linux-next for a couple of months without, to my knowledge, any negative
reports (or any positive ones, come to that).
- Also the Maple Tree from Liam R. Howlett. An overlapping range-based
tree for vmas. It it apparently slight more efficient in its own right,
but is mainly targeted at enabling work to reduce mmap_lock contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
(https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com).
This has yet to be addressed due to Liam's unfortunately timed
vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down to
the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support
file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA
joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf
bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU=
=xfWx
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any
negative reports (or any positive ones, come to that).
- Also the Maple Tree from Liam Howlett. An overlapping range-based
tree for vmas. It it apparently slightly more efficient in its own
right, but is mainly targeted at enabling work to reduce mmap_lock
contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
at [1]. This has yet to be addressed due to Liam's unfortunately
timed vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down
to the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
support file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging
activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]
* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
hugetlb: allocate vma lock for all sharable vmas
hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
hugetlb: fix vma lock handling during split vma and range unmapping
mglru: mm/vmscan.c: fix imprecise comments
mm/mglru: don't sync disk for each aging cycle
mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
mm: memcontrol: use do_memsw_account() in a few more places
mm: memcontrol: deprecate swapaccounting=0 mode
mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
mm/secretmem: remove reduntant return value
mm/hugetlb: add available_huge_pages() func
mm: remove unused inline functions from include/linux/mm_inline.h
selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
selftests/vm: add thp collapse shmem testing
selftests/vm: add thp collapse file and tmpfs testing
selftests/vm: modularize thp collapse memory operations
selftests/vm: dedup THP helpers
mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
mm/madvise: add file and shmem support to MADV_COLLAPSE
...
With all callers now passing in a folio, rename the function and convert
all callers. Removes a couple of calls to compound_head() and a reference
to page->mapping.
Link: https://lkml.kernel.org/r/20220902194653.1739778-55-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
commit 6c287605fd ("mm: remember exclusively mapped anonymous pages with
PG_anon_exclusive") made sure that when PageAnonExclusive() has to be
cleared during temporary unmapping of a page, that the PTE is
cleared/invalidated and that the TLB is flushed.
What we want to achieve in all cases is that we cannot end up with a pin on
an anonymous page that may be shared, because such pins would be
unreliable and could result in memory corruptions when the mapped page
and the pin go out of sync due to a write fault.
That TLB flush handling was inspired by an outdated comment in
mm/ksm.c:write_protect_page(), which similarly required the TLB flush in
the past to synchronize with GUP-fast. However, ever since general RCU GUP
fast was introduced in commit 2667f50e8b ("mm: introduce a general RCU
get_user_pages_fast()"), a TLB flush is no longer sufficient to handle
concurrent GUP-fast in all cases -- it only handles traditional IPI-based
GUP-fast correctly.
Peter Xu (thankfully) questioned whether that TLB flush is really
required. On architectures that send an IPI broadcast on TLB flush,
it works as expected. To synchronize with RCU GUP-fast properly, we're
conceptually fine, however, we have to enforce a certain memory order and
are missing memory barriers.
Let's document that, avoid the TLB flush where possible and use proper
explicit memory barriers where required. We shouldn't really care about the
additional memory barriers here, as we're not on extremely hot paths --
and we're getting rid of some TLB flushes.
We use a smp_mb() pair for handling concurrent pinning and a
smp_rmb()/smp_wmb() pair for handling the corner case of only temporary
PTE changes but permanent PageAnonExclusive changes.
One extreme example, whereby GUP-fast takes a R/O pin and KSM wants to
convert an exclusive anonymous page to a KSM page, and that page is already
mapped write-protected (-> no PTE change) would be:
Thread 0 (KSM) Thread 1 (GUP-fast)
(B1) Read the PTE
# (B2) skipped without FOLL_WRITE
(A1) Clear PTE
smp_mb()
(A2) Check pinned
(B3) Pin the mapped page
smp_mb()
(A3) Clear PageAnonExclusive
smp_wmb()
(A4) Restore PTE
(B4) Check if the PTE changed
smp_rmb()
(B5) Check PageAnonExclusive
Thread 1 will properly detect that PageAnonExclusive was cleared and
back off.
Note that we don't need a memory barrier between checking if the page is
pinned and clearing PageAnonExclusive, because stores are not
speculated.
The possible issues due to reordering are of theoretical nature so far
and attempts to reproduce the race failed.
Especially the "no PTE change" case isn't the common case, because we'd
need an exclusive anonymous page that's mapped R/O and the PTE is clean
in KSM code -- and using KSM with page pinning isn't extremely common.
Further, the clear+TLB flush we used for now implies a memory barrier.
So the problematic missing part should be the missing memory barrier
after pinning but before checking if the PTE changed.
Link: https://lkml.kernel.org/r/20220901083559.67446-1-david@redhat.com
Fixes: 6c287605fd ("mm: remember exclusively mapped anonymous pages with PG_anon_exclusive")
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Christoph von Recklinghausen <crecklin@redhat.com>
Cc: Don Dutile <ddutile@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
anon_vma->degree tracks the combined number of child anon_vmas and VMAs
that use the anon_vma as their ->anon_vma.
anon_vma_clone() then assumes that for any anon_vma attached to
src->anon_vma_chain other than src->anon_vma, it is impossible for it to
be a leaf node of the VMA tree, meaning that for such VMAs ->degree is
elevated by 1 because of a child anon_vma, meaning that if ->degree
equals 1 there are no VMAs that use the anon_vma as their ->anon_vma.
