Commit Graph

265 Commits

Author SHA1 Message Date
Linus Torvalds 1440f57602 Five hotfixes - three for nilfs2, two for MM. For are cc:stable, one is
not.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0YhtwAKCRDdBJ7gKXxA
 juJLAQDCa0g8sfe9cTw3PT1gRnn8gWLHEkMgUWVC/aBaqYFGeQEAta+g8muv9Tpd
 qODv0JARH4cwONKEA24Oql+A5RnI6gQ=
 =QZnW
 -----END PGP SIGNATURE-----

Merge tag 'mm-hotfixes-stable-2022-10-11' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull misc hotfixes from Andrew Morton:
 "Five hotfixes - three for nilfs2, two for MM. For are cc:stable, one
  is not"

* tag 'mm-hotfixes-stable-2022-10-11' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
  nilfs2: fix leak of nilfs_root in case of writer thread creation failure
  nilfs2: fix NULL pointer dereference at nilfs_bmap_lookup_at_level()
  nilfs2: fix use-after-free bug of struct nilfs_root
  mm/damon/core: initialize damon_target->list in damon_new_target()
  mm/hugetlb: fix races when looking up a CONT-PTE/PMD size hugetlb page
2022-10-12 11:16:58 -07:00
Baolin Wang fac35ba763 mm/hugetlb: fix races when looking up a CONT-PTE/PMD size hugetlb page
On some architectures (like ARM64), it can support CONT-PTE/PMD size
hugetlb, which means it can support not only PMD/PUD size hugetlb (2M and
1G), but also CONT-PTE/PMD size(64K and 32M) if a 4K page size specified.

So when looking up a CONT-PTE size hugetlb page by follow_page(), it will
use pte_offset_map_lock() to get the pte entry lock for the CONT-PTE size
hugetlb in follow_page_pte().  However this pte entry lock is incorrect
for the CONT-PTE size hugetlb, since we should use huge_pte_lock() to get
the correct lock, which is mm->page_table_lock.

That means the pte entry of the CONT-PTE size hugetlb under current pte
lock is unstable in follow_page_pte(), we can continue to migrate or
poison the pte entry of the CONT-PTE size hugetlb, which can cause some
potential race issues, even though they are under the 'pte lock'.

For example, suppose thread A is trying to look up a CONT-PTE size hugetlb
page by move_pages() syscall under the lock, however antoher thread B can
migrate the CONT-PTE hugetlb page at the same time, which will cause
thread A to get an incorrect page, if thread A also wants to do page
migration, then data inconsistency error occurs.

Moreover we have the same issue for CONT-PMD size hugetlb in
follow_huge_pmd().

To fix above issues, rename the follow_huge_pmd() as follow_huge_pmd_pte()
to handle PMD and PTE level size hugetlb, which uses huge_pte_lock() to
get the correct pte entry lock to make the pte entry stable.

Mike said:

Support for CONT_PMD/_PTE was added with bb9dd3df8e ("arm64: hugetlb:
refactor find_num_contig()").  Patch series "Support for contiguous pte
hugepages", v4.  However, I do not believe these code paths were
executed until migration support was added with 5480280d3f ("arm64/mm:
enable HugeTLB migration for contiguous bit HugeTLB pages") I would go
with 5480280d3f for the Fixes: targe.

Link: https://lkml.kernel.org/r/635f43bdd85ac2615a58405da82b4d33c6e5eb05.1662017562.git.baolin.wang@linux.alibaba.com
Fixes: 5480280d3f ("arm64/mm: enable HugeTLB migration for contiguous bit HugeTLB pages")
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Suggested-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-11 19:05:44 -07:00
Linus Torvalds 27bc50fc90 - Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any negative
   reports (or any positive ones, come to that).
 
 - Also the Maple Tree from Liam R.  Howlett.  An overlapping range-based
   tree for vmas.  It it apparently slight more efficient in its own right,
   but is mainly targeted at enabling work to reduce mmap_lock contention.
 
   Liam has identified a number of other tree users in the kernel which
   could be beneficially onverted to mapletrees.
 
   Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
   (https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com).
   This has yet to be addressed due to Liam's unfortunately timed
   vacation.  He is now back and we'll get this fixed up.
 
 - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer.  It uses
   clang-generated instrumentation to detect used-unintialized bugs down to
   the single bit level.
 
   KMSAN keeps finding bugs.  New ones, as well as the legacy ones.
 
 - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
   memory into THPs.
 
 - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support
   file/shmem-backed pages.
 
 - userfaultfd updates from Axel Rasmussen
 
 - zsmalloc cleanups from Alexey Romanov
 
 - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure
 
 - Huang Ying adds enhancements to NUMA balancing memory tiering mode's
   page promotion, with a new way of detecting hot pages.
 
 - memcg updates from Shakeel Butt: charging optimizations and reduced
   memory consumption.
 
 - memcg cleanups from Kairui Song.
 
 - memcg fixes and cleanups from Johannes Weiner.
 
 - Vishal Moola provides more folio conversions
 
 - Zhang Yi removed ll_rw_block() :(
 
 - migration enhancements from Peter Xu
 
 - migration error-path bugfixes from Huang Ying
 
 - Aneesh Kumar added ability for a device driver to alter the memory
   tiering promotion paths.  For optimizations by PMEM drivers, DRM
   drivers, etc.
 
 - vma merging improvements from Jakub Matěn.
 
 - NUMA hinting cleanups from David Hildenbrand.
 
 - xu xin added aditional userspace visibility into KSM merging activity.
 
 - THP & KSM code consolidation from Qi Zheng.
 
 - more folio work from Matthew Wilcox.
 
 - KASAN updates from Andrey Konovalov.
 
 - DAMON cleanups from Kaixu Xia.
 
 - DAMON work from SeongJae Park: fixes, cleanups.
 
 - hugetlb sysfs cleanups from Muchun Song.
 
 - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA
 joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf
 bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU=
 =xfWx
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
   linux-next for a couple of months without, to my knowledge, any
   negative reports (or any positive ones, come to that).

 - Also the Maple Tree from Liam Howlett. An overlapping range-based
   tree for vmas. It it apparently slightly more efficient in its own
   right, but is mainly targeted at enabling work to reduce mmap_lock
   contention.

   Liam has identified a number of other tree users in the kernel which
   could be beneficially onverted to mapletrees.

   Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
   at [1]. This has yet to be addressed due to Liam's unfortunately
   timed vacation. He is now back and we'll get this fixed up.

 - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
   clang-generated instrumentation to detect used-unintialized bugs down
   to the single bit level.

   KMSAN keeps finding bugs. New ones, as well as the legacy ones.

 - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
   memory into THPs.

 - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
   support file/shmem-backed pages.

 - userfaultfd updates from Axel Rasmussen

 - zsmalloc cleanups from Alexey Romanov

 - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
   memory-failure

 - Huang Ying adds enhancements to NUMA balancing memory tiering mode's
   page promotion, with a new way of detecting hot pages.

 - memcg updates from Shakeel Butt: charging optimizations and reduced
   memory consumption.

 - memcg cleanups from Kairui Song.

 - memcg fixes and cleanups from Johannes Weiner.

 - Vishal Moola provides more folio conversions

 - Zhang Yi removed ll_rw_block() :(

 - migration enhancements from Peter Xu

 - migration error-path bugfixes from Huang Ying

 - Aneesh Kumar added ability for a device driver to alter the memory
   tiering promotion paths. For optimizations by PMEM drivers, DRM
   drivers, etc.

 - vma merging improvements from Jakub Matěn.

 - NUMA hinting cleanups from David Hildenbrand.

 - xu xin added aditional userspace visibility into KSM merging
   activity.

 - THP & KSM code consolidation from Qi Zheng.

 - more folio work from Matthew Wilcox.

 - KASAN updates from Andrey Konovalov.

 - DAMON cleanups from Kaixu Xia.

 - DAMON work from SeongJae Park: fixes, cleanups.

 - hugetlb sysfs cleanups from Muchun Song.

 - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.

Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]

* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
  hugetlb: allocate vma lock for all sharable vmas
  hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
  hugetlb: fix vma lock handling during split vma and range unmapping
  mglru: mm/vmscan.c: fix imprecise comments
  mm/mglru: don't sync disk for each aging cycle
  mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
  mm: memcontrol: use do_memsw_account() in a few more places
  mm: memcontrol: deprecate swapaccounting=0 mode
  mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
  mm/secretmem: remove reduntant return value
  mm/hugetlb: add available_huge_pages() func
  mm: remove unused inline functions from include/linux/mm_inline.h
  selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
  selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
  selftests/vm: add thp collapse shmem testing
  selftests/vm: add thp collapse file and tmpfs testing
  selftests/vm: modularize thp collapse memory operations
  selftests/vm: dedup THP helpers
  mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
  mm/madvise: add file and shmem support to MADV_COLLAPSE
  ...
2022-10-10 17:53:04 -07:00
Mike Kravetz 8d9bfb2608 hugetlb: add vma based lock for pmd sharing
Allocate a new hugetlb_vma_lock structure and hang off vm_private_data for
synchronization use by vmas that could be involved in pmd sharing.  This
data structure contains a rw semaphore that is the primary tool used for
synchronization.

