So that it indicates what it does.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's better to show a warning message for the exceptional case
that one of objectid (in most case, inode number) reaches its
highest value. For example, if inode cache is off and this event
happens, we can't create any file even if there are not so many files.
This message ease detecting such problem.
Signed-off-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is more readable.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reviewed-by Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When logging that an inode exists, for example as part of a directory
fsync operation, we were collecting any ordered extents for the inode but
we ended up doing nothing with them except tagging them as processed, by
setting the flag BTRFS_ORDERED_LOGGED on them, which prevented a
subsequent fsync of that inode (using the LOG_INODE_ALL mode) from
collecting and processing them. This created a time window where a second
fsync against the inode, using the fast path, ended up not logging the
checksums for the new extents but it logged the extents since they were
part of the list of modified extents. This happened because the ordered
extents were not collected and checksums were not yet added to the csum
tree - the ordered extents have not gone through btrfs_finish_ordered_io()
yet (which is where we add them to the csum tree by calling
inode.c:add_pending_csums()).
So fix this by not collecting an inode's ordered extents if we are logging
it with the LOG_INODE_EXISTS mode.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we're about to do a fast fsync for an inode and btrfs_inode_in_log()
returns false, it's possible that we had an ordered extent in progress
(btrfs_finish_ordered_io() not run yet) when we noticed that the inode's
last_trans field was not greater than the id of the last committed
transaction, but shortly after, before we checked if there were any
ongoing ordered extents, the ordered extent had just completed and
removed itself from the inode's ordered tree, in which case we end up not
logging the inode, losing some data if a power failure or crash happens
after the fsync handler returns and before the transaction is committed.
Fix this by checking first if there are any ongoing ordered extents
before comparing the inode's last_trans with the id of the last committed
transaction - when it completes, an ordered extent always updates the
inode's last_trans before it removes itself from the inode's ordered
tree (at btrfs_finish_ordered_io()).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
In the listxattrs handler, we were not listing all the xattrs that are
packed in the same btree item, which happens when multiple xattrs have
a name that when crc32c hashed produce the same checksum value.
Fix this by processing them all.
The following test case for xfstests reproduces the issue:
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
cd /
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
. ./common/attr
# real QA test starts here
_supported_fs generic
_supported_os Linux
_require_scratch
_require_attrs
rm -f $seqres.full
_scratch_mkfs >>$seqres.full 2>&1
_scratch_mount
# Create our test file with a few xattrs. The first 3 xattrs have a name
# that when given as input to a crc32c function result in the same checksum.
# This made btrfs list only one of the xattrs through listxattrs system call
# (because it packs xattrs with the same name checksum into the same btree
# item).
touch $SCRATCH_MNT/testfile
$SETFATTR_PROG -n user.foobar -v 123 $SCRATCH_MNT/testfile
$SETFATTR_PROG -n user.WvG1c1Td -v qwerty $SCRATCH_MNT/testfile
$SETFATTR_PROG -n user.J3__T_Km3dVsW_ -v hello $SCRATCH_MNT/testfile
$SETFATTR_PROG -n user.something -v pizza $SCRATCH_MNT/testfile
$SETFATTR_PROG -n user.ping -v pong $SCRATCH_MNT/testfile
# Now call getfattr with --dump, which calls the listxattrs system call.
# It should list all the xattrs we have set before.
$GETFATTR_PROG --absolute-names --dump $SCRATCH_MNT/testfile | _filter_scratch
status=0
exit
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
When using the same file as the source and destination for a dedup
(extent_same ioctl) operation we were allowing it to dedup to a
destination offset beyond the file's size, which doesn't make sense and
it's not allowed for the case where the source and destination files are
not the same file. This made de deduplication operation successful only
when the source range corresponded to a hole, a prealloc extent or an
extent with all bytes having a value of 0x00. This was also leaving a
file hole (between i_size and destination offset) without the
corresponding file extent items, which can be reproduced with the
following steps for example:
$ mkfs.btrfs -f /dev/sdi
$ mount /dev/sdi /mnt/sdi
$ xfs_io -f -c "pwrite -S 0xab 304457 404990" /mnt/sdi/foobar
wrote 404990/404990 bytes at offset 304457
395 KiB, 99 ops; 0.0000 sec (31.150 MiB/sec and 7984.5149 ops/sec)
$ /git/hub/duperemove/btrfs-extent-same 24576 /mnt/sdi/foobar 28672 /mnt/sdi/foobar 929792
Deduping 2 total files
(28672, 24576): /mnt/sdi/foobar
(929792, 24576): /mnt/sdi/foobar
1 files asked to be deduped
i: 0, status: 0, bytes_deduped: 24576
24576 total bytes deduped in this operation
$ umount /mnt/sdi
$ btrfsck /dev/sdi
Checking filesystem on /dev/sdi
UUID: 98c528aa-0833-427d-9403-b98032ffbf9d
checking extents
checking free space cache
checking fs roots
root 5 inode 257 errors 100, file extent discount
Found file extent holes:
start: 712704, len: 217088
found 540673 bytes used err is 1
total csum bytes: 400
total tree bytes: 131072
total fs tree bytes: 32768
total extent tree bytes: 16384
btree space waste bytes: 123675
file data blocks allocated: 671744
referenced 671744
btrfs-progs v4.2.3
So fix this by not allowing the destination to go beyond the file's size,
just as we do for the same where the source and destination files are not
the same.
A test for xfstests follows.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
We have two cases where we end up deleting a file at log replay time
when we should not. For this to happen the file must have been renamed
and a directory inode must have been fsynced/logged.
Two examples that exercise these two cases are listed below.
Case 1)
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ mkdir -p /mnt/a/b
$ mkdir /mnt/c
$ touch /mnt/a/b/foo
$ sync
$ mv /mnt/a/b/foo /mnt/c/
# Create file bar just to make sure the fsync on directory a/ does
# something and it's not a no-op.
$ touch /mnt/a/bar
$ xfs_io -c "fsync" /mnt/a
< power fail / crash >
The next time the filesystem is mounted, the log replay procedure
deletes file foo.
Case 2)
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ mkdir /mnt/a
$ mkdir /mnt/b
$ mkdir /mnt/c
$ touch /mnt/a/foo
$ ln /mnt/a/foo /mnt/b/foo_link
$ touch /mnt/b/bar
$ sync
$ unlink /mnt/b/foo_link
$ mv /mnt/b/bar /mnt/c/
$ xfs_io -c "fsync" /mnt/a/foo
< power fail / crash >
The next time the filesystem is mounted, the log replay procedure
deletes file bar.
The reason why the files are deleted is because when we log inodes
other then the fsync target inode, we ignore their last_unlink_trans
value and leave the log without enough information to later replay the
rename operations. So we need to look at the last_unlink_trans values
and fallback to a transaction commit if they are greater than the
id of the last committed transaction.
So fix this by looking at the last_unlink_trans values and fallback to
transaction commits when needed. Also, when logging other inodes (for
case 1 we logged descendants of the fsync target inode while for case 2
we logged ascendants) we need to care about concurrent tasks updating
the last_unlink_trans of inodes we are logging (which was already an
existing problem in check_parent_dirs_for_sync()). Since we can not
acquire their inode mutex (vfs' struct inode ->i_mutex), as that causes
deadlocks with other concurrent operations that acquire the i_mutex of
2 inodes (other fsyncs or renames for example), we need to serialize on
the log_mutex of the inode we are logging. A task setting a new value for
an inode's last_unlink_trans must acquire the inode's log_mutex and it
must do this update before doing the actual unlink operation (which is
already the case except when deleting a snapshot). Conversely the task
logging the inode must first log the inode and then check the inode's
last_unlink_trans value while holding its log_mutex, as if its value is
not greater then the id of the last committed transaction it means it
logged a safe state of the inode's items, while if its value is not
smaller then the id of the last committed transaction it means the inode
state it has logged might not be safe (the concurrent task might have
just updated last_unlink_trans but hasn't done yet the unlink operation)
and therefore a transaction commit must be done.