This assumption is wrong because the ->degree optimization leads to leaf
nodes being abandoned on anon_vma_clone() - an existing anon_vma is
reused and no new parent-child relationship is created. So it is
possible to reuse an anon_vma for one VMA while it is still tied to
another VMA.
This is an issue because is_mergeable_anon_vma() and its callers assume
that if two VMAs have the same ->anon_vma, the list of anon_vmas
attached to the VMAs is guaranteed to be the same. When this assumption
is violated, vma_merge() can merge pages into a VMA that is not attached
to the corresponding anon_vma, leading to dangling page->mapping
pointers that will be dereferenced during rmap walks.
Fix it by separately tracking the number of child anon_vmas and the
number of VMAs using the anon_vma as their ->anon_vma.
Fixes: 7a3ef208e6 ("mm: prevent endless growth of anon_vma hierarchy")
Cc: stable@kernel.org
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The parameter used by DEFINE_PAGE_VMA_WALK is _page not page, fix the
parameter name. It didn't cause any build error, it is probably because
the only caller is write_protect_page() from ksm.c, which pass in page.
Link: https://lkml.kernel.org/r/20220512174551.81279-1-shy828301@gmail.com
Fixes: 2aff7a4755 ("mm: Convert page_vma_mapped_walk to work on PFNs")
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The rmap locks(i_mmap_rwsem and anon_vma->root->rwsem) could be contended
under memory pressure if processes keep working on their vmas(e.g., fork,
mmap, munmap). It makes reclaim path stuck. In our real workload traces,
we see kswapd is waiting the lock for 300ms+(worst case, a sec) and it
makes other processes entering direct reclaim, which were also stuck on
the lock.
This patch makes lru aging path try_lock mode like shink_page_list so the
reclaim context will keep working with next lru pages without being stuck.
if it found the rmap lock contended, it rotates the page back to head of
lru in both active/inactive lrus to make them consistent behavior, which
is basic starting point rather than adding more heristic.
Since this patch introduces a new "contended" field as out-param along
with try_lock in-param in rmap_walk_control, it's not immutable any longer
if the try_lock is set so remove const keywords on rmap related functions.
Since rmap walking is already expensive operation, I doubt the const
would help sizable benefit( And we didn't have it until 5.17).
In a heavy app workload in Android, trace shows following statistics. It
almost removes rmap lock contention from reclaim path.
Martin Liu reported:
Before:
max_dur(ms) min_dur(ms) max-min(dur)ms avg_dur(ms) sum_dur(ms) count blocked_function
1632 0 1631 151.542173 31672 209 page_lock_anon_vma_read
601 0 601 145.544681 28817 198 rmap_walk_file
After:
max_dur(ms) min_dur(ms) max-min(dur)ms avg_dur(ms) sum_dur(ms) count blocked_function
NaN NaN NaN NaN NaN 0.0 NaN
0 0 0 0.127645 1 12 rmap_walk_file
[minchan@kernel.org: add comment, per Matthew]
Link: https://lkml.kernel.org/r/YnNqeB5tUf6LZ57b@google.com
Link: https://lkml.kernel.org/r/20220510215423.164547-1-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: John Dias <joaodias@google.com>
Cc: Tim Murray <timmurray@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Martin Liu <liumartin@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Let's mark exclusively mapped anonymous pages with PG_anon_exclusive as
exclusive, and use that information to make GUP pins reliable and stay
consistent with the page mapped into the page table even if the page table
entry gets write-protected.
With that information at hand, we can extend our COW logic to always reuse
anonymous pages that are exclusive. For anonymous pages that might be
shared, the existing logic applies.
As already documented, PG_anon_exclusive is usually only expressive in
combination with a page table entry. Especially PTE vs. PMD-mapped
anonymous pages require more thought, some examples: due to mremap() we
can easily have a single compound page PTE-mapped into multiple page
tables exclusively in a single process -- multiple page table locks apply.
Further, due to MADV_WIPEONFORK we might not necessarily write-protect
all PTEs, and only some subpages might be pinned. Long story short: once
PTE-mapped, we have to track information about exclusivity per sub-page,
but until then, we can just track it for the compound page in the head
page and not having to update a whole bunch of subpages all of the time
for a simple PMD mapping of a THP.
For simplicity, this commit mostly talks about "anonymous pages", while
it's for THP actually "the part of an anonymous folio referenced via a
page table entry".
To not spill PG_anon_exclusive code all over the mm code-base, we let the
anon rmap code to handle all PG_anon_exclusive logic it can easily handle.
If a writable, present page table entry points at an anonymous (sub)page,
that (sub)page must be PG_anon_exclusive. If GUP wants to take a reliably
pin (FOLL_PIN) on an anonymous page references via a present page table
entry, it must only pin if PG_anon_exclusive is set for the mapped
(sub)page.
This commit doesn't adjust GUP, so this is only implicitly handled for
FOLL_WRITE, follow-up commits will teach GUP to also respect it for
FOLL_PIN without FOLL_WRITE, to make all GUP pins of anonymous pages fully
reliable.
