This reverts commit dcd42591eb.
The only user was RCU/nocb.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds a timer_curr_running() function that verifies that the
current code is running in the context of the specified timer's handler.
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
No users outside of the timer code. Move the caller below this function to
avoid a pointless forward declaration.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
do_init_timer() accepts any combination of timer flags handed in by the
caller without a sanity check, but only TIMER_DEFFERABLE, TIMER_PINNED and
TIMER_IRQSAFE are valid.
If the supplied flags have other bits set, this could result in
malfunction. If bits are set in TIMER_CPUMASK the first timer usage could
deference a cpu base which is outside the range of possible CPUs. If
TIMER_MIGRATION is set, then the switch_timer_base() will live lock.
Prevent that with a sanity check which warns when invalid flags are
supplied and masks them out.
[ tglx: Made it WARN_ON_ONCE() and added context to the changelog ]
Signed-off-by: Qianli Zhao <zhaoqianli@xiaomi.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/9d79a8aa4eb56713af7379f99f062dedabcde140.1597326756.git.zhaoqianli@xiaomi.com
Instead of having all the sysctl handlers deal with user pointers, which
is rather hairy in terms of the BPF interaction, copy the input to and
from userspace in common code. This also means that the strings are
always NUL-terminated by the common code, making the API a little bit
safer.
As most handler just pass through the data to one of the common handlers
a lot of the changes are mechnical.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The timer_pending() function is mostly used in lockless contexts, so
Without proper annotations, KCSAN might detect a data-race [1].
Using hlist_unhashed_lockless() instead of hand-coding it seems
appropriate (as suggested by Paul E. McKenney).
[1]
BUG: KCSAN: data-race in del_timer / detach_if_pending
write to 0xffff88808697d870 of 8 bytes by task 10 on cpu 0:
__hlist_del include/linux/list.h:764 [inline]
detach_timer kernel/time/timer.c:815 [inline]
detach_if_pending+0xcd/0x2d0 kernel/time/timer.c:832
try_to_del_timer_sync+0x60/0xb0 kernel/time/timer.c:1226
del_timer_sync+0x6b/0xa0 kernel/time/timer.c:1365
schedule_timeout+0x2d2/0x6e0 kernel/time/timer.c:1896
rcu_gp_fqs_loop+0x37c/0x580 kernel/rcu/tree.c:1639
rcu_gp_kthread+0x143/0x230 kernel/rcu/tree.c:1799
kthread+0x1d4/0x200 drivers/block/aoe/aoecmd.c:1253
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:352
read to 0xffff88808697d870 of 8 bytes by task 12060 on cpu 1:
del_timer+0x3b/0xb0 kernel/time/timer.c:1198
sk_stop_timer+0x25/0x60 net/core/sock.c:2845
inet_csk_clear_xmit_timers+0x69/0xa0 net/ipv4/inet_connection_sock.c:523
tcp_clear_xmit_timers include/net/tcp.h:606 [inline]
tcp_v4_destroy_sock+0xa3/0x3f0 net/ipv4/tcp_ipv4.c:2096
inet_csk_destroy_sock+0xf4/0x250 net/ipv4/inet_connection_sock.c:836
tcp_close+0x6f3/0x970 net/ipv4/tcp.c:2497
inet_release+0x86/0x100 net/ipv4/af_inet.c:427
__sock_release+0x85/0x160 net/socket.c:590
sock_close+0x24/0x30 net/socket.c:1268
__fput+0x1e1/0x520 fs/file_table.c:280
____fput+0x1f/0x30 fs/file_table.c:313
task_work_run+0xf6/0x130 kernel/task_work.c:113
tracehook_notify_resume include/linux/tracehook.h:188 [inline]
exit_to_usermode_loop+0x2b4/0x2c0 arch/x86/entry/common.c:163
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 12060 Comm: syz-executor.5 Not tainted 5.4.0-rc3+ #0
Hardware name: Google Google Compute Engine/Google Compute Engine,
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
[ paulmck: Pulled in Eric's later amendments. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
When PREEMPT_RT is enabled, the soft interrupt thread can be preempted. If
the soft interrupt thread is preempted in the middle of a timer callback,
then calling del_timer_sync() can lead to two issues:
- If the caller is on a remote CPU then it has to spin wait for the timer
handler to complete. This can result in unbound priority inversion.
- If the caller originates from the task which preempted the timer
handler on the same CPU, then spin waiting for the timer handler to
complete is never going to end.
To avoid these issues, add a new lock to the timer base which is held
around the execution of the timer callbacks. If del_timer_sync() detects
that the timer callback is currently running, it blocks on the expiry
lock. When the callback is finished, the expiry lock is dropped by the
softirq thread which wakes up the waiter and the system makes progress.