Test cases for xfstests follow in separate patches.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we delete a snapshot, fsync its parent directory and crash/power fail
before the next transaction commit, on the next mount when we attempt to
replay the log tree of the root containing the parent directory we will
fail and prevent the filesystem from mounting, which is solvable by wiping
out the log trees with the btrfs-zero-log tool but very inconvenient as
we will lose any data and metadata fsynced before the parent directory
was fsynced.
For example:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
$ mkdir /mnt/testdir
$ btrfs subvolume snapshot /mnt /mnt/testdir/snap
$ btrfs subvolume delete /mnt/testdir/snap
$ xfs_io -c "fsync" /mnt/testdir
< crash / power failure and reboot >
$ mount /dev/sdc /mnt
mount: mount(2) failed: No such file or directory
And in dmesg/syslog we get the following message and trace:
[192066.361162] BTRFS info (device dm-0): failed to delete reference to snap, inode 257 parent 257
[192066.363010] ------------[ cut here ]------------
[192066.365268] WARNING: CPU: 4 PID: 5130 at fs/btrfs/inode.c:3986 __btrfs_unlink_inode+0x17a/0x354 [btrfs]()
[192066.367250] BTRFS: Transaction aborted (error -2)
[192066.368401] Modules linked in: btrfs dm_flakey dm_mod ppdev sha256_generic xor raid6_pq hmac drbg ansi_cprng aesni_intel acpi_cpufreq tpm_tis aes_x86_64 tpm ablk_helper evdev cryptd sg parport_pc i2c_piix4 psmouse lrw parport i2c_core pcspkr gf128mul processor serio_raw glue_helper button loop autofs4 ext4 crc16 mbcache jbd2 sd_mod sr_mod cdrom ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring crc32c_intel scsi_mod e1000 virtio floppy [last unloaded: btrfs]
[192066.377154] CPU: 4 PID: 5130 Comm: mount Tainted: G W 4.4.0-rc6-btrfs-next-20+ #1
[192066.378875] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[192066.380889] 0000000000000000 ffff880143923670 ffffffff81257570 ffff8801439236b8
[192066.382561] ffff8801439236a8 ffffffff8104ec07 ffffffffa039dc2c 00000000fffffffe
[192066.384191] ffff8801ed31d000 ffff8801b9fc9c88 ffff8801086875e0 ffff880143923710
[192066.385827] Call Trace:
[192066.386373] [<ffffffff81257570>] dump_stack+0x4e/0x79
[192066.387387] [<ffffffff8104ec07>] warn_slowpath_common+0x99/0xb2
[192066.388429] [<ffffffffa039dc2c>] ? __btrfs_unlink_inode+0x17a/0x354 [btrfs]
[192066.389236] [<ffffffff8104ec68>] warn_slowpath_fmt+0x48/0x50
[192066.389884] [<ffffffffa039dc2c>] __btrfs_unlink_inode+0x17a/0x354 [btrfs]
[192066.390621] [<ffffffff81184b55>] ? iput+0xb0/0x266
[192066.391200] [<ffffffffa039ea25>] btrfs_unlink_inode+0x1c/0x3d [btrfs]
[192066.391930] [<ffffffffa03ca623>] check_item_in_log+0x1fe/0x29b [btrfs]
[192066.392715] [<ffffffffa03ca827>] replay_dir_deletes+0x167/0x1cf [btrfs]