Whenever an anonymous page is to be shared (fork(), KSM), or when
temporarily unmapping an anonymous page (swap, migration), the relevant
PG_anon_exclusive bit has to be cleared to mark the anonymous page
possibly shared. Clearing will fail if there are GUP pins on the page:
* For fork(), this means having to copy the page and not being able to
share it. fork() protects against concurrent GUP using the PT lock and
the src_mm->write_protect_seq.
* For KSM, this means sharing will fail. For swap this means, unmapping
will fail, For migration this means, migration will fail early. All
three cases protect against concurrent GUP using the PT lock and a
proper clear/invalidate+flush of the relevant page table entry.
This fixes memory corruptions reported for FOLL_PIN | FOLL_WRITE, when a
pinned page gets mapped R/O and the successive write fault ends up
replacing the page instead of reusing it. It improves the situation for
O_DIRECT/vmsplice/... that still use FOLL_GET instead of FOLL_PIN, if
fork() is *not* involved, however swapout and fork() are still
problematic. Properly using FOLL_PIN instead of FOLL_GET for these GUP
users will fix the issue for them.
I. Details about basic handling
I.1. Fresh anonymous pages
page_add_new_anon_rmap() and hugepage_add_new_anon_rmap() will mark the
given page exclusive via __page_set_anon_rmap(exclusive=1). As that is
the mechanism fresh anonymous pages come into life (besides migration code
where we copy the page->mapping), all fresh anonymous pages will start out
as exclusive.
I.2. COW reuse handling of anonymous pages
When a COW handler stumbles over a (sub)page that's marked exclusive, it
simply reuses it. Otherwise, the handler tries harder under page lock to
detect if the (sub)page is exclusive and can be reused. If exclusive,
page_move_anon_rmap() will mark the given (sub)page exclusive.
Note that hugetlb code does not yet check for PageAnonExclusive(), as it
still uses the old COW logic that is prone to the COW security issue
because hugetlb code cannot really tolerate unnecessary/wrong COW as huge
pages are a scarce resource.
I.3. Migration handling
try_to_migrate() has to try marking an exclusive anonymous page shared via
page_try_share_anon_rmap(). If it fails because there are GUP pins on the
page, unmap fails. migrate_vma_collect_pmd() and
__split_huge_pmd_locked() are handled similarly.
Writable migration entries implicitly point at shared anonymous pages.
For readable migration entries that information is stored via a new
"readable-exclusive" migration entry, specific to anonymous pages.
When restoring a migration entry in remove_migration_pte(), information
about exlusivity is detected via the migration entry type, and
RMAP_EXCLUSIVE is set accordingly for
page_add_anon_rmap()/hugepage_add_anon_rmap() to restore that information.
I.4. Swapout handling
try_to_unmap() has to try marking the mapped page possibly shared via
page_try_share_anon_rmap(). If it fails because there are GUP pins on the
page, unmap fails. For now, information about exclusivity is lost. In
the future, we might want to remember that information in the swap entry
in some cases, however, it requires more thought, care, and a way to store
that information in swap entries.
I.5. Swapin handling
do_swap_page() will never stumble over exclusive anonymous pages in the
swap cache, as try_to_migrate() prohibits that. do_swap_page() always has
to detect manually if an anonymous page is exclusive and has to set
RMAP_EXCLUSIVE for page_add_anon_rmap() accordingly.
I.6. THP handling
__split_huge_pmd_locked() has to move the information about exclusivity
from the PMD to the PTEs.
a) In case we have a readable-exclusive PMD migration entry, simply
insert readable-exclusive PTE migration entries.
b) In case we have a present PMD entry and we don't want to freeze
("convert to migration entries"), simply forward PG_anon_exclusive to
all sub-pages, no need to temporarily clear the bit.
c) In case we have a present PMD entry and want to freeze, handle it
similar to try_to_migrate(): try marking the page shared first. In
case we fail, we ignore the "freeze" instruction and simply split
ordinarily. try_to_migrate() will properly fail because the THP is
still mapped via PTEs.
When splitting a compound anonymous folio (THP), the information about
exclusivity is implicitly handled via the migration entries: no need to
replicate PG_anon_exclusive manually.
I.7. fork() handling fork() handling is relatively easy, because
PG_anon_exclusive is only expressive for some page table entry types.
a) Present anonymous pages
page_try_dup_anon_rmap() will mark the given subpage shared -- which will
fail if the page is pinned. If it failed, we have to copy (or PTE-map a
PMD to handle it on the PTE level).
Note that device exclusive entries are just a pointer at a PageAnon()
page. fork() will first convert a device exclusive entry to a present
page table and handle it just like present anonymous pages.
b) Device private entry
Device private entries point at PageAnon() pages that cannot be mapped
directly and, therefore, cannot get pinned.
page_try_dup_anon_rmap() will mark the given subpage shared, which cannot
fail because they cannot get pinned.
c) HW poison entries
PG_anon_exclusive will remain untouched and is stale -- the page table
entry is just a placeholder after all.
d) Migration entries
Writable and readable-exclusive entries are converted to readable entries:
possibly shared.
I.8. mprotect() handling
mprotect() only has to properly handle the new readable-exclusive
migration entry:
When write-protecting a migration entry that points at an anonymous page,
remember the information about exclusivity via the "readable-exclusive"
migration entry type.