This addresses both the priority inversion and the life lock issues.
This mechanism is not used for timers which are marked IRQSAFE as for those
preemption is disabled accross the callback and therefore this situation
cannot happen. The callbacks for such timers need to be individually
audited for RT compliance.
The same issue can happen in virtual machines when the vCPU which runs a
timer callback is scheduled out. If a second vCPU of the same guest calls
del_timer_sync() it will spin wait for the other vCPU to be scheduled back
in. The expiry lock mechanism would avoid that. It'd be trivial to enable
this when paravirt spinlocks are enabled in a guest, but it's not clear
whether this is an actual problem in the wild, so for now it's an RT only
mechanism.
As the softirq thread can be preempted with PREEMPT_RT=y, the SMP variant
of del_timer_sync() needs to be used on UP as well.
[ tglx: Refactored it for mainline ]
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190726185753.832418500@linutronix.de
The flag hints the user that the pinned timers will always be run on a
static CPU (because that should be what "pinned" means...) but that's
not the truth, at least with the current implementation.
For example, currently if a pinned timer is set up but later mod_timer()
upon the pinned timer is invoked, mod_timer() will still try to queue the
timer on the current processor and migrate the timer if necessary.
Document it a bit with the definition of TIMER_PINNED so that all future
users will use it correctly.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Link: https://lkml.kernel.org/r/20190628105942.14131-1-peterx@redhat.com
struct tvec_base is a leftover of the original timer wheel implementation
and not longer used. Remove the forward declaration.
Signed-off-by: Liu Changcheng <changcheng.liu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Link: https://lkml.kernel.org/r/20180412075701.GA38952@sofia
The timer wheel bases are not (re)initialized on CPU hotplug. That leaves
them with a potentially stale clk and next_expiry valuem, which can cause
trouble then the CPU is plugged.
Add a prepare callback which forwards the clock, sets next_expiry to far in
the future and reset the control flags to a known state.
Set base->must_forward_clk so the first timer which is queued will try to
forward the clock to current jiffies.
Fixes: 500462a9de ("timers: Switch to a non-cascading wheel")
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1712272152200.2431@nanos
With all callbacks converted, and the timer callback prototype
switched over, the TIMER_FUNC_TYPE cast is no longer needed,
so remove it. Conversion was done with the following scripts:
perl -pi -e 's|\(TIMER_FUNC_TYPE\)||g' \
$(git grep TIMER_FUNC_TYPE | cut -d: -f1 | sort -u)
perl -pi -e 's|\(TIMER_DATA_TYPE\)||g' \
$(git grep TIMER_DATA_TYPE | cut -d: -f1 | sort -u)
The now unused macros are also dropped from include/linux/timer.h.
Signed-off-by: Kees Cook <keescook@chromium.org>
With __init_timer*() now matching __setup_timer*(), remove the redundant
internal interface, clean up the resulting definitions and add more
documentation.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
In preparation for removing more macros, pass the function down to the
initialization routines instead of doing it in macros.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
With the .data field removed, the ignored data arguments in timer macros
can be removed.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Shaohua Li <shli@fb.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Since all callbacks have been converted, we can switch the core
prototype to "struct timer_list *" now too.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Now that all timer callbacks are already taking their struct timer_list
pointer as the callback argument, just do this unconditionally and remove
the .data field.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
With all callers converted to timer_setup(), the old setup_*timer()
interface can be removed.
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kees Cook <keescook@chromium.org>
All users of init_timer() have been updated. Remove the ancient interface.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Kees Cook <keescook@chromium.org>
Pull timer updates from Thomas Gleixner:
"Yet another big pile of changes:
- More year 2038 work from Arnd slowly reaching the point where we
need to think about the syscalls themself.
- A new timer function which allows to conditionally (re)arm a timer
only when it's either not running or the new expiry time is sooner
than the armed expiry time. This allows to use a single timer for
multiple timeout requirements w/o caring about the first expiry
time at the call site.
- A new NMI safe accessor to clock real time for the printk timestamp
work. Can be used by tracing, perf as well if required.
- A large number of timer setup conversions from Kees which got
collected here because either maintainers requested so or they
simply got ignored. As Kees pointed out already there are a few
trivial merge conflicts and some redundant commits which was
unavoidable due to the size of this conversion effort.
- Avoid a redundant iteration in the timer wheel softirq processing.
- Provide a mechanism to treat RTC implementations depending on their
hardware properties, i.e. don't inflict the write at the 0.5
seconds boundary which originates from the PC CMOS RTC to all RTCs.
No functional change as drivers need to be updated separately.
