Commit Graph

15 Commits

Author SHA1 Message Date
Christian Brauner 52edb4080e
acl: move idmapping handling into posix_acl_xattr_set()
The uapi POSIX ACL struct passed through the value argument during
setxattr() contains {g,u}id values encoded via ACL_{GROUP,USER} entries
that should actually be stored in the form of k{g,u}id_t (See [1] for a
long explanation of the issue.).

In 0c5fd887d2 ("acl: move idmapped mount fixup into vfs_{g,s}etxattr()")
we took the mount's idmapping into account in order to let overlayfs
handle POSIX ACLs on idmapped layers correctly. The fixup is currently
performed directly in vfs_setxattr() which piles on top of the earlier
hackiness by handling the mount's idmapping and stuff the vfs{g,u}id_t
values into the uapi struct as well. While that is all correct and works
fine it's just ugly.

Now that we have introduced vfs_make_posix_acl() earlier move handling
idmapped mounts out of vfs_setxattr() and into the POSIX ACL handler
where it belongs.

Note that we also need to call vfs_make_posix_acl() for EVM which
interpretes POSIX ACLs during security_inode_setxattr(). Leave them a
longer comment for future reference.

All filesystems that support idmapped mounts via FS_ALLOW_IDMAP use the
standard POSIX ACL xattr handlers and are covered by this change. This
includes overlayfs which simply calls vfs_{g,s}etxattr().

The following filesystems use custom POSIX ACL xattr handlers: 9p, cifs,
ecryptfs, and ntfs3 (and overlayfs but we've covered that in the paragraph
above) and none of them support idmapped mounts yet.

Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org/ [1]
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Reviewed-by: Seth Forshee (DigitalOcean) <sforshee@kernel.org>
2022-08-31 16:37:58 +02:00
Christian Brauner 6b70fe0601
acl: add vfs_set_acl_prepare()
Various filesystems store POSIX ACLs on the backing store in their uapi
format. Such filesystems need to translate from the uapi POSIX ACL
format into the VFS format during i_op->get_acl(). The VFS provides the
posix_acl_from_xattr() helper for this task.

But the usage of posix_acl_from_xattr() is currently ambiguous. It is
intended to transform from a uapi POSIX ACL  to the VFS represenation.
For example, when retrieving POSIX ACLs for permission checking during
lookup or when calling getxattr() to retrieve system.posix_acl_{access,default}.

Calling posix_acl_from_xattr() during i_op->get_acl() will map the raw
{g,u}id values stored as ACL_{GROUP,USER} entries in the uapi POSIX ACL
format into k{g,u}id_t in the filesystem's idmapping and return a struct
posix_acl ready to be returned to the VFS for caching and to perform
permission checks on.

However, posix_acl_from_xattr() is also called during setxattr() for all
filesystems that rely on VFS provides posix_acl_{access,default}_xattr_handler.
The posix_acl_xattr_set() handler which is used for the ->set() method
of posix_acl_{access,default}_xattr_handler uses posix_acl_from_xattr()
to translate from the uapi POSIX ACL format to the VFS format so that it
can be passed to the i_op->set_acl() handler of the filesystem or for
direct caching in case no i_op->set_acl() handler is defined.

During setxattr() the {g,u}id values stored as ACL_{GROUP,USER} entries
in the uapi POSIX ACL format aren't raw {g,u}id values that need to be
mapped according to the filesystem's idmapping. Instead they are {g,u}id
values in the caller's idmapping which have been generated during
posix_acl_fix_xattr_from_user(). In other words, they are k{g,u}id_t
which are passed as raw {g,u}id values abusing the uapi POSIX ACL format
(Please note that this type safety violation has existed since the
introduction of k{g,u}id_t. Please see [1] for more details.).

So when posix_acl_from_xattr() is called in posix_acl_xattr_set() the
filesystem idmapping is completely irrelevant. Instead, we abuse the
initial idmapping to recover the k{g,u}id_t base on the value stored in
raw {g,u}id as ACL_{GROUP,USER} in the uapi POSIX ACL format.