II. Migration and GUP-fast
Whenever replacing a present page table entry that maps an exclusive
anonymous page by a migration entry, we have to mark the page possibly
shared and synchronize against GUP-fast by a proper clear/invalidate+flush
to make the following scenario impossible:
1. try_to_migrate() places a migration entry after checking for GUP pins
and marks the page possibly shared.
2. GUP-fast pins the page due to lack of synchronization
3. fork() converts the "writable/readable-exclusive" migration entry into a
readable migration entry
4. Migration fails due to the GUP pin (failing to freeze the refcount)
5. Migration entries are restored. PG_anon_exclusive is lost
-> We have a pinned page that is not marked exclusive anymore.
Note that we move information about exclusivity from the page to the
migration entry as it otherwise highly overcomplicates fork() and
PTE-mapping a THP.
III. Swapout and GUP-fast
Whenever replacing a present page table entry that maps an exclusive
anonymous page by a swap entry, we have to mark the page possibly shared
and synchronize against GUP-fast by a proper clear/invalidate+flush to
make the following scenario impossible:
1. try_to_unmap() places a swap entry after checking for GUP pins and
clears exclusivity information on the page.
2. GUP-fast pins the page due to lack of synchronization.
-> We have a pinned page that is not marked exclusive anymore.
If we'd ever store information about exclusivity in the swap entry,
similar to migration handling, the same considerations as in II would
apply. This is future work.
Link: https://lkml.kernel.org/r/20220428083441.37290-13-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
New anonymous pages are always mapped natively: only THP/khugepaged code
maps a new compound anonymous page and passes "true". Otherwise, we're
just dealing with simple, non-compound pages.
Let's give the interface clearer semantics and document these. Remove the
PageTransCompound() sanity check from page_add_new_anon_rmap().
Link: https://lkml.kernel.org/r/20220428083441.37290-9-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Let's prepare for passing RMAP_EXCLUSIVE, similarly as we do for
page_add_anon_rmap() now. RMAP_COMPOUND is implicit for hugetlb pages and
ignored.
Link: https://lkml.kernel.org/r/20220428083441.37290-8-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
... and instead convert page_add_anon_rmap() to accept flags.
Passing flags instead of bools is usually nicer either way, and we want to
more often also pass RMAP_EXCLUSIVE in follow up patches when detecting
that an anonymous page is exclusive: for example, when restoring an
anonymous page from a writable migration entry.
This is a preparation for marking an anonymous page inside
page_add_anon_rmap() as exclusive when RMAP_EXCLUSIVE is passed.
Link: https://lkml.kernel.org/r/20220428083441.37290-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We want to pass the flags to more than one anon rmap function, getting rid
of special "do_page_add_anon_rmap()". So let's pass around a distinct
__bitwise type and refine documentation.
Link: https://lkml.kernel.org/r/20220428083441.37290-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
... and move the special check for pinned pages into
page_try_dup_anon_rmap() to prepare for tracking exclusive anonymous pages
via a new pageflag, clearing it only after making sure that there are no
GUP pins on the anonymous page.
We really only care about pins on anonymous pages, because they are prone
to getting replaced in the COW handler once mapped R/O. For !anon pages
in cow-mappings (!VM_SHARED && VM_MAYWRITE) we shouldn't really care about
that, at least not that I could come up with an example.
Let's drop the is_cow_mapping() check from page_needs_cow_for_dma(), as we
know we're dealing with anonymous pages. Also, drop the handling of
pinned pages from copy_huge_pud() and add a comment if ever supporting
anonymous pages on the PUD level.
This is a preparation for tracking exclusivity of anonymous pages in the
rmap code, and disallowing marking a page shared (-> failing to duplicate)
if there are GUP pins on a page.
Link: https://lkml.kernel.org/r/20220428083441.37290-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The page_mkclean_one() is supposed to be used with the pfn that has a
associated struct page, but not all the pfns (e.g. DAX) have a struct
page. Introduce a new function pfn_mkclean_range() to cleans the PTEs
(including PMDs) mapped with range of pfns which has no struct page
associated with them. This helper will be used by DAX device in the next
patch to make pfns clean.
Link: https://lkml.kernel.org/r/20220403053957.10770-4-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Xiyu Yang <xiyuyang19@fudan.edu.cn>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The rmap walking functions do not modify the rmap_walk_control, and
page_idle_clear_pte_refs() takes advantage of that to move construction
of the rmap_walk_control to compile time. This lets us remove an
unclean cast.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Add back page_lock_anon_vma_read() as a wrapper. This saves a few calls
to compound_head(). If any callers were passing a tail page before,
this would have failed to lock the anon VMA as page->mapping is not
valid for tail pages.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Convert the callers to pass a folio and the try_to_migrate_one()
worker to use a folio throughout. Fixes an assumption that a
folio must be <= PMD size.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Both its callers pass a page which was previously on an LRU list,
so were passing a folio by definition. Use the type system to enforce
that and remove a few calls to compound_head().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
page_mapped_in_vma() really just wants to walk one page, but as the
code stands, if passed the head page of a compound page, it will
walk every page in the compound page. Extract pfn/nr_pages/pgoff
from the struct page early, so they can be overridden by
page_mapped_in_vma().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Instead of declaring a struct page_vma_mapped_walk directly,
use these helpers to allow us to transition to a PFN approach in the
following patches.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Add vma argument to mlock_vma_page() and munlock_vma_page(), make them
inline functions which check (vma->vm_flags & VM_LOCKED) before calling
mlock_page() and munlock_page() in mm/mlock.c.