This new structure is ref counted, so that it can exist when NOT attached
to a vma.  This is only helpful in resolving lock ordering issues where
code may need to obtain the vma_lock while there are no guarantees the vma
may go away.  By obtaining a ref on the structure, it can be guaranteed
that at least the rw semaphore will not go away.

Only add infrastructure for the new lock here.  Actual use will be added
in subsequent patches.

[mike.kravetz@oracle.com: fix build issue for missing hugetlb_vma_lock_release]
  Link: https://lkml.kernel.org/r/YyNUtA1vRASOE4+M@monkey
Link: https://lkml.kernel.org/r/20220914221810.95771-7-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:17 -07:00
Mike Kravetz 7e1813d48d hugetlb: rename remove_huge_page to hugetlb_delete_from_page_cache
remove_huge_page removes a hugetlb page from the page cache.  Change to
hugetlb_delete_from_page_cache as it is a more descriptive name. 
huge_add_to_page_cache is global in scope, but only deals with hugetlb
pages.  For consistency and clarity, rename to hugetlb_add_to_page_cache.

Link: https://lkml.kernel.org/r/20220914221810.95771-4-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:16 -07:00
Muchun Song a4a00b451e mm: hugetlb: eliminate memory-less nodes handling
The memory-notify-based approach aims to handle meory-less nodes, however,
it just adds the complexity of code as pointed by David in thread [1]. 
The handling of memory-less nodes is introduced by commit 4faf8d950e
("hugetlb: handle memory hot-plug events").  >From its commit message, we
cannot find any necessity of handling this case.  So, we can simply
register/unregister sysfs entries in register_node/unregister_node to
simlify the code.

BTW, hotplug callback added because in hugetlb_register_all_nodes() we
register sysfs nodes only for N_MEMORY nodes, seeing commit 9b5e5d0fdc,
which said it was a preparation for handling memory-less nodes via memory
hotplug.  Since we want to remove memory hotplug, so make sure we only
register per-node sysfs for online (N_ONLINE) nodes in
hugetlb_register_all_nodes().

https://lore.kernel.org/linux-mm/60933ffc-b850-976c-78a0-0ee6e0ea9ef0@redhat.com/ [1]
Link: https://lkml.kernel.org/r/20220914072603.60293-3-songmuchun@bytedance.com
Suggested-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:15 -07:00
Christophe Leroy 691cdf016d powerpc: Rely on generic definition of hugepd_t and is_hugepd when unused
CONFIG_ARCH_HAS_HUGEPD is used to tell core mm when huge page
directories are used.

When they are not used, no need to provide hugepd_t or is_hugepd(),
just rely on the core mm fallback definition.

For that, change core mm behaviour so that CONFIG_ARCH_HAS_HUGEPD
is used instead of indirect is_hugepd macro existence.

powerpc being the only user of huge page directories, there is no
impact on other architectures.

Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/da81462d93069bb90fe5e762dd3283a644318937.1662543243.git.christophe.leroy@csgroup.eu
2022-09-26 20:58:18 +10:00
Miaohe Lin 263b899802 hugetlb: make hugetlb_cma_check() static
Patch series "A few cleanup patches for hugetlb", v2.

This series contains a few cleanup patches to use helper functions to
simplify the codes, remove unneeded nid parameter and so on. More
details can be found in the respective changelogs.


This patch (of 10):

Make hugetlb_cma_check() static as it's only used inside mm/hugetlb.c.

Link: https://lkml.kernel.org/r/20220901120030.63318-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20220901120030.63318-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-11 20:26:08 -07:00
Naoya Horiguchi 161df60e9e mm, hwpoison, hugetlb: support saving mechanism of raw error pages
When handling memory error on a hugetlb page, the error handler tries to
dissolve and turn it into 4kB pages.  If it's successfully dissolved,
PageHWPoison flag is moved to the raw error page, so that's all right. 
However, dissolve sometimes fails, then the error page is left as
hwpoisoned hugepage.  It's useful if we can retry to dissolve it to save
healthy pages, but that's not possible now because the information about
where the raw error pages is lost.

Use the private field of a few tail pages to keep that information.  The
code path of shrinking hugepage pool uses this info to try delayed
dissolve.  In order to remember multiple errors in a hugepage, a
singly-linked list originated from SUBPAGE_INDEX_HWPOISON-th tail page is
constructed.  Only simple operations (adding an entry or clearing all) are
required and the list is assumed not to be very long, so this simple data
structure should be enough.

If we failed to save raw error info, the hwpoison hugepage has errors on
unknown subpage, then this new saving mechanism does not work any more, so
disable saving new raw error info and freeing hwpoison hugepages.

Link: https://lkml.kernel.org/r/20220714042420.1847125-4-naoya.horiguchi@linux.dev
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Liu Shixin <liushixin2@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-08 18:06:44 -07:00
Muchun Song 6213834c10 mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability
There is a discussion about the name of hugetlb_vmemmap_alloc/free in
thread [1].  The suggestion suggested by David is rename "alloc/free" to
"optimize/restore" to make functionalities clearer to users, "optimize"
means the function will optimize vmemmap pages, while "restore" means
restoring its vmemmap pages discared before.  This commit does this.

Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used
explicitly for vmemmap_addr but implicitly for vmemmap_end in
hugetlb_vmemmap_alloc/free.  David suggested we can compute what
hugetlb_vmemmap_init() does now at runtime.  We do not need to worry for
the overhead of computing at runtime since the calculation is simple
enough and those functions are not in a hot path.  This commit has the
following improvements:

  1) The function suffixed name ("optimize/restore") is more expressive.
  2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore().
  3) The hugetlb_vmemmap_init() does not need to be exported anymore.
  4) A ->optimize_vmemmap_pages field in struct hstate is killed.
  5) There is only one place where checks is_power_of_2(sizeof(struct
     page)) instead of two places.
  6) Add more comments for hugetlb_vmemmap_optimize/restore().
  7) For external users, hugetlb_optimize_vmemmap_pages() is used for
     detecting if the HugeTLB's vmemmap pages is optimizable originally.
     In this commit, it is killed and we introduce a new helper
     hugetlb_vmemmap_optimizable() to replace it.  The name is more
     expressive.

Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1]
Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Will Deacon <will@kernel.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-08 18:06:43 -07:00
Gang Li dcadcf1c30 mm, hugetlb: skip irrelevant nodes in show_free_areas()
show_free_areas() allows to filter out node specific data which is
irrelevant to the allocation request.  But hugetlb_show_meminfo() still
shows hugetlb on all nodes, which is redundant and unnecessary.

Use show_mem_node_skip() to skip irrelevant nodes.  And replace
hugetlb_show_meminfo() with hugetlb_show_meminfo_node(nid).

before-and-after sample output of OOM:

before:
```
[  214.362453] Node 1 active_anon:148kB inactive_anon:4050920kB active_file:112kB inactive_file:100kB
[  214.375429] Node 1 Normal free:45100kB boost:0kB min:45576kB low:56968kB high:68360kB reserved_hig
[  214.388334] lowmem_reserve[]: 0 0 0 0 0
[  214.390251] Node 1 Normal: 423*4kB (UE) 320*8kB (UME) 187*16kB (UE) 117*32kB (UE) 57*64kB (UME) 20
[  214.397626] Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB
[  214.401518] Node 1 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB
```

after:
```
[  145.069705] Node 1 active_anon:128kB inactive_anon:4049412kB active_file:56kB inactive_file:84kB u
[  145.110319] Node 1 Normal free:45424kB boost:0kB min:45576kB low:56968kB high:68360kB reserved_hig
[  145.152315] lowmem_reserve[]: 0 0 0 0 0
[  145.155244] Node 1 Normal: 470*4kB (UME) 373*8kB (UME) 247*16kB (UME) 168*32kB (UE) 86*64kB (UME)
[  145.164119] Node 1 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB
```

Link: https://lkml.kernel.org/r/20220706034655.1834-1-ligang.bdlg@bytedance.com
Signed-off-by: Gang Li <ligang.bdlg@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-17 17:14:47 -07:00
Mike Kravetz 4ddb4d91b8 hugetlb: do not update address in huge_pmd_unshare
As an optimization for loops sequentially processing hugetlb address
ranges, huge_pmd_unshare would update a passed address if it unshared a
pmd.  Updating a loop control variable outside the loop like this is
generally a bad idea.  These loops are now using hugetlb_mask_last_page to
optimize scanning when non-present ptes are discovered.  The same can be
done when huge_pmd_unshare returns 1 indicating a pmd was unshared.

Remove address update from huge_pmd_unshare.  Change the passed argument
type and update all callers.  In loops sequentially processing addresses
use hugetlb_mask_last_page to update address if pmd is unshared.

[sfr@canb.auug.org.au: fix an unused variable warning/error]
  Link: https://lkml.kernel.org/r/20220622171117.70850960@canb.auug.org.au
Link: https://lkml.kernel.org/r/20220621235620.291305-4-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rolf Eike Beer <eike-kernel@sf-tec.de>
Cc: Will Deacon <will@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-17 17:14:34 -07:00
Mike Kravetz e95a985178 hugetlb: skip to end of PT page mapping when pte not present
Patch series "hugetlb: speed up linear address scanning", v2.