We need to clearly distinguish betweeen these two operations as it is
really easy to confuse for filesystems as can be seen in ntfs3.

In order to do this we factor out make_posix_acl() which takes callbacks
allowing callers to pass dedicated methods to generate the correct
k{g,u}id_t. This is just an internal static helper which is not exposed
to any filesystems but it neatly encapsulates the basic logic of walking
through a uapi POSIX ACL and returning an allocated VFS POSIX ACL with
the correct k{g,u}id_t values.

The posix_acl_from_xattr() helper can then be implemented as a simple
call to make_posix_acl() with callbacks that generate the correct
k{g,u}id_t from the raw {g,u}id values in ACL_{GROUP,USER} entries in
the uapi POSIX ACL format as read from the backing store.

For setxattr() we add a new helper vfs_set_acl_prepare() which has
callbacks to map the POSIX ACLs from the uapi format with the k{g,u}id_t
values stored in raw {g,u}id format in ACL_{GROUP,USER} entries into the
correct k{g,u}id_t values in the filesystem idmapping. In contrast to
posix_acl_from_xattr() the vfs_set_acl_prepare() helper needs to take
the mount idmapping into account. The differences are explained in more
detail in the kernel doc for the new functions.

In follow up patches we will remove all abuses of posix_acl_from_xattr()
for setxattr() operations and replace it with calls to vfs_set_acl_prepare().

The new vfs_set_acl_prepare() helper allows us to deal with the
ambiguity in how the POSI ACL uapi struct stores {g,u}id values
depending on whether this is a getxattr() or setxattr() operation.

This also allows us to remove the posix_acl_setxattr_idmapped_mnt()
helper reducing the abuse of the POSIX ACL uapi format to pass values
that should be distinct types in {g,u}id values stored as
ACL_{GROUP,USER} entries.

The removal of posix_acl_setxattr_idmapped_mnt() in turn allows us to
re-constify the value parameter of vfs_setxattr() which in turn allows
us to avoid the nasty cast from a const void pointer to a non-const void
pointer on ovl_do_setxattr().

Ultimately, the plan is to get rid of the type violations completely and
never pass the values from k{g,u}id_t as raw {g,u}id in ACL_{GROUP,USER}
entries in uapi POSIX ACL format. But that's a longer way to go and this
is a preparatory step.

Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1]
Co-Developed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2022-08-31 08:49:50 +02:00
Christian Brauner 0c5fd887d2
acl: move idmapped mount fixup into vfs_{g,s}etxattr()
This cycle we added support for mounting overlayfs on top of idmapped mounts.
Recently I've started looking into potential corner cases when trying to add
additional tests and I noticed that reporting for POSIX ACLs is currently wrong
when using idmapped layers with overlayfs mounted on top of it.

I'm going to give a rather detailed explanation to both the origin of the
problem and the solution.

Let's assume the user creates the following directory layout and they have a
rootfs /var/lib/lxc/c1/rootfs. The files in this rootfs are owned as you would
expect files on your host system to be owned. For example, ~/.bashrc for your
regular user would be owned by 1000:1000 and /root/.bashrc would be owned by
0:0. IOW, this is just regular boring filesystem tree on an ext4 or xfs
filesystem.

The user chooses to set POSIX ACLs using the setfacl binary granting the user
with uid 4 read, write, and execute permissions for their .bashrc file:

        setfacl -m u:4:rwx /var/lib/lxc/c2/rootfs/home/ubuntu/.bashrc

Now they to expose the whole rootfs to a container using an idmapped mount. So
they first create:

        mkdir -pv /vol/contpool/{ctrover,merge,lowermap,overmap}
        mkdir -pv /vol/contpool/ctrover/{over,work}
        chown 10000000:10000000 /vol/contpool/ctrover/{over,work}

The user now creates an idmapped mount for the rootfs:

        mount-idmapped/mount-idmapped --map-mount=b:0:10000000:65536 \
                                      /var/lib/lxc/c2/rootfs \
                                      /vol/contpool/lowermap

This for example makes it so that /var/lib/lxc/c2/rootfs/home/ubuntu/.bashrc
which is owned by uid and gid 1000 as being owned by uid and gid 10001000 at
/vol/contpool/lowermap/home/ubuntu/.bashrc.