Add bool compound to mlock_vma_page() and munlock_vma_page(): this is
because we have understandable difficulty in accounting pte maps of THPs,
and if passed a PageHead page, mlock_page() and munlock_page() cannot
tell whether it's a pmd map to be counted or a pte map to be ignored.
Add vma arg to page_add_file_rmap() and page_remove_rmap(), like the
others, and use that to call mlock_vma_page() at the end of the page
adds, and munlock_vma_page() at the end of page_remove_rmap() (end or
beginning? unimportant, but end was easier for assertions in testing).
No page lock is required (although almost all adds happen to hold it):
delete the "Serialize with page migration" BUG_ON(!PageLocked(page))s.
Certainly page lock did serialize with page migration, but I'm having
difficulty explaining why that was ever important.
Mlock accounting on THPs has been hard to define, differed between anon
and file, involved PageDoubleMap in some places and not others, required
clear_page_mlock() at some points. Keep it simple now: just count the
pmds and ignore the ptes, there is no reason for ptes to undo pmd mlocks.
page_add_new_anon_rmap() callers unchanged: they have long been calling
lru_cache_add_inactive_or_unevictable(), which does its own VM_LOCKED
handling (it also checks for not VM_SPECIAL: I think that's overcautious,
and inconsistent with other checks, that mmap_region() already prevents
VM_LOCKED on VM_SPECIAL; but haven't quite convinced myself to change it).
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
We have recommended some applications to mlock their userspace, but that
turns out to be counter-productive: when many processes mlock the same
file, contention on rmap's i_mmap_rwsem can become intolerable at exit: it
is needed for write, to remove any vma mapping that file from rmap's tree;
but hogged for read by those with mlocks calling page_mlock() (formerly
known as try_to_munlock()) on *each* page mapped from the file (the
purpose being to find out whether another process has the page mlocked,
so therefore it should not be unmlocked yet).
Several optimizations have been made in the past: one is to skip
page_mlock() when mapcount tells that nothing else has this page
mapped; but that doesn't help at all when others do have it mapped.
This time around, I initially intended to add a preliminary search
of the rmap tree for overlapping VM_LOCKED ranges; but that gets
messy with locking order, when in doubt whether a page is actually
present; and risks adding even more contention on the i_mmap_rwsem.
A solution would be much easier, if only there were space in struct page
for an mlock_count... but actually, most of the time, there is space for
it - an mlocked page spends most of its life on an unevictable LRU, but
since 3.18 removed the scan_unevictable_pages sysctl, that "LRU" has
been redundant. Let's try to reuse its page->lru.
But leave that until a later patch: in this patch, clear the ground by
removing page_mlock(), and all the infrastructure that has gathered
around it - which mostly hinders understanding, and will make reviewing
new additions harder. Don't mind those old comments about THPs, they
date from before 4.5's refcounting rework: splitting is not a risk here.
Just keep a minimal version of munlock_vma_page(), as reminder of what it
should attend to (in particular, the odd way PGSTRANDED is counted out of
PGMUNLOCKED), and likewise a stub for munlock_vma_pages_range(). Move
unchanged __mlock_posix_error_return() out of the way, down to above its
caller: this series then makes no further change after mlock_fixup().
After this and each following commit, the kernel builds, boots and runs;
but with deficiencies which may show up in testing of mlock and munlock.
The system calls succeed or fail as before, and mlock remains effective
in preventing page reclaim; but meminfo's Unevictable and Mlocked amounts
may be shown too low after mlock, grow, then stay too high after munlock:
with previously mlocked pages remaining unevictable for too long, until
finally unmapped and freed and counts corrected. Normal service will be
resumed in "mm/munlock: mlock_pte_range() when mlocking or munlocking".
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Transform page_mkclean() into folio_mkclean() and add a page_mkclean()
wrapper around folio_mkclean().
folio_mkclean is 15 bytes smaller than page_mkclean, but the kernel
is enlarged by 33 bytes due to inlining page_folio() into each caller.
This will go away once the callers are converted to use folio_mkclean().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Howells <dhowells@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Adjust the nommu stub of try_to_unmap to match the changed protype for the
full version. Turn it into an inline instead of a macro to generally
improve the type checking.
Link: https://lkml.kernel.org/r/20210705053944.885828-1-hch@lst.de
Fixes: 1fb08ac63b ("mm: rmap: make try_to_unmap() void function")
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some devices require exclusive write access to shared virtual memory (SVM)
ranges to perform atomic operations on that memory. This requires CPU
page tables to be updated to deny access whilst atomic operations are
occurring.
In order to do this introduce a new swap entry type
(SWP_DEVICE_EXCLUSIVE). When a SVM range needs to be marked for exclusive
access by a device all page table mappings for the particular range are
replaced with device exclusive swap entries. This causes any CPU access
to the page to result in a fault.
Faults are resovled by replacing the faulting entry with the original
mapping. This results in MMU notifiers being called which a driver uses
to update access permissions such as revoking atomic access. After
notifiers have been called the device will no longer have exclusive access
to the region.
