
generic_make_request handle it.
Note that various drivers got the return value from ->make_request and
returned non-zero values for errors.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: NeilBrown <neilb@suse.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Waiting for a 'blocked' rdev to become unblocked in the raid5d thread
cannot work with internal metadata as it is the raid5d thread which
will clear the blocked flag.
This wasn't a problem in 3.0 and earlier as we only set the blocked
flag when external metadata was used then.
However we now set it always, so we need to be more careful.
Signed-off-by: NeilBrown <neilb@suse.de>
On a successful write to a known bad block, flag the sh
so that raid5d can remove the known bad block from the list.
Signed-off-by: NeilBrown <neilb@suse.de>
When a write error is detected, don't mark the device as failed
immediately but rather record the fact for handle_stripe to deal with.
Handle_stripe then attempts to record a bad block. Only if that fails
does the device get marked as faulty.
Signed-off-by: NeilBrown <neilb@suse.de>
If we get an uncorrectable read error - record a bad block rather than
failing the device.
And if these errors (which may be due to known bad blocks) cause
recovery to be impossible, record a bad block on the recovering
devices, or abort the recovery.
As we might abort a recovery without failing a device we need to teach
RAID5 about recovery_disabled handling.
Signed-off-by: NeilBrown <neilb@suse.de>
There are two times that we might read in raid5:
1/ when a read request fits within a chunk on a single
working device.
In this case, if there is any bad block in the range of
the read, we simply fail the cache-bypass read and
perform the read though the stripe cache.
2/ when reading into the stripe cache. In this case we
mark as failed any device which has a bad block in that
strip (1 page wide).
Note that we will both avoid reading and avoid writing.
This is correct (as we will never read from the block, there
is no point writing), but not optimal (as writing could 'fix'
the error) - that will be addressed later.
If we have not seen any write errors on the device yet, we treat a bad
block like a recent read error. This will encourage an attempt to fix
the read error which will either generate a write error, or will
ensure good data is stored there. We don't yet forget the bad block
in that case. That comes later.
Now that we honour bad blocks when reading we can allow devices with
bad blocks into the array.
Signed-off-by: NeilBrown <neilb@suse.de>
It is only safe to choose not to write to a bad block if that bad
block is safely recorded in metadata - i.e. if it has been
'acknowledged'.
If it hasn't we need to wait for the acknowledgement.
We support that using rdev->blocked wait and
md_wait_for_blocked_rdev by introducing a new device flag
'BlockedBadBlock'.
This flag is only advisory.
It is cleared whenever we acknowledge a bad block, so that a waiter
can re-check the particular bad blocks that it is interested it.
It should be set by a caller when they find they need to wait.
This (set after test) is inherently racy, but as
md_wait_for_blocked_rdev already has a timeout, losing the race will
have minimal impact.
When we clear "Blocked" was also clear "BlockedBadBlocks" incase it
was set incorrectly (see above race).
We also modify the way we manage 'Blocked' to fit better with the new
handling of 'BlockedBadBlocks' and to make it consistent between
externally managed and internally managed metadata. This requires
that each raidXd loop checks if the metadata needs to be written and
triggers a write (md_check_recovery) if needed. Otherwise a queued
write request might cause raidXd to wait for the metadata to write,
and only that thread can write it.
Before writing metadata, we set FaultRecorded for all devices that
are Faulty, then after writing the metadata we clear Blocked for any
device for which the Fault was certainly Recorded.
The 'faulty' device flag now appears in sysfs if the device is faulty
*or* it has unacknowledged bad blocks. So user-space which does not
understand bad blocks can continue to function correctly.
User space which does, should not assume a device is faulty until it
sees the 'faulty' flag, and then sees the list of unacknowledged bad
blocks is empty.
Signed-off-by: NeilBrown <neilb@suse.de>
As no personality understand bad block lists yet, we must
reject any device that is known to contain bad blocks.
As the personalities get taught, these tests can be removed.
This only applies to raid1/raid5/raid10.
For linear/raid0/multipath/faulty the whole concept of bad blocks
doesn't mean anything so there is no point adding the checks.
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
While preparing to write a stripe we keep the parity block or blocks
locked (R5_LOCKED) - towards the end of schedule_reconstruction.
If the array is discovered to have failed before this write completes
we can leave those blocks LOCKED, and init_stripe will notice that a
free stripe still has a locked block and will complain.
So clear the R5_LOCKED flag in handle_failed_stripe, and demote the
'BUG' to a 'WARN_ON'.
Signed-off-by: NeilBrown <neilb@suse.de>
Read errors are considered to corrected if write-back and re-read
cycle is finished without further problems. Thus moving the rdev->
corrected_errors counting after the re-reading looks more reasonable
IMHO.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
There are places where sysfs links to rdev are handled
in a same way. Add the helper functions to consolidate
them.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
As per printk_ratelimit comment, it should not be used.
Signed-off-by: Christian Dietrich <christian.dietrich@informatik.uni-erlangen.de>
Signed-off-by: NeilBrown <neilb@suse.de>
handle_stripe5() and handle_stripe6() are now virtually identical.
So discard one and rename the other to 'analyse_stripe()'.
It always returns 0, so change it to 'void' and remove the 'done'
variable in handle_stripe().