- The usual small updates to core code clocksource drivers. Nothing
really exciting"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (111 commits)
timers: Add a function to start/reduce a timer
pstore: Use ktime_get_real_fast_ns() instead of __getnstimeofday()
timer: Prepare to change all DEFINE_TIMER() callbacks
netfilter: ipvs: Convert timers to use timer_setup()
scsi: qla2xxx: Convert timers to use timer_setup()
block/aoe: discover_timer: Convert timers to use timer_setup()
ide: Convert timers to use timer_setup()
drbd: Convert timers to use timer_setup()
mailbox: Convert timers to use timer_setup()
crypto: Convert timers to use timer_setup()
drivers/pcmcia: omap1: Fix error in automated timer conversion
ARM: footbridge: Fix typo in timer conversion
drivers/sgi-xp: Convert timers to use timer_setup()
drivers/pcmcia: Convert timers to use timer_setup()
drivers/memstick: Convert timers to use timer_setup()
drivers/macintosh: Convert timers to use timer_setup()
hwrng/xgene-rng: Convert timers to use timer_setup()
auxdisplay: Convert timers to use timer_setup()
sparc/led: Convert timers to use timer_setup()
mips: ip22/32: Convert timers to use timer_setup()
...
Add a function, similar to mod_timer(), that will start a timer if it isn't
running and will modify it if it is running and has an expiry time longer
than the new time. If the timer is running with an expiry time that's the
same or sooner, no change is made.
The function looks like:
int timer_reduce(struct timer_list *timer, unsigned long expires);
This can be used by code such as networking code to make it easier to share
a timer for multiple timeouts. For instance, in upcoming AF_RXRPC code,
the rxrpc_call struct will maintain a number of timeouts:
unsigned long ack_at;
unsigned long resend_at;
unsigned long ping_at;
unsigned long expect_rx_by;
unsigned long expect_req_by;
unsigned long expect_term_by;
each of which is set independently of the others. With timer reduction
available, when the code needs to set one of the timeouts, it only needs to
look at that timeout and then call timer_reduce() to modify the timer,
starting it or bringing it forward if necessary. There is no need to refer
to the other timeouts to see which is earliest and no need to take any lock
other than, potentially, the timer lock inside timer_reduce().
Note, that this does not protect against concurrent invocations of any of
the timer functions.
As an example, the expect_rx_by timeout above, which terminates a call if
we don't get a packet from the server within a certain time window, would
be set something like this:
unsigned long now = jiffies;
unsigned long expect_rx_by = now + packet_receive_timeout;
WRITE_ONCE(call->expect_rx_by, expect_rx_by);
timer_reduce(&call->timer, expect_rx_by);
The timer service code (which might, say, be in a work function) would then
check all the timeouts to see which, if any, had triggered, deal with
those:
t = READ_ONCE(call->ack_at);
if (time_after_eq(now, t)) {
cmpxchg(&call->ack_at, t, now + MAX_JIFFY_OFFSET);
set_bit(RXRPC_CALL_EV_ACK, &call->events);
}
and then restart the timer if necessary by finding the soonest timeout that
hasn't yet passed and then calling timer_reduce().
The disadvantage of doing things this way rather than comparing the timers
each time and calling mod_timer() is that you *will* take timer events
unless you can finish what you're doing and delete the timer in time.
The advantage of doing things this way is that you don't need to use a lock
to work out when the next timer should be set, other than the timer's own
lock - which you might not have to take.
[ tglx: Fixed weird formatting and adopted it to pending changes ]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: keyrings@vger.kernel.org
Cc: linux-afs@lists.infradead.org
Link: https://lkml.kernel.org/r/151023090769.23050.1801643667223880753.stgit@warthog.procyon.org.uk
Before we can globally change the function prototype of all timer callbacks,
we have to change those set up by DEFINE_TIMER(). Prepare for this by
casting the callbacks until the prototype changes globally.
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kees Cook <keescook@chromium.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In the case where expressions are passed as macro arguments, the LOCKDEP
version of the timer macros need enclosing parenthesis.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20171101143250.GA65266@beast
Under LOCKDEP, the timer lock_class_key (set up in __setup_timer) needs
to be tied to the caller's context, so an inline for timer_setup()
won't work. We do, however, want to keep the inline version around for
argument type checking, though, so this provides macro wrappers in the
LOCKDEP case.
This fixes the case of different timers sharing the same LOCKDEP instance,
and producing a false positive warning:
[ 580.840858] ======================================================
[ 580.842299] WARNING: possible circular locking dependency detected
[ 580.843684] 4.14.0-rc4+ #17 Not tainted
[ 580.844554] ------------------------------------------------------
[ 580.845945] swapper/9/0 is trying to acquire lock:
[ 580.847024] (slock-AF_INET){+.-.}, at: [<ffffffff84ea4c34>] tcp_write_timer+0x24/0xd0
[ 580.848834]
but task is already holding lock:
[ 580.850107] ((timer)#2){+.-.}, at: [<ffffffff846df7c0>] call_timer_fn+0x0/0x300
[ 580.851663]
which lock already depends on the new lock.