Assume the user wants to expose these idmapped mounts through an overlayfs
mount to a container.

       mount -t overlay overlay                      \
             -o lowerdir=/vol/contpool/lowermap,     \
                upperdir=/vol/contpool/overmap/over, \
                workdir=/vol/contpool/overmap/work   \
             /vol/contpool/merge

The user can do this in two ways:

(1) Mount overlayfs in the initial user namespace and expose it to the
    container.
(2) Mount overlayfs on top of the idmapped mounts inside of the container's
    user namespace.

Let's assume the user chooses the (1) option and mounts overlayfs on the host
and then changes into a container which uses the idmapping 0:10000000:65536
which is the same used for the two idmapped mounts.

Now the user tries to retrieve the POSIX ACLs using the getfacl command

        getfacl -n /vol/contpool/lowermap/home/ubuntu/.bashrc

and to their surprise they see:

        # file: vol/contpool/merge/home/ubuntu/.bashrc
        # owner: 1000
        # group: 1000
        user::rw-
        user:4294967295:rwx
        group::r--
        mask::rwx
        other::r--

indicating the the uid wasn't correctly translated according to the idmapped
mount. The problem is how we currently translate POSIX ACLs. Let's inspect the
callchain in this example:

        idmapped mount /vol/contpool/merge:      0:10000000:65536
        caller's idmapping:                      0:10000000:65536
        overlayfs idmapping (ofs->creator_cred): 0:0:4k /* initial idmapping */

        sys_getxattr()
        -> path_getxattr()
           -> getxattr()
              -> do_getxattr()
                  |> vfs_getxattr()
                  |  -> __vfs_getxattr()
                  |     -> handler->get == ovl_posix_acl_xattr_get()
                  |        -> ovl_xattr_get()
                  |           -> vfs_getxattr()
                  |              -> __vfs_getxattr()
                  |                 -> handler->get() /* lower filesystem callback */
                  |> posix_acl_fix_xattr_to_user()
                     {
                              4 = make_kuid(&init_user_ns, 4);
                              4 = mapped_kuid_fs(&init_user_ns /* no idmapped mount */, 4);
                              /* FAILURE */
                             -1 = from_kuid(0:10000000:65536 /* caller's idmapping */, 4);
                     }

If the user chooses to use option (2) and mounts overlayfs on top of idmapped
mounts inside the container things don't look that much better:

        idmapped mount /vol/contpool/merge:      0:10000000:65536
        caller's idmapping:                      0:10000000:65536
        overlayfs idmapping (ofs->creator_cred): 0:10000000:65536

        sys_getxattr()
        -> path_getxattr()
           -> getxattr()
              -> do_getxattr()
                  |> vfs_getxattr()
                  |  -> __vfs_getxattr()
                  |     -> handler->get == ovl_posix_acl_xattr_get()
                  |        -> ovl_xattr_get()
                  |           -> vfs_getxattr()
                  |              -> __vfs_getxattr()
                  |                 -> handler->get() /* lower filesystem callback */
                  |> posix_acl_fix_xattr_to_user()
                     {
                              4 = make_kuid(&init_user_ns, 4);
                              4 = mapped_kuid_fs(&init_user_ns, 4);
                              /* FAILURE */
                             -1 = from_kuid(0:10000000:65536 /* caller's idmapping */, 4);
                     }

As is easily seen the problem arises because the idmapping of the lower mount
isn't taken into account as all of this happens in do_gexattr(). But
do_getxattr() is always called on an overlayfs mount and inode and thus cannot
possible take the idmapping of the lower layers into account.

This problem is similar for fscaps but there the translation happens as part of
vfs_getxattr() already. Let's walk through an fscaps overlayfs callchain:

        setcap 'cap_net_raw+ep' /var/lib/lxc/c2/rootfs/home/ubuntu/.bashrc

The expected outcome here is that we'll receive the cap_net_raw capability as
we are able to map the uid associated with the fscap to 0 within our container.
IOW, we want to see 0 as the result of the idmapping translations.