At unmap, fork and remap time hugetlb address ranges are linearly scanned.
We can optimize these scans if the ranges are sparsely populated.

Also, enable page table "Lazy copy" for hugetlb at fork.

NOTE: Architectures not defining CONFIG_ARCH_WANT_GENERAL_HUGETLB need to
add an arch specific version hugetlb_mask_last_page() to take advantage of
sparse address scanning improvements.  Baolin Wang added the routine for
arm64.  Other architectures which could be optimized are: ia64, mips,
parisc, powerpc, s390, sh and sparc.


This patch (of 4):

HugeTLB address ranges are linearly scanned during fork, unmap and remap
operations.  If a non-present entry is encountered, the code currently
continues to the next huge page aligned address.  However, a non-present
entry implies that the page table page for that entry is not present. 
Therefore, the linear scan can skip to the end of range mapped by the page
table page.  This can speed operations on large sparsely populated hugetlb
mappings.

Create a new routine hugetlb_mask_last_page() that will return an address
mask.  When the mask is ORed with an address, the result will be the
address of the last huge page mapped by the associated page table page. 
Use this mask to update addresses in routines which linearly scan hugetlb
address ranges when a non-present pte is encountered.

hugetlb_mask_last_page is related to the implementation of huge_pte_offset
as hugetlb_mask_last_page is called when huge_pte_offset returns NULL. 
This patch only provides a complete hugetlb_mask_last_page implementation
when CONFIG_ARCH_WANT_GENERAL_HUGETLB is defined.  Architectures which
provide their own versions of huge_pte_offset can also provide their own
version of hugetlb_mask_last_page.

Link: https://lkml.kernel.org/r/20220621235620.291305-1-mike.kravetz@oracle.com
Link: https://lkml.kernel.org/r/20220621235620.291305-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Reported-by: kernel test robot <lkp@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: James Houghton <jthoughton@google.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Rolf Eike Beer <eike-kernel@sf-tec.de>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-17 17:14:34 -07:00
Qi Zheng 18f3962953 mm: hugetlb: kill set_huge_swap_pte_at()
Commit e5251fd430 ("mm/hugetlb: introduce set_huge_swap_pte_at()
helper") add set_huge_swap_pte_at() to handle swap entries on
architectures that support hugepages consisting of contiguous ptes.  And
currently the set_huge_swap_pte_at() is only overridden by arm64.

set_huge_swap_pte_at() provide a sz parameter to help determine the number
of entries to be updated.  But in fact, all hugetlb swap entries contain
pfn information, so we can find the corresponding folio through the pfn
recorded in the swap entry, then the folio_size() is the number of entries
that need to be updated.

And considering that users will easily cause bugs by ignoring the
difference between set_huge_swap_pte_at() and set_huge_pte_at().  Let's
handle swap entries in set_huge_pte_at() and remove the
set_huge_swap_pte_at(), then we can call set_huge_pte_at() anywhere, which
simplifies our coding.

Link: https://lkml.kernel.org/r/20220626145717.53572-1-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-03 18:08:50 -07:00
Miaohe Lin 7ce82f4c3f mm/migration: return errno when isolate_huge_page failed
We might fail to isolate huge page due to e.g.  the page is under
migration which cleared HPageMigratable.  We should return errno in this
case rather than always return 1 which could confuse the user, i.e.  the
caller might think all of the memory is migrated while the hugetlb page is
left behind.  We make the prototype of isolate_huge_page consistent with
isolate_lru_page as suggested by Huang Ying and rename isolate_huge_page
to isolate_hugetlb as suggested by Muchun to improve the readability.

Link: https://lkml.kernel.org/r/20220530113016.16663-4-linmiaohe@huawei.com
Fixes: e8db67eb0d ("mm: migrate: move_pages() supports thp migration")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Suggested-by: Huang Ying <ying.huang@intel.com>
Reported-by: kernel test robot <lkp@intel.com> (build error)
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-03 18:08:37 -07:00
Linus Torvalds 6112bd00e8 powerpc updates for 5.19
- Convert to the generic mmap support (ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT).
 
  - Add support for outline-only KASAN with 64-bit Radix MMU (P9 or later).
 
  - Increase SIGSTKSZ and MINSIGSTKSZ and add support for AT_MINSIGSTKSZ.
 
  - Enable the DAWR (Data Address Watchpoint) on POWER9 DD2.3 or later.
 
  - Drop support for system call instruction emulation.
 
  - Many other small features and fixes.
 
 Thanks to: Alexey Kardashevskiy, Alistair Popple, Andy Shevchenko, Bagas Sanjaya, Bjorn
 Helgaas, Bo Liu, Chen Huang, Christophe Leroy, Colin Ian King, Daniel Axtens, Dwaipayan
 Ray, Fabiano Rosas, Finn Thain, Frank Rowand, Fuqian Huang, Guilherme G. Piccoli, Hangyu
 Hua, Haowen Bai, Haren Myneni, Hari Bathini, He Ying, Jason Wang, Jiapeng Chong, Jing
 Yangyang, Joel Stanley, Julia Lawall, Kajol Jain, Kevin Hao, Krzysztof Kozlowski, Laurent
 Dufour, Lv Ruyi, Madhavan Srinivasan, Magali Lemes, Miaoqian Lin, Minghao Chi, Nathan
 Chancellor, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran, Oscar Salvador, Pali Rohár,
 Paul Mackerras, Peng Wu, Qing Wang, Randy Dunlap, Reza Arbab, Russell Currey, Sohaib
 Mohamed, Vaibhav Jain, Vasant Hegde, Wang Qing, Wang Wensheng, Xiang wangx, Xiaomeng Tong,
 Xu Wang, Yang Guang, Yang Li, Ye Bin, YueHaibing, Yu Kuai, Zheng Bin, Zou Wei, Zucheng
 Zheng.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAmKSEgETHG1wZUBlbGxl
 cm1hbi5pZC5hdQAKCRBR6+o8yOGlgJpLEACee7mu2I00Z7VWtW5ckT4RFbAXYZcM
 Hv5DbTnVB2ItoQMRHvG52DNbR73j9HnYrz8kpwfTBVk90udxVP14L/swXDs3xbT4
 riXEYtJ1DRVc/bLiOK637RLPWNrmmZStWZme7k0Y9Ki5Aif8i1Erjjq7EIy47m9j
 j1MTcwp3ND7IsBON2nZ3PkttEHhevKvOwCPb/BWtPMDV0OhyQUFKB2SNegrlCrkT
 wshDgdQcYqbIix98PoGa2ZfUVgFQD3JVLzXa4sLpqouzGD+HvEFStOFa2Gq/ZEvV
 zunaeXDdZUCjlib6KvA8+aumBbIQ1s/urrDbxd+3BuYxZ094vNP1B428NT1AWVtl
 3bEZQIN8GSx0v9aHxZ8HePsAMXgG9d2o0xC9EMQ430+cqroN+6UHP7lkekwkprb7
 U9EpZCG9U8jV6SDcaMigW3tooEjn657we0R8nZG2NgUNssdSHVh/JYxGDALPXIAk
 awL3NQrR0tYF3Y3LJm5AxdQrK1hJH8E+hZFCZvIpUXGsr/uf9Gemy/62pD1rhrr/
 niULpxIneRGkJiXB5qdGy8pRu27ED53k7Ky6+8MWSEFQl1mUsHSryYACWz939D8c
 DydhBwQqDTl6Ozs41a5TkVjIRLOCrZADUd/VZM6A4kEOqPJ5t2Gz22Bn8ya1z6Ks
 5Sx6vrGH7GnDjA==
 =15oQ
 -----END PGP SIGNATURE-----

Merge tag 'powerpc-5.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux

Pull powerpc updates from Michael Ellerman:

 - Convert to the generic mmap support (ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT)

 - Add support for outline-only KASAN with 64-bit Radix MMU (P9 or later)

 - Increase SIGSTKSZ and MINSIGSTKSZ and add support for AT_MINSIGSTKSZ

 - Enable the DAWR (Data Address Watchpoint) on POWER9 DD2.3 or later

 - Drop support for system call instruction emulation

 - Many other small features and fixes

Thanks to Alexey Kardashevskiy, Alistair Popple, Andy Shevchenko, Bagas
Sanjaya, Bjorn Helgaas, Bo Liu, Chen Huang, Christophe Leroy, Colin Ian
King, Daniel Axtens, Dwaipayan Ray, Fabiano Rosas, Finn Thain, Frank
Rowand, Fuqian Huang, Guilherme G. Piccoli, Hangyu Hua, Haowen Bai,
Haren Myneni, Hari Bathini, He Ying, Jason Wang, Jiapeng Chong, Jing
Yangyang, Joel Stanley, Julia Lawall, Kajol Jain, Kevin Hao, Krzysztof
Kozlowski, Laurent Dufour, Lv Ruyi, Madhavan Srinivasan, Magali Lemes,
Miaoqian Lin, Minghao Chi, Nathan Chancellor, Naveen N. Rao, Nicholas
Piggin, Oliver O'Halloran, Oscar Salvador, Pali Rohár, Paul Mackerras,
Peng Wu, Qing Wang, Randy Dunlap, Reza Arbab, Russell Currey, Sohaib
Mohamed, Vaibhav Jain, Vasant Hegde, Wang Qing, Wang Wensheng, Xiang
wangx, Xiaomeng Tong, Xu Wang, Yang Guang, Yang Li, Ye Bin, YueHaibing,
Yu Kuai, Zheng Bin, Zou Wei, and Zucheng Zheng.