[192066.393510] [<ffffffffa03cccc7>] replay_one_buffer+0x417/0x570 [btrfs]
[192066.394241] [<ffffffffa03ca164>] walk_up_log_tree+0x10e/0x1dc [btrfs]
[192066.394958] [<ffffffffa03cac72>] walk_log_tree+0xa5/0x190 [btrfs]
[192066.395628] [<ffffffffa03ce8b8>] btrfs_recover_log_trees+0x239/0x32c [btrfs]
[192066.396790] [<ffffffffa03cc8b0>] ? replay_one_extent+0x50a/0x50a [btrfs]
[192066.397891] [<ffffffffa0394041>] open_ctree+0x1d8b/0x2167 [btrfs]
[192066.398897] [<ffffffffa03706e1>] btrfs_mount+0x5ef/0x729 [btrfs]
[192066.399823] [<ffffffff8108ad98>] ? trace_hardirqs_on+0xd/0xf
[192066.400739] [<ffffffff8108959b>] ? lockdep_init_map+0xb9/0x1b3
[192066.401700] [<ffffffff811714b9>] mount_fs+0x67/0x131
[192066.402482] [<ffffffff81188560>] vfs_kern_mount+0x6c/0xde
[192066.403930] [<ffffffffa03702bd>] btrfs_mount+0x1cb/0x729 [btrfs]
[192066.404831] [<ffffffff8108ad98>] ? trace_hardirqs_on+0xd/0xf
[192066.405726] [<ffffffff8108959b>] ? lockdep_init_map+0xb9/0x1b3
[192066.406621] [<ffffffff811714b9>] mount_fs+0x67/0x131
[192066.407401] [<ffffffff81188560>] vfs_kern_mount+0x6c/0xde
[192066.408247] [<ffffffff8118ae36>] do_mount+0x893/0x9d2
[192066.409047] [<ffffffff8113009b>] ? strndup_user+0x3f/0x8c
[192066.409842] [<ffffffff8118b187>] SyS_mount+0x75/0xa1
[192066.410621] [<ffffffff8147e517>] entry_SYSCALL_64_fastpath+0x12/0x6b
[192066.411572] ---[ end trace 2de42126c1e0a0f0 ]---
[192066.412344] BTRFS: error (device dm-0) in __btrfs_unlink_inode:3986: errno=-2 No such entry
[192066.413748] BTRFS: error (device dm-0) in btrfs_replay_log:2464: errno=-2 No such entry (Failed to recover log tree)
[192066.415458] BTRFS error (device dm-0): cleaner transaction attach returned -30
[192066.444613] BTRFS: open_ctree failed
This happens because when we are replaying the log and processing the
directory entry pointing to the snapshot in the subvolume tree, we treat
its btrfs_dir_item item as having a location with a key type matching
BTRFS_INODE_ITEM_KEY, which is wrong because the type matches
BTRFS_ROOT_ITEM_KEY and therefore must be processed differently, as the
object id refers to a root number and not to an inode in the root
containing the parent directory.
So fix this by triggering a transaction commit if an fsync against the
parent directory is requested after deleting a snapshot. This is the
simplest approach for a rare use case. Some alternative that avoids the
transaction commit would require more code to explicitly delete the
snapshot at log replay time (factoring out common code from ioctl.c:
btrfs_ioctl_snap_destroy()), special care at fsync time to remove the
log tree of the snapshot's root from the log root of the root of tree
roots, amongst other steps.
A test case for xfstests that triggers the issue follows.