If the user chooses option (1) we get the following callchain for fscaps:

        idmapped mount /vol/contpool/merge:      0:10000000:65536
        caller's idmapping:                      0:10000000:65536
        overlayfs idmapping (ofs->creator_cred): 0:0:4k /* initial idmapping */

        sys_getxattr()
        -> path_getxattr()
           -> getxattr()
              -> do_getxattr()
                   -> vfs_getxattr()
                      -> xattr_getsecurity()
                         -> security_inode_getsecurity()                                       ________________________________
                            -> cap_inode_getsecurity()                                         |                              |
                               {                                                               V                              |
                                        10000000 = make_kuid(0:0:4k /* overlayfs idmapping */, 10000000);                     |
                                        10000000 = mapped_kuid_fs(0:0:4k /* no idmapped mount */, 10000000);                  |
                                               /* Expected result is 0 and thus that we own the fscap. */                     |
                                               0 = from_kuid(0:10000000:65536 /* caller's idmapping */, 10000000);            |
                               }                                                                                              |
                               -> vfs_getxattr_alloc()                                                                        |
                                  -> handler->get == ovl_other_xattr_get()                                                    |
                                     -> vfs_getxattr()                                                                        |
                                        -> xattr_getsecurity()                                                                |
                                           -> security_inode_getsecurity()                                                    |
                                              -> cap_inode_getsecurity()                                                      |
                                                 {                                                                            |
                                                                0 = make_kuid(0:0:4k /* lower s_user_ns */, 0);               |
                                                         10000000 = mapped_kuid_fs(0:10000000:65536 /* idmapped mount */, 0); |
                                                         10000000 = from_kuid(0:0:4k /* overlayfs idmapping */, 10000000);    |
                                                         |____________________________________________________________________|
                                                 }
                                                 -> vfs_getxattr_alloc()
                                                    -> handler->get == /* lower filesystem callback */

And if the user chooses option (2) we get:

        idmapped mount /vol/contpool/merge:      0:10000000:65536
        caller's idmapping:                      0:10000000:65536
        overlayfs idmapping (ofs->creator_cred): 0:10000000:65536

        sys_getxattr()
        -> path_getxattr()
           -> getxattr()
              -> do_getxattr()
                   -> vfs_getxattr()
                      -> xattr_getsecurity()
                         -> security_inode_getsecurity()                                                _______________________________
                            -> cap_inode_getsecurity()                                                  |                             |
                               {                                                                        V                             |
                                       10000000 = make_kuid(0:10000000:65536 /* overlayfs idmapping */, 0);                           |
                                       10000000 = mapped_kuid_fs(0:0:4k /* no idmapped mount */, 10000000);                           |
                                               /* Expected result is 0 and thus that we own the fscap. */                             |
                                              0 = from_kuid(0:10000000:65536 /* caller's idmapping */, 10000000);                     |
                               }                                                                                                      |
                               -> vfs_getxattr_alloc()                                                                                |
                                  -> handler->get == ovl_other_xattr_get()                                                            |
                                    |-> vfs_getxattr()                                                                                |
                                        -> xattr_getsecurity()                                                                        |
                                           -> security_inode_getsecurity()                                                            |
                                              -> cap_inode_getsecurity()                                                              |
                                                 {                                                                                    |
                                                                 0 = make_kuid(0:0:4k /* lower s_user_ns */, 0);                      |
                                                          10000000 = mapped_kuid_fs(0:10000000:65536 /* idmapped mount */, 0);        |
                                                                 0 = from_kuid(0:10000000:65536 /* overlayfs idmapping */, 10000000); |
                                                                 |____________________________________________________________________|
                                                 }
                                                 -> vfs_getxattr_alloc()
                                                    -> handler->get == /* lower filesystem callback */

We can see how the translation happens correctly in those cases as the
conversion happens within the vfs_getxattr() helper.

For POSIX ACLs we need to do something similar. However, in contrast to fscaps
we cannot apply the fix directly to the kernel internal posix acl data
structure as this would alter the cached values and would also require a rework
of how we currently deal with POSIX ACLs in general which almost never take the
filesystem idmapping into account (the noteable exception being FUSE but even
there the implementation is special) and instead retrieve the raw values based
on the initial idmapping.