* tag 'powerpc-5.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (200 commits)
  powerpc/64: Include cache.h directly in paca.h
  powerpc/64s: Only set HAVE_ARCH_UNMAPPED_AREA when CONFIG_PPC_64S_HASH_MMU is set
  powerpc/xics: Include missing header
  powerpc/powernv/pci: Drop VF MPS fixup
  powerpc/fsl_book3e: Don't set rodata RO too early
  powerpc/microwatt: Add mmu bits to device tree
  powerpc/powernv/flash: Check OPAL flash calls exist before using
  powerpc/powermac: constify device_node in of_irq_parse_oldworld()
  powerpc/powermac: add missing g5_phy_disable_cpu1() declaration
  selftests/powerpc/pmu: fix spelling mistake "mis-match" -> "mismatch"
  powerpc: Enable the DAWR on POWER9 DD2.3 and above
  powerpc/64s: Add CPU_FTRS_POWER10 to ALWAYS mask
  powerpc/64s: Add CPU_FTRS_POWER9_DD2_2 to CPU_FTRS_ALWAYS mask
  powerpc: Fix all occurences of "the the"
  selftests/powerpc/pmu/ebb: remove fixed_instruction.S
  powerpc/platforms/83xx: Use of_device_get_match_data()
  powerpc/eeh: Drop redundant spinlock initialization
  powerpc/iommu: Add missing of_node_put in iommu_init_early_dart
  powerpc/pseries/vas: Call misc_deregister if sysfs init fails
  powerpc/papr_scm: Fix leaking nvdimm_events_map elements
  ...
2022-05-28 11:27:17 -07:00
Baolin Wang 5d4af6195c mm: rmap: fix CONT-PTE/PMD size hugetlb issue when migration
On some architectures (like ARM64), it can support CONT-PTE/PMD size
hugetlb, which means it can support not only PMD/PUD size hugetlb: 2M and
1G, but also CONT-PTE/PMD size: 64K and 32M if a 4K page size specified.

When migrating a hugetlb page, we will get the relevant page table entry
by huge_pte_offset() only once to nuke it and remap it with a migration
pte entry.  This is correct for PMD or PUD size hugetlb, since they always
contain only one pmd entry or pud entry in the page table.

However this is incorrect for CONT-PTE and CONT-PMD size hugetlb, since
they can contain several continuous pte or pmd entry with same page table
attributes.  So we will nuke or remap only one pte or pmd entry for this
CONT-PTE/PMD size hugetlb page, which is not expected for hugetlb
migration.  The problem is we can still continue to modify the subpages'
data of a hugetlb page during migrating a hugetlb page, which can cause a
serious data consistent issue, since we did not nuke the page table entry
and set a migration pte for the subpages of a hugetlb page.

To fix this issue, we should change to use huge_ptep_clear_flush() to nuke
a hugetlb page table, and remap it with set_huge_pte_at() and
set_huge_swap_pte_at() when migrating a hugetlb page, which already
considered the CONT-PTE or CONT-PMD size hugetlb.

[akpm@linux-foundation.org: fix nommu build]
[baolin.wang@linux.alibaba.com: fix build errors for !CONFIG_MMU]
  Link: https://lkml.kernel.org/r/a4baca670aca637e7198d9ae4543b8873cb224dc.1652270205.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/ea5abf529f0997b5430961012bfda6166c1efc8c.1652147571.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.osdn.me>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13 16:48:55 -07:00
Peter Xu bc70fbf269 mm/hugetlb: handle uffd-wp during fork()
Firstly, we'll need to pass in dst_vma into copy_hugetlb_page_range()
because for uffd-wp it's the dst vma that matters on deciding how we
should treat uffd-wp protected ptes.

We should recognize pte markers during fork and do the pte copy if needed.

[lkp@intel.com: vma_needs_copy can be static]
  Link: https://lkml.kernel.org/r/Ylb0CGeFJlc4EzLk@7ec4ff11d4ae
Link: https://lkml.kernel.org/r/20220405014918.14932-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13 07:20:11 -07:00
Peter Xu 05e90bd05e mm/hugetlb: only drop uffd-wp special pte if required
As with shmem uffd-wp special ptes, only drop the uffd-wp special swap pte
if unmapping an entire vma or synchronized such that faults can not race
with the unmap operation.  This requires passing zap_flags all the way to
the lowest level hugetlb unmap routine: __unmap_hugepage_range.

In general, unmap calls originated in hugetlbfs code will pass the
ZAP_FLAG_DROP_MARKER flag as synchronization is in place to prevent
faults.  The exception is hole punch which will first unmap without any
synchronization.  Later when hole punch actually removes the page from the
file, it will check to see if there was a subsequent fault and if so take
the hugetlb fault mutex while unmapping again.  This second unmap will
pass in ZAP_FLAG_DROP_MARKER.

The justification of "whether to apply ZAP_FLAG_DROP_MARKER flag when
unmap a hugetlb range" is (IMHO): we should never reach a state when a
page fault could errornously fault in a page-cache page that was
wr-protected to be writable, even in an extremely short period.  That
could happen if e.g.  we pass ZAP_FLAG_DROP_MARKER when
hugetlbfs_punch_hole() calls hugetlb_vmdelete_list(), because if a page
faults after that call and before remove_inode_hugepages() is executed,
the page cache can be mapped writable again in the small racy window, that
can cause unexpected data overwritten.

[peterx@redhat.com: fix sparse warning]
  Link: https://lkml.kernel.org/r/Ylcdw8I1L5iAoWhb@xz-m1.local
[akpm@linux-foundation.org: move zap_flags_t from mm.h to mm_types.h to fix build issues]
Link: https://lkml.kernel.org/r/20220405014915.14873-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13 07:20:11 -07:00
Peter Xu 5a90d5a103 mm/hugetlb: handle UFFDIO_WRITEPROTECT
This starts from passing cp_flags into hugetlb_change_protection() so
hugetlb will be able to handle MM_CP_UFFD_WP[_RESOLVE] requests.

huge_pte_clear_uffd_wp() is introduced to handle the case where the
UFFDIO_WRITEPROTECT is requested upon migrating huge page entries.

Link: https://lkml.kernel.org/r/20220405014906.14708-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13 07:20:11 -07:00
Peter Xu 6041c69179 mm/hugetlb: take care of UFFDIO_COPY_MODE_WP
Pass the wp_copy variable into hugetlb_mcopy_atomic_pte() thoughout the
stack.  Apply the UFFD_WP bit if UFFDIO_COPY_MODE_WP is with UFFDIO_COPY.

Hugetlb pages are only managed by hugetlbfs, so we're safe even without
setting dirty bit in the huge pte if the page is installed as read-only. 
However we'd better still keep the dirty bit set for a read-only
UFFDIO_COPY pte (when UFFDIO_COPY_MODE_WP bit is set), not only to match
what we do with shmem, but also because the page does contain dirty data
that the kernel just copied from the userspace.

Link: https://lkml.kernel.org/r/20220405014904.14643-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13 07:20:10 -07:00
Christophe Leroy 4b439e25e2 mm, hugetlbfs: Allow an arch to always use generic versions of get_unmapped_area functions
Unlike most architectures, powerpc can only define at runtime
if it is going to use the generic arch_get_unmapped_area() or not.

Today, powerpc has a copy of the generic arch_get_unmapped_area()
because when selection HAVE_ARCH_UNMAPPED_AREA the generic
arch_get_unmapped_area() is not available.

Rename it generic_get_unmapped_area() and make it independent of
HAVE_ARCH_UNMAPPED_AREA.

Do the same for arch_get_unmapped_area_topdown() versus
HAVE_ARCH_UNMAPPED_AREA_TOPDOWN.

Do the same for hugetlb_get_unmapped_area() versus
HAVE_ARCH_HUGETLB_UNMAPPED_AREA.

Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/77f9d3e592f1c8511df9381aa1c4e754651da4d1.1649523076.git.christophe.leroy@csgroup.eu
2022-05-05 22:11:57 +10:00
Muchun Song 47010c040d mm: hugetlb_vmemmap: cleanup CONFIG_HUGETLB_PAGE_FREE_VMEMMAP*
The word of "free" is not expressive enough to express the feature of
optimizing vmemmap pages associated with each HugeTLB, rename this keywork
to "optimize".  In this patch , cheanup configs to make code more
expressive.

Link: https://lkml.kernel.org/r/20220404074652.68024-4-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-28 23:16:15 -07:00
Muchun Song 5981611d0a mm: hugetlb_vmemmap: cleanup hugetlb_vmemmap related functions
Patch series "cleanup hugetlb_vmemmap".

The word of "free" is not expressive enough to express the feature of
optimizing vmemmap pages associated with each HugeTLB, rename this keywork
to "optimize" is more clear.  In this series, cheanup related codes to
make it more clear and expressive.  This is suggested by David.