Walking of the page tables to find the target pages is handled by
get_user_pages() rather than a direct page table walk. A direct page
table walk similar to what migrate_vma_collect()/unmap() does could also
have been utilised. However this resulted in more code similar in
functionality to what get_user_pages() provides as page faulting is
required to make the PTEs present and to break COW.
[dan.carpenter@oracle.com: fix signedness bug in make_device_exclusive_range()]
Link: https://lkml.kernel.org/r/YNIz5NVnZ5GiZ3u1@mwanda
Link: https://lkml.kernel.org/r/20210616105937.23201-8-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Migration is currently implemented as a mode of operation for
try_to_unmap_one() generally specified by passing the TTU_MIGRATION flag
or in the case of splitting a huge anonymous page TTU_SPLIT_FREEZE.
However it does not have much in common with the rest of the unmap
functionality of try_to_unmap_one() and thus splitting it into a separate
function reduces the complexity of try_to_unmap_one() making it more
readable.
Several simplifications can also be made in try_to_migrate_one() based on
the following observations:
- All users of TTU_MIGRATION also set TTU_IGNORE_MLOCK.
- No users of TTU_MIGRATION ever set TTU_IGNORE_HWPOISON.
- No users of TTU_MIGRATION ever set TTU_BATCH_FLUSH.
TTU_SPLIT_FREEZE is a special case of migration used when splitting an
anonymous page. This is most easily dealt with by calling the correct
function from unmap_page() in mm/huge_memory.c - either try_to_migrate()
for PageAnon or try_to_unmap().
Link: https://lkml.kernel.org/r/20210616105937.23201-5-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The behaviour of try_to_unmap_one() is difficult to follow because it
performs different operations based on a fairly large set of flags used in
different combinations.
TTU_MUNLOCK is one such flag. However it is exclusively used by
try_to_munlock() which specifies no other flags. Therefore rather than
overload try_to_unmap_one() with unrelated behaviour split this out into
it's own function and remove the flag.
Link: https://lkml.kernel.org/r/20210616105937.23201-4-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently try_to_unmap() return bool value by checking page_mapcount(),
however this may return false positive since page_mapcount() doesn't check
all subpages of compound page. The total_mapcount() could be used
instead, but its cost is higher since it traverses all subpages.
Actually the most callers of try_to_unmap() don't care about the return
value at all. So just need check if page is still mapped by page_mapped()
when necessary. And page_mapped() does bail out early when it finds
mapped subpage.
Link: https://lkml.kernel.org/r/bb27e3fe-6036-b637-5086-272befbfe3da@google.com
Suggested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jue Wang <juew@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Stressing huge tmpfs often crashed on unmap_page()'s VM_BUG_ON_PAGE
(!unmap_success): with dump_page() showing mapcount:1, but then its raw
struct page output showing _mapcount ffffffff i.e. mapcount 0.
And even if that particular VM_BUG_ON_PAGE(!unmap_success) is removed,
it is immediately followed by a VM_BUG_ON_PAGE(compound_mapcount(head)),
and further down an IS_ENABLED(CONFIG_DEBUG_VM) total_mapcount BUG():
all indicative of some mapcount difficulty in development here perhaps.
But the !CONFIG_DEBUG_VM path handles the failures correctly and
silently.
I believe the problem is that once a racing unmap has cleared pte or
pmd, try_to_unmap_one() may skip taking the page table lock, and emerge
from try_to_unmap() before the racing task has reached decrementing
mapcount.
Instead of abandoning the unsafe VM_BUG_ON_PAGE(), and the ones that
follow, use PVMW_SYNC in try_to_unmap_one() in this case: adding
TTU_SYNC to the options, and passing that from unmap_page().
When CONFIG_DEBUG_VM, or for non-debug too? Consensus is to do the same
for both: the slight overhead added should rarely matter, except perhaps
if splitting sparsely-populated multiply-mapped shmem. Once confident
that bugs are fixed, TTU_SYNC here can be removed, and the race
tolerated.
Link: https://lkml.kernel.org/r/c1e95853-8bcd-d8fd-55fa-e7f2488e78f@google.com
Fixes: fec89c109f ("thp: rewrite freeze_page()/unfreeze_page() with generic rmap walkers")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jue Wang <juew@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For PMD-mapped page (usually THP), pvmw->pte is NULL. For PTE-mapped THP,
pvmw->pte is mapped. But for HugeTLB pages, pvmw->pte is not mapped and
set to the relevant page table entry. So in page_vma_mapped_walk_done(),
we may do pte_unmap() for HugeTLB pte which is not mapped. Fix this by
checking pvmw->page against PageHuge before trying to do pte_unmap().
Link: https://lkml.kernel.org/r/20210127093349.39081-1-linmiaohe@huawei.com
Fixes: ace71a19ce ("mm: introduce page_vma_mapped_walk()")
Signed-off-by: Hongxiang Lou <louhongxiang@huawei.com>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michel Lespinasse <walken@google.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Brian Geffon <bgeffon@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 369ea8242c ("mm/rmap: update to new mmu_notifier semantic
v2"), the code to check the secondary MMU's page table access bit is
broken for !(TTU_IGNORE_ACCESS) because the page is unmapped from the
secondary MMU's page table before the check. More specifically for those
secondary MMUs which unmap the memory in
mmu_notifier_invalidate_range_start() like kvm.