[ 580.853439]
the existing dependency chain (in reverse order) is:
[ 580.855311]
-> #1 ((timer)#2){+.-.}:
[ 580.856538] __lock_acquire+0x114d/0x11a0
[ 580.857506] lock_acquire+0xb0/0x1d0
[ 580.858373] del_timer_sync+0x3c/0xb0
[ 580.859260] inet_csk_reqsk_queue_drop+0x7f/0x1b0
...
-> #0 (slock-AF_INET){+.-.}:
[ 580.884980] check_prev_add+0x666/0x700
[ 580.885790] __lock_acquire+0x114d/0x11a0
[ 580.886575] lock_acquire+0xb0/0x1d0
[ 580.887289] _raw_spin_lock+0x2c/0x40
[ 580.888021] tcp_write_timer+0x24/0xd0
...
[ 580.900055] Possible unsafe locking scenario:
[ 580.901043] CPU0 CPU1
[ 580.901797] ---- ----
[ 580.902540] lock((timer)#2);
[ 580.903046] lock(slock-AF_INET);
[ 580.904006] lock((timer)#2);
[ 580.904915] lock(slock-AF_INET);
[ 580.905502]
In this report, del_timer_sync() is from:
inet_csk_reqsk_queue_drop()
reqsk_queue_unlink()
del_timer_sync(&req->rsk_timer)
but tcp_write_timer()'s timer is attached to icsk_retransmit_timer. Both
had the same lock_class_key, since they were using timer_setup(). Switching
to a macro allows for a separate context, avoiding the false positive.
Fixes: 686fef928b ("timer: Prepare to change timer callback argument type")
Reported-by: Craig Gallek <cgallek@google.com>
Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: netdev@vger.kernel.org
Cc: "David S. Miller" <davem@davemloft.net>
Link: https://lkml.kernel.org/r/20171019202838.GA43223@beast
Remove uses of init_timer_on_stack() with open-coded function and data
assignments that could be expressed using timer_setup_on_stack(). Several
were removed from the stack entirely since there was a one-to-one mapping
of parent structure to timer, those are switched to using timer_setup()
instead. All related callbacks were adjusted to use from_timer().
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mips@linux-mips.org
Cc: Petr Mladek <pmladek@suse.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Sebastian Reichel <sre@kernel.org>
Cc: Kalle Valo <kvalo@qca.qualcomm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Wim Van Sebroeck <wim@iguana.be>
Cc: linux1394-devel@lists.sourceforge.net
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: linux-s390@vger.kernel.org
Cc: linux-wireless@vger.kernel.org
Cc: "James E.J. Bottomley" <jejb@linux.vnet.ibm.com>
Cc: linux-scsi@vger.kernel.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Ursula Braun <ubraun@linux.vnet.ibm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Harish Patil <harish.patil@cavium.com>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: Michael Reed <mdr@sgi.com>
Cc: Manish Chopra <manish.chopra@cavium.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: linux-pm@vger.kernel.org
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Julian Wiedmann <jwi@linux.vnet.ibm.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Mark Gross <mark.gross@intel.com>
Cc: linux-watchdog@vger.kernel.org
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Stefan Richter <stefanr@s5r6.in-berlin.de>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: netdev@vger.kernel.org
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Link: https://lkml.kernel.org/r/1507159627-127660-4-git-send-email-keescook@chromium.org
This refactors the only user of init_timer_pinned_deferrable() to use the
new timer_setup() and from_timer(). Adds a pointer back to the policy,
and drops the definition of init_timer_pinned_deferrable().