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
_cleanup_flakey
cd /
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
. ./common/dmflakey
# real QA test starts here
_need_to_be_root
_supported_fs btrfs
_supported_os Linux
_require_scratch
_require_dm_target flakey
_require_metadata_journaling $SCRATCH_DEV
rm -f $seqres.full
_scratch_mkfs >>$seqres.full 2>&1
_init_flakey
_mount_flakey
# Create a snapshot at the root of our filesystem (mount point path), delete it,
# fsync the mount point path, crash and mount to replay the log. This should
# succeed and after the filesystem is mounted the snapshot should not be visible
# anymore.
_run_btrfs_util_prog subvolume snapshot $SCRATCH_MNT $SCRATCH_MNT/snap1
_run_btrfs_util_prog subvolume delete $SCRATCH_MNT/snap1
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT
_flakey_drop_and_remount
[ -e $SCRATCH_MNT/snap1 ] && \
echo "Snapshot snap1 still exists after log replay"
# Similar scenario as above, but this time the snapshot is created inside a
# directory and not directly under the root (mount point path).
mkdir $SCRATCH_MNT/testdir
_run_btrfs_util_prog subvolume snapshot $SCRATCH_MNT $SCRATCH_MNT/testdir/snap2
_run_btrfs_util_prog subvolume delete $SCRATCH_MNT/testdir/snap2
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/testdir
_flakey_drop_and_remount
[ -e $SCRATCH_MNT/testdir/snap2 ] && \
echo "Snapshot snap2 still exists after log replay"
_unmount_flakey
echo "Silence is golden"
status=0
exit
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Xfstests btrfs/011 complains about a deadlock warning,
[ 1226.649039] =========================================================
[ 1226.649039] [ INFO: possible irq lock inversion dependency detected ]
[ 1226.649039] 4.1.0+ #270 Not tainted
[ 1226.649039] ---------------------------------------------------------
[ 1226.652955] kswapd0/46 just changed the state of lock:
[ 1226.652955] (&delayed_node->mutex){+.+.-.}, at: [<ffffffff81458735>] __btrfs_release_delayed_node+0x45/0x1d0
[ 1226.652955] but this lock took another, RECLAIM_FS-unsafe lock in the past:
[ 1226.652955] (&fs_info->dev_replace.lock){+.+.+.}
and interrupts could create inverse lock ordering between them.
[ 1226.652955]
other info that might help us debug this:
[ 1226.652955] Chain exists of:
&delayed_node->mutex --> &found->groups_sem --> &fs_info->dev_replace.lock
[ 1226.652955] Possible interrupt unsafe locking scenario:
[ 1226.652955] CPU0 CPU1
[ 1226.652955] ---- ----
[ 1226.652955] lock(&fs_info->dev_replace.lock);
[ 1226.652955] local_irq_disable();
[ 1226.652955] lock(&delayed_node->mutex);
[ 1226.652955] lock(&found->groups_sem);
[ 1226.652955] <Interrupt>
[ 1226.652955] lock(&delayed_node->mutex);
[ 1226.652955]
*** DEADLOCK ***
Commit 084b6e7c76 ("btrfs: Fix a lockdep warning when running xfstest.") tried
to fix a similar one that has the exactly same warning, but with that, we still
run to this.
The above lock chain comes from
btrfs_commit_transaction
->btrfs_run_delayed_items
...
->__btrfs_update_delayed_inode
...
->__btrfs_cow_block
...
->find_free_extent
->cache_block_group
->load_free_space_cache
->btrfs_readpages
->submit_one_bio
...
->__btrfs_map_block
->btrfs_dev_replace_lock
However, with high memory pressure, tasks which hold dev_replace.lock can
be interrupted by kswapd and then kswapd is intended to release memory occupied
by superblock, inodes and dentries, where we may call evict_inode, and it comes
to
[ 1226.652955] [<ffffffff81458735>] __btrfs_release_delayed_node+0x45/0x1d0
[ 1226.652955] [<ffffffff81459e74>] btrfs_remove_delayed_node+0x24/0x30
[ 1226.652955] [<ffffffff8140c5fe>] btrfs_evict_inode+0x34e/0x700
delayed_node->mutex may be acquired in __btrfs_release_delayed_node(), and it leads
to a ABBA deadlock.
To fix this, we can use "blocking rwlock" used in the case of extent_buffer, but
things are simpler here since we only needs read's spinlock to blocking lock.
With this, btrfs/011 no more produces warnings in dmesg.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The control device is accessible when no filesystem is mounted and we
may want to query features supported by the module. This is already
possible using the sysfs files, this ioctl is for parity and
convenience.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The current practical default is ~4k on x86_64 (the logic is more complex,
simplified for brevity), the inlined files land in the metadata group and
thus consume space that could be needed for the real metadata.
The inlining brings some usability surprises:
1) total space consumption measured on various filesystems and btrfs
with DUP metadata was quite visible because of the duplicated data
within metadata
2) inlined data may exhaust the metadata, which are more precious in case
the entire device space is allocated to chunks (ie. balance cannot
make the space more compact)
3) performance suffers a bit as the inlined blocks are duplicate and
stored far away on the device.