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
The RAID6 version of this code is usable for RAID5 providing:
- we test "conf->max_degraded" rather than "2" as appropriate
- we make sure s->failed_num[1] is meaningful (and not '-1')
when s->failed > 1
The 'return 1' must become 'goto finish' in the new location.
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
Apart from 'prexor' which can only be set for RAID5, and
'qd_idx' which can only be meaningful for RAID6, these two
chunks of code are nearly the same.
So combine them into one adding a test to call either
handle_parity_checks5 or handle_parity_checks6 as appropriate.
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
RAID6 is only allowed to choose 'reconstruct-write' while RAID5 is
also allow 'read-modify-write'
Apart from this difference, handle_stripe_dirtying[56] are nearly
identical. So resolve these differences and create just one function.
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
Provided that ->failed_num[1] is not a valid device number (which is
easily achieved) fetch_block6 provides all the functionality of
fetch_block5.
So remove the latter and rename the former to simply "fetch_block".
Then handle_stripe_fill5 and handle_stripe_fill6 become the same and
can similarly be united.
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
Next patch will unite fetch_block5 and fetch_block6.
First I want to make the differences a little more clear.
For RAID6 if we are writing at all and there is a failed device, then
we need to load or compute every block so we can do a
reconstruct-write.
This case isn't needed for RAID5 - we will do a read-modify-write in
that case.
So make that test a separate test in fetch_block6 rather than merged
with two other tests.
Make a similar change in fetch_block5 so the one bit that is not
needed for RAID6 is clearly separate.
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
The difference between the RAID5 and RAID6 code here is easily
resolved using conf->max_degraded.
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
Prior to commit ab69ae12ce the code in handle_stripe5 and
handle_stripe6 to "Finish reconstruct operations initiated by the
expansion process" was identical.
That commit added an identical stanza of code to each function, but in
different places. That was careless.
The raid5 code was correct, so move that out into handle_stripe and
remove raid6 version.
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
This arg is only used to differentiate between RAID5 and RAID6 but
that is not needed. For RAID5, raid5_compute_sector will set qd_idx
to "~0" so j with certainly not equals qd_idx, so there is no need
for a guard on that condition.
So remove the guard and remove the arg from the declaration and
callers of handle_stripe_expansion.
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
By defining the 'stripe_head_state' in 'handle_stripe', we can move
some common code out of handle_stripe[56]() and into handle_stripe.
The means that all accesses for stripe_head_state in handle_stripe[56]
need to be 's->' instead of 's.', but the compiler should inline
those functions and just use a direct stack reference, and future
patches while hoist most of this code up into handle_stripe()
so we will revert to "s.".
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
Adding these three fields will allow more common code to be moved
to handle_stripe()
struct field rearrangement by Namhyung Kim.
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
'struct stripe_head_state' stores state about the 'current' stripe
that is passed around while handling the stripe.
For RAID6 there is an extension structure: r6_state, which is also
passed around.
There is no value in keeping these separate, so move the fields from
the latter into the former.
This means that all code now needs to treat s->failed_num as an small
array, but this is a small cost.
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
There is common code at the start of handle_stripe5 and
handle_stripe6. Move it into handle_stripe.
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
sh->lock is now mainly used to ensure that two threads aren't running
in the locked part of handle_stripe[56] at the same time.
That can more neatly be achieved with an 'active' flag which we set
while running handle_stripe. If we find the flag is set, we simply
requeue the stripe for later by setting STRIPE_HANDLE.
For safety we take ->device_lock while examining the state of the
stripe and creating a summary in 'stripe_head_state / r6_state'.
This possibly isn't needed but as shared fields like ->toread,
->towrite are checked it is safer for now at least.
We leave the label after the old 'unlock' called "unlock" because it
will disappear in a few patches, so renaming seems pointless.
This leaves the stripe 'locked' for longer as we clear STRIPE_ACTIVE
later, but that is not a problem.
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
Other places that change or follow dev->towrite and dev->written take
the device_lock as well as the sh->lock.
So it should really be held in these places too.
Also, doing so will allow sh->lock to be discarded.
with merged fixes by: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
This is the start of a series of patches to remove sh->lock.
sync_request takes sh->lock before setting STRIPE_SYNCING to ensure
there is no race with testing it in handle_stripe[56].
Instead, use a new flag STRIPE_SYNC_REQUESTED and test it early
in handle_stripe[56] (after getting the same lock) and perform the
same set/clear operations if it was set.
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
In raid5::make_request(), once bio_data_dir(@bi) is detected
it never (and couldn't) be changed. Use the result always.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Replace kmem_cache_alloc + memset(,0,) to kmem_cache_zalloc.
I think it's not harmful since @conf->slab_cache already knows
actual size of struct stripe_head.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
In the bio_for_each_segment loop, bvl always points current
bio_vec, so the same as bio_iovec_idx(, i). Let's get rid of
it.
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Commit e9c7469bb4 ("md: implment REQ_FLUSH/FUA support")
introduced R5_WantFUA flag and set rw to WRITE_FUA in that case.
However remaining code still checks whether rw is exactly same
as WRITE or not, so FUAed-write ends up with being treated as
READ. Fix it.
This bug has been present since 2.6.37 and the fix is suitable for any
-stable kernel since then. It is not clear why this has not caused
more problems.
Cc: Tejun Heo <tj@kernel.org>
Cc: stable@kernel.org
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>