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mips@linux-mips.org
Cc: Petr Mladek <pmladek@suse.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Sebastian Reichel <sre@kernel.org>
Cc: Kalle Valo <kvalo@qca.qualcomm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: linux1394-devel@lists.sourceforge.net
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: linux-s390@vger.kernel.org
Cc: linux-wireless@vger.kernel.org
Cc: "James E.J. Bottomley" <jejb@linux.vnet.ibm.com>
Cc: Wim Van Sebroeck <wim@iguana.be>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Ursula Braun <ubraun@linux.vnet.ibm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Harish Patil <harish.patil@cavium.com>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Manish Chopra <manish.chopra@cavium.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: linux-pm@vger.kernel.org
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Julian Wiedmann <jwi@linux.vnet.ibm.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Mark Gross <mark.gross@intel.com>
Cc: linux-watchdog@vger.kernel.org
Cc: linux-scsi@vger.kernel.org
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Stefan Richter <stefanr@s5r6.in-berlin.de>
Cc: Michael Reed <mdr@sgi.com>
Cc: netdev@vger.kernel.org
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Link: https://lkml.kernel.org/r/1507159627-127660-3-git-send-email-keescook@chromium.org
In preparation for unconditionally passing the struct timer_list pointer to
all timer callbacks, switch to using the new from_timer() helper and passing
the timer pointer explicitly. Since this special timer is on the stack, it
needs to have a wrapper structure to carry state once .data is eliminated.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mips@linux-mips.org
Cc: Petr Mladek <pmladek@suse.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Sebastian Reichel <sre@kernel.org>
Cc: Kalle Valo <kvalo@qca.qualcomm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: linux1394-devel@lists.sourceforge.net
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: linux-s390@vger.kernel.org
Cc: linux-wireless@vger.kernel.org
Cc: "James E.J. Bottomley" <jejb@linux.vnet.ibm.com>
Cc: Wim Van Sebroeck <wim@iguana.be>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Ursula Braun <ubraun@linux.vnet.ibm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Harish Patil <harish.patil@cavium.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Manish Chopra <manish.chopra@cavium.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: linux-pm@vger.kernel.org
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Julian Wiedmann <jwi@linux.vnet.ibm.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Mark Gross <mark.gross@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linux-watchdog@vger.kernel.org
Cc: linux-scsi@vger.kernel.org
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Stefan Richter <stefanr@s5r6.in-berlin.de>
Cc: Michael Reed <mdr@sgi.com>
Cc: netdev@vger.kernel.org
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Link: https://lkml.kernel.org/r/1507159627-127660-2-git-send-email-keescook@chromium.org
Modern kernel callback systems pass the structure associated with a
given callback to the callback function. The timer callback remains one
of the legacy cases where an arbitrary unsigned long argument continues
to be passed as the callback argument. This has several problems:
- This bloats the timer_list structure with a normally redundant
.data field.
- No type checking is being performed, forcing callbacks to do
explicit type casts of the unsigned long argument into the object
that was passed, rather than using container_of(), as done in most
of the other callback infrastructure.
- Neighboring buffer overflows can overwrite both the .function and
the .data field, providing attackers with a way to elevate from a buffer
overflow into a simplistic ROP-like mechanism that allows calling
arbitrary functions with a controlled first argument.
- For future Control Flow Integrity work, this creates a unique function
prototype for timer callbacks, instead of allowing them to continue to
be clustered with other void functions that take a single unsigned long
argument.
This adds a new timer initialization API, which will ultimately replace
the existing setup_timer(), setup_{deferrable,pinned,etc}_timer() family,
named timer_setup() (to mirror hrtimer_setup(), making instances of its
use much easier to grep for).
In order to support the migration of existing timers into the new
callback arguments, timer_setup() casts its arguments to the existing
legacy types, and explicitly passes the timer pointer as the legacy
data argument. Once all setup_*timer() callers have been replaced with
timer_setup(), the casts can be removed, and the data argument can be
dropped with the timer expiration code changed to just pass the timer
to the callback directly.
Since the regular pattern of using container_of() during local variable
declaration repeats the need for the variable type declaration
to be included, this adds a helper modeled after other from_*()
helpers that wrap container_of(), named from_timer(). This helper uses
typeof(*variable), removing the type redundancy and minimizing the need
for line wraps in forthcoming conversions from "unsigned data long" to
"struct timer_list *" in the timer callbacks:
-void callback(unsigned long data)
+void callback(struct timer_list *t)
{
- struct some_data_structure *local = (struct some_data_structure *)data;
+ struct some_data_structure *local = from_timer(local, t, timer);
Finally, in order to support the handful of timer users that perform
open-coded assignments of the .function (and .data) fields, provide
cast macros (TIMER_FUNC_TYPE and TIMER_DATA_TYPE) that can be used
temporarily. Once conversion has been completed, these can be globally
trivially removed.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20170928133817.GA113410@beast
So we want to simplify <linux/sched.h>'s header dependencies, but one
roadblock of that is <linux/timer.h>'s inclusion of sysctl.h,
which brings in other, problematic headers.
Note that timer.h's inclusion of sysctl.h can be avoided if we
pre-declare ctl_table - so do that.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
and small optimizations.