However memory reclaim is the only user of !(TTU_IGNORE_ACCESS) or the
absence of TTU_IGNORE_ACCESS and it explicitly performs the page table
access check before trying to unmap the page. So, at worst the reclaim
will miss accesses in a very short window if we remove page table access
check in unmapping code.
There is an unintented consequence of !(TTU_IGNORE_ACCESS) for the memcg
reclaim. From memcg reclaim the page_referenced() only account the
accesses from the processes which are in the same memcg of the target page
but the unmapping code is considering accesses from all the processes, so,
decreasing the effectiveness of memcg reclaim.
The simplest solution is to always assume TTU_IGNORE_ACCESS in unmapping
code.
Link: https://lkml.kernel.org/r/20201104231928.1494083-1-shakeelb@google.com
Fixes: 369ea8242c ("mm/rmap: update to new mmu_notifier semantic v2")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Allow interval trees to quickly check for overlaps to avoid unnecesary
tree lookups in interval_tree_iter_first().
As of this patch, all interval tree flavors will require using a
'rb_root_cached' such that we can have the leftmost node easily
available. While most users will make use of this feature, those with
special functions (in addition to the generic insert, delete, search
calls) will avoid using the cached option as they can do funky things
with insertions -- for example, vma_interval_tree_insert_after().
[jglisse@redhat.com: fix deadlock from typo vm_lock_anon_vma()]
Link: http://lkml.kernel.org/r/20170808225719.20723-1-jglisse@redhat.com
Link: http://lkml.kernel.org/r/20170719014603.19029-12-dave@stgolabs.net
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Doug Ledford <dledford@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Christian Benvenuti <benve@cisco.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
TTU_MIGRATION is used to convert pte into migration entry until thp
split completes. This behavior conflicts with thp migration added later
patches, so let's introduce a new TTU flag specifically for freezing.
try_to_unmap() is used both for thp split (via freeze_page()) and page
migration (via __unmap_and_move()). In freeze_page(), ttu_flag given
for head page is like below (assuming anonymous thp):
(TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED | \
TTU_MIGRATION | TTU_SPLIT_HUGE_PMD)
and ttu_flag given for tail pages is:
(TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED | \
TTU_MIGRATION)
__unmap_and_move() calls try_to_unmap() with ttu_flag:
(TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS)
Now I'm trying to insert a branch for thp migration at the top of
try_to_unmap_one() like below
static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
unsigned long address, void *arg)
{
...
/* PMD-mapped THP migration entry */
if (!pvmw.pte && (flags & TTU_MIGRATION)) {
if (!PageAnon(page))
continue;
set_pmd_migration_entry(&pvmw, page);
continue;
}
...
}
so try_to_unmap() for tail pages called by thp split can go into thp
migration code path (which converts *pmd* into migration entry), while
the expectation is to freeze thp (which converts *pte* into migration
entry.)
I detected this failure as a "bad page state" error in a testcase where
split_huge_page() is called from queue_pages_pte_range().
Link: http://lkml.kernel.org/r/20170717193955.20207-4-zi.yan@sent.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no user for it. Remove it.
[minchan@kernel.org: use false instead of SWAP_FAIL]
Link: http://lkml.kernel.org/r/20170316053313.GA19241@bbox
Link: http://lkml.kernel.org/r/1489555493-14659-11-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
rmap_one's return value controls whether rmap_work should contine to
scan other ptes or not so it's target for changing to boolean. Return
true if the scan should be continued. Otherwise, return false to stop
the scanning.
This patch makes rmap_one's return value to boolean.
Link: http://lkml.kernel.org/r/1489555493-14659-10-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no user of the return value from rmap_walk() and friends so
this patch makes them void-returning functions.
Link: http://lkml.kernel.org/r/1489555493-14659-9-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ttu doesn't need to return SWAP_MLOCK. Instead, just return SWAP_FAIL
because it means the page is not-swappable so it should move to another
LRU list(active or unevictable). putback friends will move it to right
list depending on the page's LRU flag.
Link: http://lkml.kernel.org/r/1489555493-14659-6-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
try_to_munlock returns SWAP_MLOCK if the one of VMAs mapped the page has
VM_LOCKED flag. In that time, VM set PG_mlocked to the page if the page
is not pte-mapped THP which cannot be mlocked, either.
With that, __munlock_isolated_page can use PageMlocked to check whether
try_to_munlock is successful or not without relying on try_to_munlock's
retval. It helps to make try_to_unmap/try_to_unmap_one simple with
upcoming patches.
[minchan@kernel.org: remove PG_Mlocked VM_BUG_ON check]
Link: http://lkml.kernel.org/r/20170411025615.GA6545@bbox
Link: http://lkml.kernel.org/r/1489555493-14659-5-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we found lazyfree page is dirty, try_to_unmap_one can just
SetPageSwapBakced in there like PG_mlocked page and just return with
SWAP_FAIL which is very natural because the page is not swappable right
now so that vmscan can activate it. There is no point to introduce new
return value SWAP_DIRTY in try_to_unmap at the moment.