This patch (of 3):

The word of "free" is not expressive enough to express the feature of
optimizing vmemmap pages associated with each HugeTLB, rename this keywork
to "optimize".  And some function names are prefixed with "huge_page"
instead of "hugetlb", it is easily to be confused with THP.  In this
patch, cheanup related functions to make code more clear and expressive.

Link: https://lkml.kernel.org/r/20220404074652.68024-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20220404074652.68024-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-28 23:16:14 -07:00
Naoya Horiguchi 405ce05123 mm/hwpoison: fix race between hugetlb free/demotion and memory_failure_hugetlb()
There is a race condition between memory_failure_hugetlb() and hugetlb
free/demotion, which causes setting PageHWPoison flag on the wrong page.
The one simple result is that wrong processes can be killed, but another
(more serious) one is that the actual error is left unhandled, so no one
prevents later access to it, and that might lead to more serious results
like consuming corrupted data.

Think about the below race window:

  CPU 1                                   CPU 2
  memory_failure_hugetlb
  struct page *head = compound_head(p);
                                          hugetlb page might be freed to
                                          buddy, or even changed to another
                                          compound page.

  get_hwpoison_page -- page is not what we want now...

The current code first does prechecks roughly and then reconfirms after
taking refcount, but it's found that it makes code overly complicated,
so move the prechecks in a single hugetlb_lock range.

A newly introduced function, try_memory_failure_hugetlb(), always takes
hugetlb_lock (even for non-hugetlb pages).  That can be improved, but
memory_failure() is rare in principle, so should not be a big problem.

Link: https://lkml.kernel.org/r/20220408135323.1559401-2-naoya.horiguchi@linux.dev
Fixes: 761ad8d7c7 ("mm: hwpoison: introduce memory_failure_hugetlb()")
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reported-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-21 20:01:09 -07:00
Linus Torvalds 9030fb0bb9 Folio changes for 5.18
- Rewrite how munlock works to massively reduce the contention
    on i_mmap_rwsem (Hugh Dickins):
    https://lore.kernel.org/linux-mm/8e4356d-9622-a7f0-b2c-f116b5f2efea@google.com/
  - Sort out the page refcount mess for ZONE_DEVICE pages (Christoph Hellwig):
    https://lore.kernel.org/linux-mm/20220210072828.2930359-1-hch@lst.de/
  - Convert GUP to use folios and make pincount available for order-1
    pages. (Matthew Wilcox)
  - Convert a few more truncation functions to use folios (Matthew Wilcox)
  - Convert page_vma_mapped_walk to use PFNs instead of pages (Matthew Wilcox)
  - Convert rmap_walk to use folios (Matthew Wilcox)
  - Convert most of shrink_page_list() to use a folio (Matthew Wilcox)
  - Add support for creating large folios in readahead (Matthew Wilcox)
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAmI4ucgACgkQDpNsjXcp
 gj69Wgf6AwqwmO5Tmy+fLScDPqWxmXJofbocae1kyoGHf7Ui91OK4U2j6IpvAr+g
 P/vLIK+JAAcTQcrSCjymuEkf4HkGZOR03QQn7maPIEe4eLrZRQDEsmHC1L9gpeJp
 s/GMvDWiGE0Tnxu0EOzfVi/yT+qjIl/S8VvqtCoJv1HdzxitZ7+1RDuqImaMC5MM
 Qi3uHag78vLmCltLXpIOdpgZhdZexCdL2Y/1npf+b6FVkAJRRNUnA0gRbS7YpoVp
 CbxEJcmAl9cpJLuj5i5kIfS9trr+/QcvbUlzRxh4ggC58iqnmF2V09l2MJ7YU3XL
 v1O/Elq4lRhXninZFQEm9zjrri7LDQ==
 =n9Ad
 -----END PGP SIGNATURE-----

Merge tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecache

Pull folio updates from Matthew Wilcox:

 - Rewrite how munlock works to massively reduce the contention on
   i_mmap_rwsem (Hugh Dickins):

     https://lore.kernel.org/linux-mm/8e4356d-9622-a7f0-b2c-f116b5f2efea@google.com/

 - Sort out the page refcount mess for ZONE_DEVICE pages (Christoph
   Hellwig):

     https://lore.kernel.org/linux-mm/20220210072828.2930359-1-hch@lst.de/

 - Convert GUP to use folios and make pincount available for order-1
   pages. (Matthew Wilcox)

 - Convert a few more truncation functions to use folios (Matthew
   Wilcox)

 - Convert page_vma_mapped_walk to use PFNs instead of pages (Matthew
   Wilcox)

 - Convert rmap_walk to use folios (Matthew Wilcox)

 - Convert most of shrink_page_list() to use a folio (Matthew Wilcox)

 - Add support for creating large folios in readahead (Matthew Wilcox)

* tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecache: (114 commits)
  mm/damon: minor cleanup for damon_pa_young
  selftests/vm/transhuge-stress: Support file-backed PMD folios
  mm/filemap: Support VM_HUGEPAGE for file mappings
  mm/readahead: Switch to page_cache_ra_order
  mm/readahead: Align file mappings for non-DAX
  mm/readahead: Add large folio readahead
  mm: Support arbitrary THP sizes
  mm: Make large folios depend on THP
  mm: Fix READ_ONLY_THP warning
  mm/filemap: Allow large folios to be added to the page cache
  mm: Turn can_split_huge_page() into can_split_folio()
  mm/vmscan: Convert pageout() to take a folio
  mm/vmscan: Turn page_check_references() into folio_check_references()
  mm/vmscan: Account large folios correctly
  mm/vmscan: Optimise shrink_page_list for non-PMD-sized folios
  mm/vmscan: Free non-shmem folios without splitting them
  mm/rmap: Constify the rmap_walk_control argument
  mm/rmap: Convert rmap_walk() to take a folio
  mm: Turn page_anon_vma() into folio_anon_vma()
  mm/rmap: Turn page_lock_anon_vma_read() into folio_lock_anon_vma_read()
  ...
2022-03-22 17:03:12 -07:00
Muchun Song a6b40850c4 mm: hugetlb: replace hugetlb_free_vmemmap_enabled with a static_key
The page_fixed_fake_head() is used throughout memory management and the
conditional check requires checking a global variable, although the
overhead of this check may be small, it increases when the memory cache
comes under pressure.  Also, the global variable will not be modified
after system boot, so it is very appropriate to use static key machanism.

Link: https://lkml.kernel.org/r/20211101031651.75851-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Barry Song <song.bao.hua@hisilicon.com>
Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Chen Huang <chenhuang5@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:08 -07:00
Anshuman Khandual 16785bd774 mm: merge pte_mkhuge() call into arch_make_huge_pte()
Each call into pte_mkhuge() is invariably followed by
arch_make_huge_pte().  Instead arch_make_huge_pte() can accommodate
pte_mkhuge() at the beginning.  This updates generic fallback stub for
arch_make_huge_pte() and available platforms definitions.  This makes huge
pte creation much cleaner and easier to follow.

Link: https://lkml.kernel.org/r/1643860669-26307-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:04 -07:00
Matthew Wilcox (Oracle) 2aff7a4755 mm: Convert page_vma_mapped_walk to work on PFNs
page_mapped_in_vma() really just wants to walk one page, but as the
code stands, if passed the head page of a compound page, it will
walk every page in the compound page.  Extract pfn/nr_pages/pgoff
from the struct page early, so they can be overridden by
page_mapped_in_vma().

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-03-21 12:59:02 -04:00
Mina Almasry f477619990 hugetlb: add hugetlb.*.numa_stat file
For hugetlb backed jobs/VMs it's critical to understand the numa
information for the memory backing these jobs to deliver optimal
performance.

Currently this technically can be queried from /proc/self/numa_maps, but
there are significant issues with that.  Namely:

1. Memory can be mapped or unmapped.

2. numa_maps are per process and need to be aggregated across all
   processes in the cgroup.  For shared memory this is more involved as
   the userspace needs to make sure it doesn't double count shared
   mappings.

3. I believe querying numa_maps needs to hold the mmap_lock which adds
   to the contention on this lock.

For these reasons I propose simply adding hugetlb.*.numa_stat file,
   which shows the numa information of the cgroup similarly to
   memory.numa_stat.

On cgroup-v2:
   cat /sys/fs/cgroup/unified/test/hugetlb.2MB.numa_stat
   total=2097152 N0=2097152 N1=0

On cgroup-v1:
   cat /sys/fs/cgroup/hugetlb/test/hugetlb.2MB.numa_stat
   total=2097152 N0=2097152 N1=0
   hierarichal_total=2097152 N0=2097152 N1=0

This patch was tested manually by allocating hugetlb memory and querying
the hugetlb.*.numa_stat file of the cgroup and its parents.