-----BEGIN PGP SIGNATURE-----
iQExBAABCAAbBQJYtDiAFBxyb3N0ZWR0QGdvb2RtaXMub3JnAAoJEMm5BfJq2Y3L
KygH/3sxuM9MCeJ29JsjmV49fHcNqryNZdvSadmnysPm+dFPiI6IgIIbh5R8H89b
2V2gfQSmOTKHu3/wvJr/MprkGP275sWlZPORYFLDl/+NE/3q7g0NKOMWunLcv6dH
QQRJIFjSMeGawA3KYBEcwBYMlgNd2VgtTxqLqSBhWth5omV6UevJNHhe3xzZ4nEE
YbRX2mxwOuRHOyFp0Hem+Bqro4z1VXJ6YDxOvae2PP8krrIhIHYw9EI22GK68a2g
EyKqKPPaEzfU8IjHIQCqIZta5RufnCrDbfHU0CComPANBRGO7g+ZhLO11a/Z316N
lyV7JqtF680iem7NKcQlwEwhlLE=
=HJnl
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"This release has no new tracing features, just clean ups, minor fixes
and small optimizations"
* tag 'trace-v4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (25 commits)
tracing: Remove outdated ring buffer comment
tracing/probes: Fix a warning message to show correct maximum length
tracing: Fix return value check in trace_benchmark_reg()
tracing: Use modern function declaration
jump_label: Reduce the size of struct static_key
tracing/probe: Show subsystem name in messages
tracing/hwlat: Update old comment about migration
timers: Make flags output in the timer_start tracepoint useful
tracing: Have traceprobe_probes_write() not access userspace unnecessarily
tracing: Have COMM event filter key be treated as a string
ftrace: Have set_graph_function handle multiple functions in one write
ftrace: Do not hold references of ftrace_graph_{notrace_}hash out of graph_lock
tracing: Reset parser->buffer to allow multiple "puts"
ftrace: Have set_graph_functions handle write with RDWR
ftrace: Reset fgd->hash in ftrace_graph_write()
ftrace: Replace (void *)1 with a meaningful macro name FTRACE_GRAPH_EMPTY
ftrace: Create a slight optimization on searching the ftrace_hash
tracing: Add ftrace_hash_key() helper function
ftrace: Convert graph filter to use hash tables
ftrace: Expose ftrace_hash_empty and ftrace_lookup_ip
...
The timer flags in the timer_start trace event contain lots of useful
information, but the meaning is not clear in the trace output. Making tools
rely on the bit positions is bad as they might change over time.
Decode the flags in the print out. Tools can retrieve the bits and their
meaning from the trace format file.
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1702101639290.4036@nanos
Requested-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Currently CONFIG_TIMER_STATS exposes process information across namespaces:
kernel/time/timer_list.c print_timer():
SEQ_printf(m, ", %s/%d", tmp, timer->start_pid);
/proc/timer_list:
#11: <0000000000000000>, hrtimer_wakeup, S:01, do_nanosleep, cron/2570
Given that the tracer can give the same information, this patch entirely
removes CONFIG_TIMER_STATS.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: John Stultz <john.stultz@linaro.org>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: linux-doc@vger.kernel.org
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Xing Gao <xgao01@email.wm.edu>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Jessica Frazelle <me@jessfraz.com>
Cc: kernel-hardening@lists.openwall.com
Cc: Nicolas Iooss <nicolas.iooss_linux@m4x.org>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Michal Marek <mmarek@suse.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Olof Johansson <olof@lixom.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-api@vger.kernel.org
Cc: Arjan van de Ven <arjan@linux.intel.com>
Link: http://lkml.kernel.org/r/20170208192659.GA32582@beast
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When tearing down, call timers_dead_cpu() before notify_dead().
There is a hidden dependency between:
- timers
- block multiqueue
- rcutree
If timers_dead_cpu() comes later than blk_mq_queue_reinit_notify()
that latter function causes a RCU stall.
Signed-off-by: Richard Cochran <rcochran@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160713153337.566790058@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We now have implicit batching in the timer wheel. The slack API is no longer
used, so remove it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Andrew F. Davis <afd@ti.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Chris Mason <clm@fb.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: George Spelvin <linux@sciencehorizons.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jaehoon Chung <jh80.chung@samsung.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathias Nyman <mathias.nyman@intel.com>
Cc: Pali Rohár <pali.rohar@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sebastian Reichel <sre@kernel.org>
Cc: Ulf Hansson <ulf.hansson@linaro.org>
Cc: linux-block@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mmc@vger.kernel.org
Cc: linux-pm@vger.kernel.org
Cc: linux-usb@vger.kernel.org
Cc: netdev@vger.kernel.org
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160704094342.189813118@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current timer wheel has some drawbacks:
1) Cascading:
Cascading can be an unbound operation and is completely pointless in most
cases because the vast majority of the timer wheel timers are canceled or
rearmed before expiration. (They are used as timeout safeguards, not as
real timers to measure time.)