Link: http://lkml.kernel.org/r/1489555493-14659-3-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When memory pressure is high, we free MADV_FREE pages. If the pages are
not dirty in pte, the pages could be freed immediately. Otherwise we
can't reclaim them. We put the pages back to anonumous LRU list (by
setting SwapBacked flag) and the pages will be reclaimed in normal
swapout way.
We use normal page reclaim policy. Since MADV_FREE pages are put into
inactive file list, such pages and inactive file pages are reclaimed
according to their age. This is expected, because we don't want to
reclaim too many MADV_FREE pages before used once pages.
Based on Minchan's original patch
[minchan@kernel.org: clean up lazyfree page handling]
Link: http://lkml.kernel.org/r/20170303025237.GB3503@bbox
Link: http://lkml.kernel.org/r/14b8eb1d3f6bf6cc492833f183ac8c304e560484.1487965799.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: fix some MADV_FREE issues", v5.
We are trying to use MADV_FREE in jemalloc. Several issues are found.
Without solving the issues, jemalloc can't use the MADV_FREE feature.
- Doesn't support system without swap enabled. Because if swap is off,
we can't or can't efficiently age anonymous pages. And since
MADV_FREE pages are mixed with other anonymous pages, we can't
reclaim MADV_FREE pages. In current implementation, MADV_FREE will
fallback to MADV_DONTNEED without swap enabled. But in our
environment, a lot of machines don't enable swap. This will prevent
our setup using MADV_FREE.
- Increases memory pressure. page reclaim bias file pages reclaim
against anonymous pages. This doesn't make sense for MADV_FREE pages,
because those pages could be freed easily and refilled with very
slight penality. Even page reclaim doesn't bias file pages, there is
still an issue, because MADV_FREE pages and other anonymous pages are
mixed together. To reclaim a MADV_FREE page, we probably must scan a
lot of other anonymous pages, which is inefficient. In our test, we
usually see oom with MADV_FREE enabled and nothing without it.
- Accounting. There are two accounting problems. We don't have a global
accounting. If the system is abnormal, we don't know if it's a
problem from MADV_FREE side. The other problem is RSS accounting.
MADV_FREE pages are accounted as normal anon pages and reclaimed
lazily, so application's RSS becomes bigger. This confuses our
workloads. We have monitoring daemon running and if it finds
applications' RSS becomes abnormal, the daemon will kill the
applications even kernel can reclaim the memory easily.
To address the first the two issues, we can either put MADV_FREE pages
into a separate LRU list (Minchan's previous patches and V1 patches), or
put them into LRU_INACTIVE_FILE list (suggested by Johannes). The
patchset use the second idea. The reason is LRU_INACTIVE_FILE list is
tiny nowadays and should be full of used once file pages. So we can
still efficiently reclaim MADV_FREE pages there without interference
with other anon and active file pages. Putting the pages into inactive
file list also has an advantage which allows page reclaim to prioritize
MADV_FREE pages and used once file pages. MADV_FREE pages are put into
the lru list and clear SwapBacked flag, so PageAnon(page) &&
!PageSwapBacked(page) will indicate a MADV_FREE pages. These pages will
directly freed without pageout if they are clean, otherwise normal swap
will reclaim them.
For the third issue, the previous post adds global accounting and a
separate RSS count for MADV_FREE pages. The problem is we never get
accurate accounting for MADV_FREE pages. The pages are mapped to
userspace, can be dirtied without notice from kernel side. To get
accurate accounting, we could write protect the page, but then there is
extra page fault overhead, which people don't want to pay. Jemalloc
guys have concerns about the inaccurate accounting, so this post drops
the accounting patches temporarily. The info exported to
/proc/pid/smaps for MADV_FREE pages are kept, which is the only place we
can get accurate accounting right now.
This patch (of 6):
Johannes pointed out TTU_LZFREE is unnecessary. It's true because we
always have the flag set if we want to do an unmap. For cases we don't
do an unmap, the TTU_LZFREE part of code should never run.
Also the TTU_UNMAP is unnecessary. If no other flags set (for example,
TTU_MIGRATION), an unmap is implied.
The patch includes Johannes's cleanup and dead TTU_ACTION macro removal
code
Link: http://lkml.kernel.org/r/4be3ea1bc56b26fd98a54d0a6f70bec63f6d8980.1487965799.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a new interface to check if a page is mapped into a vma. It
aims to address shortcomings of page_check_address{,_transhuge}.
Existing interface is not able to handle PTE-mapped THPs: it only finds
the first PTE. The rest lefted unnoticed.
page_vma_mapped_walk() iterates over all possible mapping of the page in
the vma.
Link: http://lkml.kernel.org/r/20170129173858.45174-3-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
anon_vma_prepare() is mostly a large "if (unlikely(...))" block, as the
expected common case is that an anon_vma already exists. We could turn
the condition around and return 0, but it also makes sense to do it
inline and avoid a call for the common case.
Bloat-o-meter naturally shows that inlining the check has some code size
costs:
add/remove: 1/1 grow/shrink: 4/0 up/down: 475/-373 (102)
function old new delta
__anon_vma_prepare - 359 +359
handle_mm_fault 2744 2796 +52
hugetlb_cow 1146 1170 +24
hugetlb_fault 2123 2145 +22
wp_page_copy 1469 1487 +18
anon_vma_prepare 373 - -373
Checking the asm however confirms that the hot paths now avoid a call,
which is moved away.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20161116074005.22768-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>