[colin.i.king@googlemail.com: fix spelling mistake "hierarichal" -> "hierarchical"]
  Link: https://lkml.kernel.org/r/20211125090635.23508-1-colin.i.king@gmail.com
[keescook@chromium.org: fix copy/paste array assignment]
  Link: https://lkml.kernel.org/r/20211203065647.2819707-1-keescook@chromium.org

Link: https://lkml.kernel.org/r/20211123001020.4083653-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Jue Wang <juew@google.com>
Cc: Yang Yao <ygyao@google.com>
Cc: Joanna Li <joannali@google.com>
Cc: Cannon Matthews <cannonmatthews@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 16:30:29 +02:00
zhangyiru 83c1fd763b mm,hugetlb: remove mlock ulimit for SHM_HUGETLB
Commit 21a3c273f8 ("mm, hugetlb: add thread name and pid to
SHM_HUGETLB mlock rlimit warning") marked this as deprecated in 2012,
but it is not deleted yet.

Mike says he still sees that message in log files on occasion, so maybe we
should preserve this warning.

Also remove hugetlbfs related user_shm_unlock in ipc/shm.c and remove the
user_shm_unlock after out.

Link: https://lkml.kernel.org/r/20211103105857.25041-1-zhangyiru3@huawei.com
Signed-off-by: zhangyiru <zhangyiru3@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Liu Zixian <liuzixian4@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: wuxu.wu <wuxu.wu@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-09 10:02:48 -08:00
Zhenguo Yao b5389086ad hugetlbfs: extend the definition of hugepages parameter to support node allocation
We can specify the number of hugepages to allocate at boot.  But the
hugepages is balanced in all nodes at present.  In some scenarios, we
only need hugepages in one node.  For example: DPDK needs hugepages
which are in the same node as NIC.

If DPDK needs four hugepages of 1G size in node1 and system has 16 numa
nodes we must reserve 64 hugepages on the kernel cmdline.  But only four
hugepages are used.  The others should be free after boot.  If the
system memory is low(for example: 64G), it will be an impossible task.

So extend the hugepages parameter to support specifying hugepages on a
specific node.  For example add following parameter:

  hugepagesz=1G hugepages=0:1,1:3

It will allocate 1 hugepage in node0 and 3 hugepages in node1.

Link: https://lkml.kernel.org/r/20211005054729.86457-1-yaozhenguo1@gmail.com
Signed-off-by: Zhenguo Yao <yaozhenguo1@gmail.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Zhenguo Yao <yaozhenguo1@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:41 -07:00
Mina Almasry 550a7d60bd mm, hugepages: add mremap() support for hugepage backed vma
Support mremap() for hugepage backed vma segment by simply repositioning
page table entries.  The page table entries are repositioned to the new
virtual address on mremap().

Hugetlb mremap() support is of course generic; my motivating use case is
a library (hugepage_text), which reloads the ELF text of executables in
hugepages.  This significantly increases the execution performance of
said executables.

Restrict the mremap operation on hugepages to up to the size of the
original mapping as the underlying hugetlb reservation is not yet
capable of handling remapping to a larger size.

During the mremap() operation we detect pmd_share'd mappings and we
unshare those during the mremap().  On access and fault the sharing is
established again.

Link: https://lkml.kernel.org/r/20211013195825.3058275-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Ken Chen <kenchen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Kirill Shutemov <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:39 -07:00
Mike Kravetz 79dfc69552 hugetlb: add demote hugetlb page sysfs interfaces
Patch series "hugetlb: add demote/split page functionality", v4.

The concurrent use of multiple hugetlb page sizes on a single system is
becoming more common.  One of the reasons is better TLB support for
gigantic page sizes on x86 hardware.  In addition, hugetlb pages are
being used to back VMs in hosting environments.

When using hugetlb pages to back VMs, it is often desirable to
preallocate hugetlb pools.  This avoids the delay and uncertainty of
allocating hugetlb pages at VM startup.  In addition, preallocating huge
pages minimizes the issue of memory fragmentation that increases the
longer the system is up and running.

In such environments, a combination of larger and smaller hugetlb pages
are preallocated in anticipation of backing VMs of various sizes.  Over
time, the preallocated pool of smaller hugetlb pages may become depleted
while larger hugetlb pages still remain.  In such situations, it is
desirable to convert larger hugetlb pages to smaller hugetlb pages.

Converting larger to smaller hugetlb pages can be accomplished today by
first freeing the larger page to the buddy allocator and then allocating
the smaller pages.  For example, to convert 50 GB pages on x86:

  gb_pages=`cat .../hugepages-1048576kB/nr_hugepages`
  m2_pages=`cat .../hugepages-2048kB/nr_hugepages`
  echo $(($gb_pages - 50)) > .../hugepages-1048576kB/nr_hugepages
  echo $(($m2_pages + 25600)) > .../hugepages-2048kB/nr_hugepages

On an idle system this operation is fairly reliable and results are as
expected.  The number of 2MB pages is increased as expected and the time
of the operation is a second or two.

However, when there is activity on the system the following issues
arise:

1) This process can take quite some time, especially if allocation of
   the smaller pages is not immediate and requires migration/compaction.

2) There is no guarantee that the total size of smaller pages allocated
   will match the size of the larger page which was freed. This is
   because the area freed by the larger page could quickly be
   fragmented.

In a test environment with a load that continually fills the page cache
with clean pages, results such as the following can be observed:

  Unexpected number of 2MB pages allocated: Expected 25600, have 19944
  real    0m42.092s
  user    0m0.008s
  sys     0m41.467s

To address these issues, introduce the concept of hugetlb page demotion.
Demotion provides a means of 'in place' splitting of a hugetlb page to
pages of a smaller size.  This avoids freeing pages to buddy and then
trying to allocate from buddy.

Page demotion is controlled via sysfs files that reside in the per-hugetlb
page size and per node directories.

 - demote_size
        Target page size for demotion, a smaller huge page size. File
        can be written to chose a smaller huge page size if multiple are
        available.

 - demote
        Writable number of hugetlb pages to be demoted

To demote 50 GB huge pages, one would:

  cat .../hugepages-1048576kB/free_hugepages   /* optional, verify free pages */
  cat .../hugepages-1048576kB/demote_size      /* optional, verify target size */
  echo 50 > .../hugepages-1048576kB/demote

Only hugetlb pages which are free at the time of the request can be
demoted.  Demotion does not add to the complexity of surplus pages and
honors reserved huge pages.  Therefore, when a value is written to the
sysfs demote file, that value is only the maximum number of pages which
will be demoted.  It is possible fewer will actually be demoted.  The
recently introduced per-hstate mutex is used to synchronize demote
operations with other operations that modify hugetlb pools.

Real world use cases
--------------------
The above scenario describes a real world use case where hugetlb pages
are used to back VMs on x86.  Both issues of long allocation times and
not necessarily getting the expected number of smaller huge pages after
a free and allocate cycle have been experienced.  The occurrence of
these issues is dependent on other activity within the host and can not
be predicted.

This patch (of 5):

Two new sysfs files are added to demote hugtlb pages.  These files are
both per-hugetlb page size and per node.  Files are:

  demote_size - The size in Kb that pages are demoted to. (read-write)
  demote - The number of huge pages to demote. (write-only)

By default, demote_size is the next smallest huge page size.  Valid huge
page sizes less than huge page size may be written to this file.  When
huge pages are demoted, they are demoted to this size.

Writing a value to demote will result in an attempt to demote that
number of hugetlb pages to an appropriate number of demote_size pages.

NOTE: Demote interfaces are only provided for huge page sizes if there
is a smaller target demote huge page size.  For example, on x86 1GB huge
pages will have demote interfaces.  2MB huge pages will not have demote
interfaces.

This patch does not provide full demote functionality.  It only provides
the sysfs interfaces.

It also provides documentation for the new interfaces.

[mike.kravetz@oracle.com: n_mask initialization does not need to be protected by the mutex]
  Link: https://lkml.kernel.org/r/0530e4ef-2492-5186-f919-5db68edea654@oracle.com

Link: https://lkml.kernel.org/r/20211007181918.136982-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: David Rientjes <rientjes@google.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Nghia Le <nghialm78@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:39 -07:00
Peter Xu 73c5476348 mm/hugetlb: drop __unmap_hugepage_range definition from hugetlb.h
Remove __unmap_hugepage_range() from the header file, because it is only
used in hugetlb.c.

Link: https://lkml.kernel.org/r/20210917165108.9341-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Suggested-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:38 -07:00
Liu Zixian 13db8c5047 mm/hugetlb: initialize hugetlb_usage in mm_init
After fork, the child process will get incorrect (2x) hugetlb_usage.  If
a process uses 5 2MB hugetlb pages in an anonymous mapping,

	HugetlbPages:	   10240 kB

and then forks, the child will show,

	HugetlbPages:	   20480 kB

The reason for double the amount is because hugetlb_usage will be copied
from the parent and then increased when we copy page tables from parent
to child.  Child will have 2x actual usage.

Fix this by adding hugetlb_count_init in mm_init.