Proposed fix: set the default to 2048
This fixes namely 1), the total filesysystem space consumption will be on
par with other filesystems.
Partially fixes 2), more data are pushed to the data block groups.
The characteristics of 3) are based on actual small file size
distribution.
The change is independent of the metadata blockgroup type (though it's
most visible with DUP) or system page size as these parameters are not
trival to find out, compared to file size.
Signed-off-by: David Sterba <dsterba@suse.com>
Let's remove the error message that appears when the tree_id is not
present. This can happen with the quota tree and has been observed in
practice. The applications are supposed to handle -ENOENT and we don't
need to report that in the system log as it's not a fatal error.
Reported-by: Vlastimil Babka <vbabka@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With CONFIG_SMP and CONFIG_PREEMPT both disabled, gcc decides
to partially inline the get_state_failrec() function but cannot
figure out that means the failrec pointer is always valid
if the function returns success, which causes a harmless
warning:
fs/btrfs/extent_io.c: In function 'clean_io_failure':
fs/btrfs/extent_io.c:2131:4: error: 'failrec' may be used uninitialized in this function [-Werror=maybe-uninitialized]
This marks get_state_failrec() and set_state_failrec() both
as 'noinline', which avoids the warning in all cases for me,
and seems less ugly than adding a fake initialization.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Fixes: 47dc196ae7 ("btrfs: use proper type for failrec in extent_state")
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fix from Chris Mason:
"My for-linus-4.5 branch has a btrfs DIO error passing fix.
I know how much you love DIO, so I'm going to suggest against reading
it. We'll follow up with a patch to drop the error arg from
dio_end_io in the next merge window."
* 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix direct IO requests not reporting IO error to user space
btrfs failed in xfstests btrfs/080 with -o nodatacow.
Can be reproduced by following script:
DEV=/dev/vdg
MNT=/mnt/tmp
umount $DEV &>/dev/null
mkfs.btrfs -f $DEV
mount -o nodatacow $DEV $MNT
dd if=/dev/zero of=$MNT/test bs=1 count=2048 &
btrfs subvolume snapshot -r $MNT $MNT/test_snap &
wait
--
We can see dd failed on NO_SPACE.
Reason:
__btrfs_buffered_write should run cow write when no_cow impossible,
and current code is designed with above logic.
But check_can_nocow() have 2 type of return value(0 and <0) on
can_not_no_cow, and current code only continue write on first case,
the second case happened in doing subvolume.
Fix:
Continue write when check_can_nocow() return 0 and <0.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Cleanup.
kmem_cache_destroy has support NULL argument checking,
so drop the double null testing before calling it.
Signed-off-by: Kinglong Mee <kinglongmee@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We were getting build warning about:
fs/btrfs/extent-tree.c:7021:34: warning: ‘used_bg’ may be used
uninitialized in this function
It is not a valid warning as used_bg is never used uninitilized since
locked is initially false so we can never be in the section where
'used_bg' is used. But gcc is not able to understand that and we can
initialize it while declaring to silence the warning.
Signed-off-by: Sudip Mukherjee <sudip@vectorindia.org>
Signed-off-by: David Sterba <dsterba@suse.com>
CURRENT_TIME macro is not appropriate for filesystems as it
doesn't use the right granularity for filesystem timestamps.
Use current_fs_time() instead.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: linux-btrfs@vger.kernel.org
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The kernel provides a swap() that does the same thing as this code.
Signed-off-by: Dave Jones <dsj@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While running btrfs_mksubvol(), d_really_is_positive() is called twice.
First in btrfs_mksubvol() and second inside btrfs_may_create(). So I
remove the first one.
Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Simplify expression in btrfs_calc_trans_metadata_size().
Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Reviewed-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: David Sterba <dsterba@suse.com>
We will sometimes start background flushing the various enospc related things
(delayed nodes, delalloc, etc) if we are getting close to reserving all of our
available space. We don't want to do this however when we are actually using
this space as it causes unneeded thrashing. We currently try to do this by
checking bytes_used >= thresh, but bytes_used is only part of the equation, we
need to use bytes_reserved as well as this represents space that is very likely
to become bytes_used in the future.