The correct values are then generated right before returning to userspace. The
fix for this is to move taking the mount's idmapping into account directly in
vfs_getxattr() instead of having it be part of posix_acl_fix_xattr_to_user().

To this end we split out two small and unexported helpers
posix_acl_getxattr_idmapped_mnt() and posix_acl_setxattr_idmapped_mnt(). The
former to be called in vfs_getxattr() and the latter to be called in
vfs_setxattr().

Let's go back to the original example. Assume the user chose option (1) and
mounted overlayfs on top of idmapped mounts on the host:

        idmapped mount /vol/contpool/merge:      0:10000000:65536
        caller's idmapping:                      0:10000000:65536
        overlayfs idmapping (ofs->creator_cred): 0:0:4k /* initial idmapping */

        sys_getxattr()
        -> path_getxattr()
           -> getxattr()
              -> do_getxattr()
                  |> vfs_getxattr()
                  |  |> __vfs_getxattr()
                  |  |  -> handler->get == ovl_posix_acl_xattr_get()
                  |  |     -> ovl_xattr_get()
                  |  |        -> vfs_getxattr()
                  |  |           |> __vfs_getxattr()
                  |  |           |  -> handler->get() /* lower filesystem callback */
                  |  |           |> posix_acl_getxattr_idmapped_mnt()
                  |  |              {
                  |  |                              4 = make_kuid(&init_user_ns, 4);
                  |  |                       10000004 = mapped_kuid_fs(0:10000000:65536 /* lower idmapped mount */, 4);
                  |  |                       10000004 = from_kuid(&init_user_ns, 10000004);
                  |  |                       |_______________________
                  |  |              }                               |
                  |  |                                              |
                  |  |> posix_acl_getxattr_idmapped_mnt()           |
                  |     {                                           |
                  |                                                 V
                  |             10000004 = make_kuid(&init_user_ns, 10000004);
                  |             10000004 = mapped_kuid_fs(&init_user_ns /* no idmapped mount */, 10000004);
                  |             10000004 = from_kuid(&init_user_ns, 10000004);
                  |     }       |_________________________________________________
                  |                                                              |
                  |                                                              |
                  |> posix_acl_fix_xattr_to_user()                               |
                     {                                                           V
                                 10000004 = make_kuid(0:0:4k /* init_user_ns */, 10000004);
                                        /* SUCCESS */
                                        4 = from_kuid(0:10000000:65536 /* caller's idmapping */, 10000004);
                     }

And similarly if the user chooses option (1) and mounted overayfs on top of
idmapped mounts inside the container:

        idmapped mount /vol/contpool/merge:      0:10000000:65536
        caller's idmapping:                      0:10000000:65536
        overlayfs idmapping (ofs->creator_cred): 0:10000000:65536

        sys_getxattr()
        -> path_getxattr()
           -> getxattr()
              -> do_getxattr()
                  |> vfs_getxattr()
                  |  |> __vfs_getxattr()
                  |  |  -> handler->get == ovl_posix_acl_xattr_get()
                  |  |     -> ovl_xattr_get()
                  |  |        -> vfs_getxattr()
                  |  |           |> __vfs_getxattr()
                  |  |           |  -> handler->get() /* lower filesystem callback */
                  |  |           |> posix_acl_getxattr_idmapped_mnt()
                  |  |              {
                  |  |                              4 = make_kuid(&init_user_ns, 4);
                  |  |                       10000004 = mapped_kuid_fs(0:10000000:65536 /* lower idmapped mount */, 4);
                  |  |                       10000004 = from_kuid(&init_user_ns, 10000004);
                  |  |                       |_______________________
                  |  |              }                               |
                  |  |                                              |
                  |  |> posix_acl_getxattr_idmapped_mnt()           |
                  |     {                                           V
                  |             10000004 = make_kuid(&init_user_ns, 10000004);
                  |             10000004 = mapped_kuid_fs(&init_user_ns /* no idmapped mount */, 10000004);
                  |             10000004 = from_kuid(0(&init_user_ns, 10000004);
                  |             |_________________________________________________
                  |     }                                                        |
                  |                                                              |
                  |> posix_acl_fix_xattr_to_user()                               |
                     {                                                           V
                                 10000004 = make_kuid(0:0:4k /* init_user_ns */, 10000004);
                                        /* SUCCESS */
                                        4 = from_kuid(0:10000000:65536 /* caller's idmappings */, 10000004);
                     }