Link: https://lkml.kernel.org/r/20210826071742.877-1-liuzixian4@huawei.com
Fixes: 5d317b2b65 ("mm: hugetlb: proc: add HugetlbPages field to /proc/PID/status")
Signed-off-by: Liu Zixian <liuzixian4@huawei.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 18:45:53 -07:00
Zhen Lei 06c8839815 mm: fix spelling mistakes in header files
Fix some spelling mistakes in comments:
successfull ==> successful
potentialy ==> potentially
alloced ==> allocated
indicies ==> indices
wont ==> won't
resposible ==> responsible
dirtyness ==> dirtiness
droppped ==> dropped
alread ==> already
occured ==> occurred
interupts ==> interrupts
extention ==> extension
slighly ==> slightly
Dont't ==> Don't

Link: https://lkml.kernel.org/r/20210531034849.9549-2-thunder.leizhen@huawei.com
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-08 11:48:21 -07:00
Linus Torvalds 71bd934101 Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
 "190 patches.

  Subsystems affected by this patch series: mm (hugetlb, userfaultfd,
  vmscan, kconfig, proc, z3fold, zbud, ras, mempolicy, memblock,
  migration, thp, nommu, kconfig, madvise, memory-hotplug, zswap,
  zsmalloc, zram, cleanups, kfence, and hmm), procfs, sysctl, misc,
  core-kernel, lib, lz4, checkpatch, init, kprobes, nilfs2, hfs,
  signals, exec, kcov, selftests, compress/decompress, and ipc"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (190 commits)
  ipc/util.c: use binary search for max_idx
  ipc/sem.c: use READ_ONCE()/WRITE_ONCE() for use_global_lock
  ipc: use kmalloc for msg_queue and shmid_kernel
  ipc sem: use kvmalloc for sem_undo allocation
  lib/decompressors: remove set but not used variabled 'level'
  selftests/vm/pkeys: exercise x86 XSAVE init state
  selftests/vm/pkeys: refill shadow register after implicit kernel write
  selftests/vm/pkeys: handle negative sys_pkey_alloc() return code
  selftests/vm/pkeys: fix alloc_random_pkey() to make it really, really random
  kcov: add __no_sanitize_coverage to fix noinstr for all architectures
  exec: remove checks in __register_bimfmt()
  x86: signal: don't do sas_ss_reset() until we are certain that sigframe won't be abandoned
  hfsplus: report create_date to kstat.btime
  hfsplus: remove unnecessary oom message
  nilfs2: remove redundant continue statement in a while-loop
  kprobes: remove duplicated strong free_insn_page in x86 and s390
  init: print out unknown kernel parameters
  checkpatch: do not complain about positive return values starting with EPOLL
  checkpatch: improve the indented label test
  checkpatch: scripts/spdxcheck.py now requires python3
  ...
2021-07-02 12:08:10 -07:00
Muchun Song 6acfb5ba15 mm: migrate: fix missing update page_private to hugetlb_page_subpool
Since commit d6995da311 ("hugetlb: use page.private for hugetlb specific
page flags") converts page.private for hugetlb specific page flags.  We
should use hugetlb_page_subpool() to get the subpool pointer instead of
page_private().

This 'could' prevent the migration of hugetlb pages.  page_private(hpage)
is now used for hugetlb page specific flags.  At migration time, the only
flag which could be set is HPageVmemmapOptimized.  This flag will only be
set if the new vmemmap reduction feature is enabled.  In addition,
!page_mapping() implies an anonymous mapping.  So, this will prevent
migration of hugetb pages in anonymous mappings if the vmemmap reduction
feature is enabled.

In addition, that if statement checked for the rare race condition of a
page being migrated while in the process of being freed.  Since that check
is now wrong, we could leak hugetlb subpool usage counts.

The commit forgot to update it in the page migration routine.  So fix it.

[songmuchun@bytedance.com: fix compiler error when !CONFIG_HUGETLB_PAGE reported by Randy]
  Link: https://lkml.kernel.org/r/20210521022747.35736-1-songmuchun@bytedance.com

Link: https://lkml.kernel.org/r/20210520025949.1866-1-songmuchun@bytedance.com
Fixes: d6995da311 ("hugetlb: use page.private for hugetlb specific page flags")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reported-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Anshuman Khandual <anshuman.khandual@arm.com>	[arm64]
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:29 -07:00
Muchun Song 2d7a21715f mm: sparsemem: use huge PMD mapping for vmemmap pages
The preparation of splitting huge PMD mapping of vmemmap pages is ready,
so switch the mapping from PTE to PMD.

Link: https://lkml.kernel.org/r/20210616094915.34432-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Chen Huang <chenhuang5@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:26 -07:00
Christophe Leroy 79c1c594f4 mm/hugetlb: change parameters of arch_make_huge_pte()
Patch series "Subject: [PATCH v2 0/5] Implement huge VMAP and VMALLOC on powerpc 8xx", v2.

This series implements huge VMAP and VMALLOC on powerpc 8xx.

Powerpc 8xx has 4 page sizes:
- 4k
- 16k
- 512k
- 8M

At the time being, vmalloc and vmap only support huge pages which are
leaf at PMD level.

Here the PMD level is 4M, it doesn't correspond to any supported
page size.

For now, implement use of 16k and 512k pages which is done
at PTE level.

Support of 8M pages will be implemented later, it requires use of
hugepd tables.

To allow this, the architecture provides two functions:
- arch_vmap_pte_range_map_size() which tells vmap_pte_range() what
page size to use. A stub returning PAGE_SIZE is provided when the
architecture doesn't provide this function.
- arch_vmap_pte_supported_shift() which tells __vmalloc_node_range()
what page shift to use for a given area size. A stub returning
PAGE_SHIFT is provided when the architecture doesn't provide this
function.

This patch (of 5):

At the time being, arch_make_huge_pte() has the following prototype:

  pte_t arch_make_huge_pte(pte_t entry, struct vm_area_struct *vma,
			   struct page *page, int writable);

vma is used to get the pages shift or size.
vma is also used on Sparc to get vm_flags.
page is not used.
writable is not used.

In order to use this function without a vma, replace vma by shift and
flags.  Also remove the used parameters.

Link: https://lkml.kernel.org/r/cover.1620795204.git.christophe.leroy@csgroup.eu
Link: https://lkml.kernel.org/r/f4633ac6a7da2f22f31a04a89e0a7026bb78b15b.1620795204.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:26 -07:00
Muchun Song 774905878f mm: hugetlb: introduce nr_free_vmemmap_pages in the struct hstate
All the infrastructure is ready, so we introduce nr_free_vmemmap_pages
field in the hstate to indicate how many vmemmap pages associated with a
HugeTLB page that can be freed to buddy allocator.  And initialize it in
the hugetlb_vmemmap_init().  This patch is actual enablement of the
feature.

There are only (RESERVE_VMEMMAP_SIZE / sizeof(struct page)) struct page
structs that can be used when CONFIG_HUGETLB_PAGE_FREE_VMEMMAP, so add a
BUILD_BUG_ON to catch invalid usage of the tail struct page.

Link: https://lkml.kernel.org/r/20210510030027.56044-10-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Tested-by: Chen Huang <chenhuang5@huawei.com>
Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Neukum <oneukum@suse.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:25 -07:00
Muchun Song e9fdff87e8 mm: hugetlb: add a kernel parameter hugetlb_free_vmemmap
Add a kernel parameter hugetlb_free_vmemmap to enable the feature of
freeing unused vmemmap pages associated with each hugetlb page on boot.

We disable PMD mapping of vmemmap pages for x86-64 arch when this feature
is enabled.  Because vmemmap_remap_free() depends on vmemmap being base
page mapped.

Link: https://lkml.kernel.org/r/20210510030027.56044-8-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Barry Song <song.bao.hua@hisilicon.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Tested-by: Chen Huang <chenhuang5@huawei.com>
Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Neukum <oneukum@suse.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:25 -07:00
Muchun Song ad2fa3717b mm: hugetlb: alloc the vmemmap pages associated with each HugeTLB page
When we free a HugeTLB page to the buddy allocator, we need to allocate
the vmemmap pages associated with it.  However, we may not be able to
allocate the vmemmap pages when the system is under memory pressure.  In
this case, we just refuse to free the HugeTLB page.  This changes behavior
in some corner cases as listed below:

 1) Failing to free a huge page triggered by the user (decrease nr_pages).

    User needs to try again later.

 2) Failing to free a surplus huge page when freed by the application.

    Try again later when freeing a huge page next time.

 3) Failing to dissolve a free huge page on ZONE_MOVABLE via
    offline_pages().

    This can happen when we have plenty of ZONE_MOVABLE memory, but
    not enough kernel memory to allocate vmemmmap pages.  We may even
    be able to migrate huge page contents, but will not be able to
    dissolve the source huge page.  This will prevent an offline
    operation and is unfortunate as memory offlining is expected to
    succeed on movable zones.  Users that depend on memory hotplug
    to succeed for movable zones should carefully consider whether the
    memory savings gained from this feature are worth the risk of
    possibly not being able to offline memory in certain situations.

 4) Failing to dissolve a huge page on CMA/ZONE_MOVABLE via
    alloc_contig_range() - once we have that handling in place. Mainly
    affects CMA and virtio-mem.

    Similar to 3). virito-mem will handle migration errors gracefully.
    CMA might be able to fallback on other free areas within the CMA
    region.

Vmemmap pages are allocated from the page freeing context.  In order for
those allocations to be not disruptive (e.g.  trigger oom killer)
__GFP_NORETRY is used.  hugetlb_lock is dropped for the allocation because
a non sleeping allocation would be too fragile and it could fail too
easily under memory pressure.  GFP_ATOMIC or other modes to access memory
reserves is not used because we want to prevent consuming reserves under
heavy hugetlb freeing.