2) No fast lookup of the next expiring timer:
In NOHZ scenarios the first timer soft interrupt after a long NOHZ period
must fast forward the base time to the current value of jiffies. As we
have no way to find the next expiring timer fast, the code loops linearly
and increments the base time one by one and checks for expired timers
in each step. This causes unbound overhead spikes exactly in the moment
when we should wake up as fast as possible.
After a thorough analysis of real world data gathered on laptops,
workstations, webservers and other machines (thanks Chris!) I came to the
conclusion that the current 'classic' timer wheel implementation can be
modified to address the above issues.
The vast majority of timer wheel timers is canceled or rearmed before
expiry. Most of them are timeouts for networking and other I/O tasks. The
nature of timeouts is to catch the exception from normal operation (TCP ack
timed out, disk does not respond, etc.). For these kinds of timeouts the
accuracy of the timeout is not really a concern. Timeouts are very often
approximate worst-case values and in case the timeout fires, we already
waited for a long time and performance is down the drain already.
The few timers which actually expire can be split into two categories:
1) Short expiry times which expect halfways accurate expiry
2) Long term expiry times are inaccurate today already due to the
batching which is done for NOHZ automatically and also via the
set_timer_slack() API.
So for long term expiry timers we can avoid the cascading property and just
leave them in the less granular outer wheels until expiry or
cancelation. Timers which are armed with a timeout larger than the wheel
capacity are no longer cascaded. We expire them with the longest possible
timeout (6+ days). We have not observed such timeouts in our data collection,
but at least we handle them, applying the rule of the least surprise.
To avoid extending the wheel levels for HZ=1000 so we can accomodate the
longest observed timeouts (5 days in the network conntrack code) we reduce the
first level granularity on HZ=1000 to 4ms, which effectively is the same as
the HZ=250 behaviour. From our data analysis there is nothing which relies on
that 1ms granularity and as a side effect we get better batching and timer
locality for the networking code as well.
Contrary to the classic wheel the granularity of the next wheel is not the
capacity of the first wheel. The granularities of the wheels are in the
currently chosen setting 8 times the granularity of the previous wheel.
So for HZ=250 we end up with the following granularity levels:
Level Offset Granularity Range
0 0 4 ms 0 ms - 252 ms
1 64 32 ms 256 ms - 2044 ms (256ms - ~2s)
2 128 256 ms 2048 ms - 16380 ms (~2s - ~16s)
3 192 2048 ms (~2s) 16384 ms - 131068 ms (~16s - ~2m)
4 256 16384 ms (~16s) 131072 ms - 1048572 ms (~2m - ~17m)
5 320 131072 ms (~2m) 1048576 ms - 8388604 ms (~17m - ~2h)
6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
That's a worst case inaccuracy of 12.5% for the timers which are queued at the
beginning of a level.
So the new wheel concept addresses the old issues:
1) Cascading is avoided completely
2) By keeping the timers in the bucket until expiry/cancelation we can track
the buckets which have timers enqueued in a bucket bitmap and therefore can
look up the next expiring timer very fast and O(1).
A further benefit of the concept is that the slack calculation which is done
on every timer start is no longer necessary because the granularity levels
provide natural batching already.
Our extensive testing with various loads did not show any performance
degradation vs. the current wheel implementation.
This patch does not address the 'fast lookup' issue as we wanted to make sure
that there is no regression introduced by the wheel redesign. The
optimizations are in follow up patches.
This patch contains fixes from Anna-Maria Gleixner and Richard Cochran.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Chris Mason <clm@fb.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: George Spelvin <linux@sciencehorizons.net>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160704094342.108621834@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We want to store the array index in the flags space. 256k CPUs should be
enough for a while.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Chris Mason <clm@fb.com>
Cc: George Spelvin <linux@sciencehorizons.net>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160704094342.030144293@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We switched all users to initialize the timers as pinned and call
mod_timer(). Remove the now unused timer API function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Chris Mason <clm@fb.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: George Spelvin <linux@sciencehorizons.net>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160704094341.706205231@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We want to move the timer migration logic from a 'push' to a 'pull' model.
Under the current 'push' model pinned timers are handled via
a runtime API variant: mod_timer_pinned().
The 'pull' model requires us to store the pinned attribute of a timer
in the timer_list structure itself, as a new TIMER_PINNED bit in
timer->flags.
This flag must be set at initialization time and the timer APIs
recognize the flag.
This patch:
- Implements the new flag and associated new-style initialization
methods
- makes mod_timer() recognize new-style pinned timers,
- and adds some migration helper facility to allow
step by step conversion of old-style to new-style
pinned timers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Chris Mason <clm@fb.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: George Spelvin <linux@sciencehorizons.net>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160704094341.049338558@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add the trivial missing macro to setup a deferrable timer.