The last remaining problem we need to fix here is ovl_get_acl(). During
ovl_permission() overlayfs will call:

        ovl_permission()
        -> generic_permission()
           -> acl_permission_check()
              -> check_acl()
                 -> get_acl()
                    -> inode->i_op->get_acl() == ovl_get_acl()
                        > get_acl() /* on the underlying filesystem)
                          ->inode->i_op->get_acl() == /*lower filesystem callback */
                 -> posix_acl_permission()

passing through the get_acl request to the underlying filesystem. This will
retrieve the acls stored in the lower filesystem without taking the idmapping
of the underlying mount into account as this would mean altering the cached
values for the lower filesystem. So we block using ACLs for now until we
decided on a nice way to fix this. Note this limitation both in the
documentation and in the code.

The most straightforward solution would be to have ovl_get_acl() simply
duplicate the ACLs, update the values according to the idmapped mount and
return it to acl_permission_check() so it can be used in posix_acl_permission()
forgetting them afterwards. This is a bit heavy handed but fairly
straightforward otherwise.

Link: https://github.com/brauner/mount-idmapped/issues/9
Link: https://lore.kernel.org/r/20220708090134.385160-2-brauner@kernel.org
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Cc: linux-unionfs@vger.kernel.org
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2022-07-15 22:08:59 +02:00
Christian Brauner 705191b03d fs: fix acl translation
Last cycle we extended the idmapped mounts infrastructure to support
idmapped mounts of idmapped filesystems (No such filesystem yet exist.).
Since then, the meaning of an idmapped mount is a mount whose idmapping
is different from the filesystems idmapping.

While doing that work we missed to adapt the acl translation helpers.
They still assume that checking for the identity mapping is enough.  But
they need to use the no_idmapping() helper instead.

Note, POSIX ACLs are always translated right at the userspace-kernel
boundary using the caller's current idmapping and the initial idmapping.
The order depends on whether we're coming from or going to userspace.
The filesystem's idmapping doesn't matter at the border.

Consequently, if a non-idmapped mount is passed we need to make sure to
always pass the initial idmapping as the mount's idmapping and not the
filesystem idmapping.  Since it's irrelevant here it would yield invalid
ids and prevent setting acls for filesystems that are mountable in a
userns and support posix acls (tmpfs and fuse).

I verified the regression reported in [1] and verified that this patch
fixes it.  A regression test will be added to xfstests in parallel.

Link: https://bugzilla.kernel.org/show_bug.cgi?id=215849 [1]
Fixes: bd303368b7 ("fs: support mapped mounts of mapped filesystems")
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: <stable@vger.kernel.org> # 5.17
Cc: <regressions@lists.linux.dev>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-19 10:19:02 -07:00
Christian Brauner e65ce2a50c
acl: handle idmapped mounts
The posix acl permission checking helpers determine whether a caller is
privileged over an inode according to the acls associated with the
inode. Add helpers that make it possible to handle acls on idmapped
mounts.

The vfs and the filesystems targeted by this first iteration make use of
posix_acl_fix_xattr_from_user() and posix_acl_fix_xattr_to_user() to
translate basic posix access and default permissions such as the
ACL_USER and ACL_GROUP type according to the initial user namespace (or
the superblock's user namespace) to and from the caller's current user
namespace. Adapt these two helpers to handle idmapped mounts whereby we
either map from or into the mount's user namespace depending on in which
direction we're translating.
Similarly, cap_convert_nscap() is used by the vfs to translate user
namespace and non-user namespace aware filesystem capabilities from the
superblock's user namespace to the caller's user namespace. Enable it to
handle idmapped mounts by accounting for the mount's user namespace.