[mike.kravetz@oracle.com: fix dissolve_free_huge_page use of tail/head page]
  Link: https://lkml.kernel.org/r/20210527231225.226987-1-mike.kravetz@oracle.com
[willy@infradead.org: fix alloc_vmemmap_page_list documentation warning]
  Link: https://lkml.kernel.org/r/20210615200242.1716568-6-willy@infradead.org

Link: https://lkml.kernel.org/r/20210510030027.56044-7-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chen Huang <chenhuang5@huawei.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Neukum <oneukum@suse.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:25 -07:00
Muchun Song cd39d4e9e7 mm: hugetlb: gather discrete indexes of tail page
For HugeTLB page, there are more metadata to save in the struct page.  But
the head struct page cannot meet our needs, so we have to abuse other tail
struct page to store the metadata.  In order to avoid conflicts caused by
subsequent use of more tail struct pages, we can gather these discrete
indexes of tail struct page.  In this case, it will be easier to add a new
tail page index later.

Link: https://lkml.kernel.org/r/20210510030027.56044-4-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Tested-by: Chen Huang <chenhuang5@huawei.com>
Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Neukum <oneukum@suse.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:25 -07:00
Linus Torvalds c54b245d01 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull user namespace rlimit handling update from Eric Biederman:
 "This is the work mainly by Alexey Gladkov to limit rlimits to the
  rlimits of the user that created a user namespace, and to allow users
  to have stricter limits on the resources created within a user
  namespace."

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
  cred: add missing return error code when set_cred_ucounts() failed
  ucounts: Silence warning in dec_rlimit_ucounts
  ucounts: Set ucount_max to the largest positive value the type can hold
  kselftests: Add test to check for rlimit changes in different user namespaces
  Reimplement RLIMIT_MEMLOCK on top of ucounts
  Reimplement RLIMIT_SIGPENDING on top of ucounts
  Reimplement RLIMIT_MSGQUEUE on top of ucounts
  Reimplement RLIMIT_NPROC on top of ucounts
  Use atomic_t for ucounts reference counting
  Add a reference to ucounts for each cred
  Increase size of ucounts to atomic_long_t
2021-06-28 20:39:26 -07:00
Hugh Dickins fe19bd3dae mm, futex: fix shared futex pgoff on shmem huge page
If more than one futex is placed on a shmem huge page, it can happen
that waking the second wakes the first instead, and leaves the second
waiting: the key's shared.pgoff is wrong.

When 3.11 commit 13d60f4b6a ("futex: Take hugepages into account when
generating futex_key"), the only shared huge pages came from hugetlbfs,
and the code added to deal with its exceptional page->index was put into
hugetlb source.  Then that was missed when 4.8 added shmem huge pages.

page_to_pgoff() is what others use for this nowadays: except that, as
currently written, it gives the right answer on hugetlbfs head, but
nonsense on hugetlbfs tails.  Fix that by calling hugetlbfs-specific
hugetlb_basepage_index() on PageHuge tails as well as on head.

Yes, it's unconventional to declare hugetlb_basepage_index() there in
pagemap.h, rather than in hugetlb.h; but I do not expect anything but
page_to_pgoff() ever to need it.

[akpm@linux-foundation.org: give hugetlb_basepage_index() prototype the correct scope]

Link: https://lkml.kernel.org/r/b17d946b-d09-326e-b42a-52884c36df32@google.com
Fixes: 800d8c63b2 ("shmem: add huge pages support")
Reported-by: Neel Natu <neelnatu@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Zhang Yi <wetpzy@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-24 19:40:54 -07:00
Mike Kravetz 846be08578 mm/hugetlb: expand restore_reserve_on_error functionality
The routine restore_reserve_on_error is called to restore reservation
information when an error occurs after page allocation.  The routine
alloc_huge_page modifies the mapping reserve map and potentially the
reserve count during allocation.  If code calling alloc_huge_page
encounters an error after allocation and needs to free the page, the
reservation information needs to be adjusted.

Currently, restore_reserve_on_error only takes action on pages for which
the reserve count was adjusted(HPageRestoreReserve flag).  There is
nothing wrong with these adjustments.  However, alloc_huge_page ALWAYS
modifies the reserve map during allocation even if the reserve count is
not adjusted.  This can cause issues as observed during development of
this patch [1].

One specific series of operations causing an issue is:

 - Create a shared hugetlb mapping
   Reservations for all pages created by default

 - Fault in a page in the mapping
   Reservation exists so reservation count is decremented

 - Punch a hole in the file/mapping at index previously faulted
   Reservation and any associated pages will be removed

 - Allocate a page to fill the hole
   No reservation entry, so reserve count unmodified
   Reservation entry added to map by alloc_huge_page

 - Error after allocation and before instantiating the page
   Reservation entry remains in map

 - Allocate a page to fill the hole
   Reservation entry exists, so decrement reservation count

This will cause a reservation count underflow as the reservation count
was decremented twice for the same index.

A user would observe a very large number for HugePages_Rsvd in
/proc/meminfo.  This would also likely cause subsequent allocations of
hugetlb pages to fail as it would 'appear' that all pages are reserved.

This sequence of operations is unlikely to happen, however they were
easily reproduced and observed using hacked up code as described in [1].

Address the issue by having the routine restore_reserve_on_error take
action on pages where HPageRestoreReserve is not set.  In this case, we
need to remove any reserve map entry created by alloc_huge_page.  A new
helper routine vma_del_reservation assists with this operation.

There are three callers of alloc_huge_page which do not currently call
restore_reserve_on error before freeing a page on error paths.  Add
those missing calls.

[1] https://lore.kernel.org/linux-mm/20210528005029.88088-1-almasrymina@google.com/

Link: https://lkml.kernel.org/r/20210607204510.22617-1-mike.kravetz@oracle.com
Fixes: 96b96a96dd ("mm/hugetlb: fix huge page reservation leak in private mapping error paths"
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Mina Almasry <almasrymina@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 09:24:42 -07:00
Naoya Horiguchi 25182f05ff mm,hwpoison: fix race with hugetlb page allocation
When hugetlb page fault (under overcommitting situation) and
memory_failure() race, VM_BUG_ON_PAGE() is triggered by the following
race:

    CPU0:                           CPU1:

                                    gather_surplus_pages()
                                      page = alloc_surplus_huge_page()
    memory_failure_hugetlb()
      get_hwpoison_page(page)
        __get_hwpoison_page(page)
          get_page_unless_zero(page)
                                      zero = put_page_testzero(page)
                                      VM_BUG_ON_PAGE(!zero, page)
                                      enqueue_huge_page(h, page)
      put_page(page)

__get_hwpoison_page() only checks the page refcount before taking an
additional one for memory error handling, which is not enough because
there's a time window where compound pages have non-zero refcount during
hugetlb page initialization.

So make __get_hwpoison_page() check page status a bit more for hugetlb
pages with get_hwpoison_huge_page().  Checking hugetlb-specific flags
under hugetlb_lock makes sure that the hugetlb page is not transitive.
It's notable that another new function, HWPoisonHandlable(), is helpful
to prevent a race against other transitive page states (like a generic
compound page just before PageHuge becomes true).

Link: https://lkml.kernel.org/r/20210603233632.2964832-2-nao.horiguchi@gmail.com
Fixes: ead07f6a86 ("mm/memory-failure: introduce get_hwpoison_page() for consistent refcount handling")
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reported-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: <stable@vger.kernel.org>	[5.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 09:24:42 -07:00
Axel Rasmussen f619147104 userfaultfd: add UFFDIO_CONTINUE ioctl
This ioctl is how userspace ought to resolve "minor" userfaults.  The
idea is, userspace is notified that a minor fault has occurred.  It
might change the contents of the page using its second non-UFFD mapping,
or not.  Then, it calls UFFDIO_CONTINUE to tell the kernel "I have
ensured the page contents are correct, carry on setting up the mapping".

Note that it doesn't make much sense to use UFFDIO_{COPY,ZEROPAGE} for
MINOR registered VMAs.  ZEROPAGE maps the VMA to the zero page; but in
the minor fault case, we already have some pre-existing underlying page.
Likewise, UFFDIO_COPY isn't useful if we have a second non-UFFD mapping.
We'd just use memcpy() or similar instead.

It turns out hugetlb_mcopy_atomic_pte() already does very close to what
we want, if an existing page is provided via `struct page **pagep`.  We
already special-case the behavior a bit for the UFFDIO_ZEROPAGE case, so
just extend that design: add an enum for the three modes of operation,
and make the small adjustments needed for the MCOPY_ATOMIC_CONTINUE
case.  (Basically, look up the existing page, and avoid adding the
existing page to the page cache or calling set_page_huge_active() on
it.)

Link: https://lkml.kernel.org/r/20210301222728.176417-5-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Adam Ruprecht <ruprecht@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Cannon Matthews <cannonmatthews@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michal Koutn" <mkoutny@suse.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Shawn Anastasio <shawn@anastas.io>
Cc: Steven Price <steven.price@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 11:27:22 -07:00