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Eric reported that the timer_migration sysctl is not really nice
performance wise as it needs to check at every timer insertion whether
the feature is enabled or not. Further the check does not live in the
timer code, so we have an extra function call which checks an extra
cache line to figure out that it is disabled.
We can do better and store that information in the per cpu (hr)timer
bases. I pondered to use a static key, but that's a nightmare to
update from the nohz code and the timer base cache line is hot anyway
when we select a timer base.
The old logic enabled the timer migration unconditionally if
CONFIG_NO_HZ was set even if nohz was disabled on the kernel command
line.
With this modification, we start off with migration disabled. The user
visible sysctl is still set to enabled. If the kernel switches to NOHZ
migration is enabled, if the user did not disable it via the sysctl
prior to the switch. If nohz=off is on the kernel command line,
migration stays disabled no matter what.
Before:
47.76% hog [.] main
14.84% [kernel] [k] _raw_spin_lock_irqsave
9.55% [kernel] [k] _raw_spin_unlock_irqrestore
6.71% [kernel] [k] mod_timer
6.24% [kernel] [k] lock_timer_base.isra.38
3.76% [kernel] [k] detach_if_pending
3.71% [kernel] [k] del_timer
2.50% [kernel] [k] internal_add_timer
1.51% [kernel] [k] get_nohz_timer_target
1.28% [kernel] [k] __internal_add_timer
0.78% [kernel] [k] timerfn
0.48% [kernel] [k] wake_up_nohz_cpu
After:
48.10% hog [.] main
15.25% [kernel] [k] _raw_spin_lock_irqsave
9.76% [kernel] [k] _raw_spin_unlock_irqrestore
6.50% [kernel] [k] mod_timer
6.44% [kernel] [k] lock_timer_base.isra.38
3.87% [kernel] [k] detach_if_pending
3.80% [kernel] [k] del_timer
2.67% [kernel] [k] internal_add_timer
1.33% [kernel] [k] __internal_add_timer
0.73% [kernel] [k] timerfn
0.54% [kernel] [k] wake_up_nohz_cpu
Reported-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Link: http://lkml.kernel.org/r/20150526224512.127050787@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Simplify the handling of the flag storage for the timer statistics. No
intermediate storage anymore. Just hand over the flags field.
I left the printout of 'deferrable' for now because changing this
would be an ABI update and I have no idea how strong people feel about
that. OTOH, I wonder whether we should kill the whole timer stats
stuff because all of that information can be retrieved via ftrace/perf
as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Link: http://lkml.kernel.org/r/20150526224512.046626248@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Instead of storing a pointer to the per cpu tvec_base we can simply
cache a CPU index in the timer_list and use that to get hold of the
correct per cpu tvec_base. This is only used in lock_timer_base() and
the slightly larger code is peanuts versus the spinlock operation and
the d-cache foot print of the timer wheel.
Aside of that this allows to get rid of following nuisances:
- boot_tvec_base
That statically allocated 4k bss data is just kept around so the
timer has a home when it gets statically initialized. It serves no
other purpose.
With the CPU index we assign the timer to CPU0 at static
initialization time and therefor can avoid the whole boot_tvec_base
dance. That also simplifies the init code, which just can use the
per cpu base.
Before:
text data bss dec hex filename
17491 9201 4160 30852 7884 ../build/kernel/time/timer.o
After:
text data bss dec hex filename
17440 9193 0 26633 6809 ../build/kernel/time/timer.o
- Overloading the base pointer with various flags
The CPU index has enough space to hold the flags (deferrable,
irqsafe) so we can get rid of the extra masking and bit fiddling
with the base pointer.
As a benefit we reduce the size of struct timer_list on 64 bit
machines. 4 - 8 bytes, a size reduction up to 15% per struct timer_list,
which is a real win as we have tons of them embedded in other structs.
This changes also the newly added deferrable printout of the timer
start trace point to capture and print all timer->flags, which allows
us to decode the target cpu of the timer as well.
We might have used bitfields for this, but that would change the
static initializers and the init function for no value to accomodate
big endian bitfields.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Badhri Jagan Sridharan <Badhri@google.com>
Link: http://lkml.kernel.org/r/20150526224511.950084301@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This reduces the size of struct tvec_base by 50% and results in
slightly smaller code as well.
Before:
struct tvec_base: size: 8256, cachelines: 129
text data bss dec hex filename
17698 13297 8256 39251 9953 ../build/kernel/time/timer.o
After:
struct tvec_base: 4160, cachelines: 65
text data bss dec hex filename
17491 9201 4160 30852 7884 ../build/kernel/time/timer.o
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Link: http://lkml.kernel.org/r/20150526224511.854731214@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>