In addition the fileystems targeted in the first iteration of this patch
series make use of the posix_acl_chmod() and, posix_acl_update_mode()
helpers. Both helpers perform permission checks on the target inode. Let
them handle idmapped mounts. These two helpers are called when posix
acls are set by the respective filesystems to handle this case we extend
the ->set() method to take an additional user namespace argument to pass
the mount's user namespace down.

Link: https://lore.kernel.org/r/20210121131959.646623-9-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-24 14:27:17 +01:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Andreas Gruenbacher bc8bcf3b15 posix_acl: uapi header split
Export the base definitions and the xattr representation of POSIX ACLs
to user space.

Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-09-27 21:52:00 -04:00
Andreas Gruenbacher 2211d5ba5c posix_acl: xattr representation cleanups
Remove the unnecessary typedefs and the zero-length a_entries array in
struct posix_acl_xattr_header.

Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-09-27 21:52:00 -04:00
Andreas Gruenbacher 97d7929922 posix acls: Remove duplicate xattr name definitions
Remove POSIX_ACL_XATTR_{ACCESS,DEFAULT} and GFS2_POSIX_ACL_{ACCESS,DEFAULT}
and replace them with the definitions in <include/uapi/linux/xattr.h>.

Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-12-06 21:25:17 -05:00
Christoph Hellwig 2aeccbe957 fs: add generic xattr_acl handlers
With the ->set_acl inode operation we can implement the Posix ACL
xattr handlers in generic code instead of duplicating them all
over the tree.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-01-25 23:58:17 -05:00
Eric W. Biederman 5f3a4a28ec userns: Pass a userns parameter into posix_acl_to_xattr and posix_acl_from_xattr
- Pass the user namespace the uid and gid values in the xattr are stored
   in into posix_acl_from_xattr.

 - Pass the user namespace kuid and kgid values should be converted into
   when storing uid and gid values in an xattr in posix_acl_to_xattr.

- Modify all callers of posix_acl_from_xattr and posix_acl_to_xattr to
  pass in &init_user_ns.

In the short term this change is not strictly needed but it makes the
code clearer.  In the longer term this change is necessary to be able to
mount filesystems outside of the initial user namespace that natively
store posix acls in the linux xattr format.

Cc: Theodore Tso <tytso@mit.edu>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Jan Kara <jack@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2012-09-18 01:01:35 -07:00
Eric W. Biederman 2f6f0654ab userns: Convert vfs posix_acl support to use kuids and kgids
- In setxattr if we are setting a posix acl convert uids and gids from
  the current user namespace into the initial user namespace, before
  the xattrs are passed to the underlying filesystem.

  Untranslatable uids and gids are represented as -1 which
  posix_acl_from_xattr will represent as INVALID_UID or INVALID_GID.
  posix_acl_valid will fail if an acl from userspace has any
  INVALID_UID or INVALID_GID values.  In net this guarantees that
  untranslatable posix acls will not be stored by filesystems.

- In getxattr if we are reading a posix acl convert uids and gids from
  the initial user namespace into the current user namespace.

  Uids and gids that can not be tranlsated into the current user namespace
  will be represented as -1.

- Replace e_id in struct posix_acl_entry with an anymouns union of
  e_uid and e_gid.  For the short term retain the e_id field
  until all of the users are converted.

- Don't set struct posix_acl.e_id in the cases where the acl type
  does not use e_id.  Greatly reducing the use of ACL_UNDEFINED_ID.

- Rework the ordering checks in posix_acl_valid so that I use kuid_t
  and kgid_t types throughout the code, and so that I don't need
  arithmetic on uid and gid types.

Cc: Theodore Tso <tytso@mit.edu>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Jan Kara <jack@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-09-18 01:01:35 -07:00
Christoph Hellwig 9a59f452ab [PATCH] remove <linux/xattr_acl.h>
This file duplicates <linux/posix_acl_xattr.h>, using slightly different
names.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:45:33 -07:00
Christoph Hellwig f9fd27a253 [PATCH] acl endianess annotations
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:45:33 -07:00
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00