My tracing tool will keep count of the number of times we kick off the async
flusher, the following are counts for the entire run of generic/027
No Patch Patch
avg: 5385 5009
median: 5500 4916
We skewed lower than the average with my patch and higher than the average with
the patch, overall it cuts the flushing from anywhere from 5-10%, which in the
case of actual ENOSPC is quite helpful. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are a few places where we add to trans->bytes_reserved but don't have the
corresponding trace point. With these added my tool no longer sees transaction
leaks.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
truncate_space_check is using btrfs_csum_bytes_to_leaves() but forgetting to
multiply by nodesize so we get an actual byte count. We need a tracepoint here
so that we have the matching reserve for the release that will come later. Also
add a comment to make clear what the intent of truncate_space_check is.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I'm writing a tool to visualize the enospc system in order to help debug enospc
bugs and I found weird data and ran it down to when we update the global block
rsv. We add all of the remaining free space to the block rsv, do a trace event,
then remove the extra and do another trace event. This makes my visualization
look silly and is unintuitive code as well. Fix this stuff to only add the
amount we are missing, or free the amount we are missing. This is less clean to
read but more explicit in what it is doing, as well as only emitting events for
values that make sense. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For a non-existent device, old code bypasses adding it in dev's reada
queue.
And to solve problem of unfinished waitting in raid5/6,
commit 5fbc7c59fd ("Btrfs: fix unfinished readahead thread for
raid5/6 degraded mounting")
adding an exception for the first stripe, in short, the first
stripe will always be processed whether the device exists or not.
Actually we have a better way for the above request: just bypass
creation of the reada_extent for non-existent device, it will make
code simple and effective.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reada background works is not designed to finish all jobs
completely, it will break in following case:
1: When a device reaches workload limit (MAX_IN_FLIGHT)
2: Total reads reach max limit (10000)
3: All devices don't have queued more jobs, often happened in DUP case
And if all background works exit with remaining jobs,
btrfs_reada_wait() will wait indefinetelly.
Above problem is rarely happened in old code, because:
1: Every work queues 2x new works
So many works reduced chances of undone jobs.
2: One work will continue 10000 times loop in case of no-jobs
It reduced no-thread window time.
But after we fixed above case, the "undone reada extents" frequently
happened.
Fix:
Check to ensure we have at least one thread if there are undone jobs
in btrfs_reada_wait().
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reada creates 2 works for each level of tree recursively.
In case of a tree having many levels, the number of created works
is 2^level_of_tree.
Actually we don't need so many works in parallel, this patch limits
max works to BTRFS_MAX_MIRRORS * 2.
The per-fs works_counter will be also used for btrfs_reada_wait() to
check is there are background workers.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
No need to decrease dev->reada_in_flight in __readahead_hook()'s
internal and reada_extent_put().
reada_extent_put() have no chance to decrease dev->reada_in_flight
in free operation, because reada_extent have additional refcnt when
scheduled to a dev.
We can put inc and dec operation for dev->reada_in_flight to one
place instead to make logic simple and safe, and move useless
reada_extent->scheduled_for to a bool flag instead.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove one copy of loop to fix the typo of iterate zones.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Current code set nritems to 0 to make for_loop useless to bypass it,
and set generation's value which is not necessary.
Jump into cleanup directly is better choise.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
What __readahead_hook() need exactly is fs_info, no need to convert
fs_info to root in caller and convert back in __readahead_hook()
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
reada_start_machine_dev() already have reada_extent pointer, pass
it into __readahead_hook() directly instead of search radix_tree
will make code run faster.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can't release reada_extent earlier than __readahead_hook(), because
__readahead_hook() still need to use it, it is necessary to hode a refcnt
to avoid it be freed.
Actually it is not a problem after my patch named:
Avoid many times of empty loop
It make reada_extent in above line include at least one reada_extctl,
which keeps additional one refcnt for reada_extent.
But we still need this patch to make the code in pretty logic.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>