Remove the remaining code that misused the page cache pages during
device replace and could cause data corruption for compressed nodatasum
extents. Such files do not normally exist but there's a bug that allows
this combination and the corruption was exposed by device replace fixup
code.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce a small helper, btrfs_mark_bg_unused(), to acquire locks and
add a block group to unused_bgs list.
No functional modification, and only 3 callers are involved.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It can be referenced from the passed bg cache.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit ac0b4145d6 ("btrfs: scrub: Don't use inode pages
for device replace") the function is not used and we can remove all
functions down the call chain.
There was an optimization that reused inode pages to speed up device
replace, but broke when there was nodatasum and compressed page. The
potential performance gain is small so we don't loose much by removing
it and using scrub_pages same as the other pages.
Signed-off-by: Qu Wenruo <wqu@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
In commit ac0b4145d6 ("btrfs: scrub: Don't use inode pages for device
replace") we removed the branch of copy_nocow_pages() to avoid
corruption for compressed nodatasum extents.
However above commit only solves the problem in scrub_extent(), if
during scrub_pages() we failed to read some pages,
sctx->no_io_error_seen will be non-zero and we go to fixup function
scrub_handle_errored_block().
In scrub_handle_errored_block(), for sctx without csum (no matter if
we're doing replace or scrub) we go to scrub_fixup_nodatasum() routine,
which does the similar thing with copy_nocow_pages(), but does it
without the extra check in copy_nocow_pages() routine.
So for test cases like btrfs/100, where we emulate read errors during
replace/scrub, we could corrupt compressed extent data again.
This patch will fix it just by avoiding any "optimization" for
nodatasum, just falls back to the normal fixup routine by try read from
any good copy.
This also solves WARN_ON() or dead lock caused by lame backref iteration
in scrub_fixup_nodatasum() routine.
The deadlock or WARN_ON() won't be triggered before commit ac0b4145d6
("btrfs: scrub: Don't use inode pages for device replace") since
copy_nocow_pages() have better locking and extra check for data extent,
and it's already doing the fixup work by try to read data from any good
copy, so it won't go scrub_fixup_nodatasum() anyway.
This patch disables the faulty code and will be removed completely in a
followup patch.
Fixes: ac0b4145d6 ("btrfs: scrub: Don't use inode pages for device replace")
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Btrfs can create compressed extent without checksum (even though it
shouldn't), and if we then try to replace device containing such extent,
the result device will contain all the uncompressed data instead of the
compressed one.
Test case already submitted to fstests:
https://patchwork.kernel.org/patch/10442353/
[CAUSE]
When handling compressed extent without checksum, device replace will
goe into copy_nocow_pages() function.
In that function, btrfs will get all inodes referring to this data
extents and then use find_or_create_page() to get pages direct from that
inode.
The problem here is, pages directly from inode are always uncompressed.
And for compressed data extent, they mismatch with on-disk data.
Thus this leads to corrupted compressed data extent written to replace
device.
[FIX]
In this attempt, we could just remove the "optimization" branch, and let
unified scrub_pages() to handle it.
Although scrub_pages() won't bother reusing page cache, it will be a
little slower, but it does the correct csum checking and won't cause
such data corruption caused by "optimization".
Note about the fix: this is the minimal fix that can be backported to
older stable trees without conflicts. The whole callchain from
copy_nocow_pages() can be deleted, and will be in followup patches.
Fixes: ff023aac31 ("Btrfs: add code to scrub to copy read data to another disk")
CC: stable@vger.kernel.org # 4.4+
Reported-by: James Harvey <jamespharvey20@gmail.com>
Reviewed-by: James Harvey <jamespharvey20@gmail.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
[ remove code removal, add note why ]
Signed-off-by: David Sterba <dsterba@suse.com>
This patch will add the following trace events:
1) btrfs_remove_block_group
For btrfs_remove_block_group() function.
Triggered when a block group is really removed.
2) btrfs_add_unused_block_group
Triggered which block group is added to unused_bgs list.
3) btrfs_skip_unused_block_group
Triggered which unused block group is not deleted.
These trace events is pretty handy to debug case related to block group
auto remove.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove GPL boilerplate text (long, short, one-line) and keep the rest,
ie. personal, company or original source copyright statements. Add the
SPDX header.
Signed-off-by: David Sterba <dsterba@suse.com>
The current calls are unclear in what way btrfs_dev_replace_lock takes
the locks, so drop the argument, split the helpers and use similar
naming as for read and write locks.
Signed-off-by: David Sterba <dsterba@suse.com>
Added in b5d67f64f9 ("Btrfs: change scrub to support big blocks") but
rendered redundant by be50a8ddaa ("Btrfs: Simplify
scrub_setup_recheck_block()'s argument").
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In case of raid56, writes and rebuilds always take BTRFS_STRIPE_LEN(64K)
as unit, however, scrub_extent() sets blocksize as unit, so rebuild
process may be triggered on every block on a same stripe.
A typical example would be that when we're replacing a disappeared disk,
all reads on the disks get -EIO, every block (size is 4K if blocksize is
4K) would go thru these,
scrub_handle_errored_block
scrub_recheck_block # re-read pages one by one
scrub_recheck_block # rebuild by calling raid56_parity_recover()
page by page
Although with raid56 stripe cache most of reads during rebuild can be
avoided, the parity recover calculation(xor or raid6 algorithms) needs to
be done $(BTRFS_STRIPE_LEN / blocksize) times.
This makes it smarter by doing raid56 scrub/replace on stripe length.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the last step of scrub_handle_error_block, we try to combine good
copies on all possible mirrors, this works fine for raid1 and raid10,
but not for raid56 as it's doing parity rebuild.
If parity rebuild doesn't get back with correct data which matches its
checksum, in case of replace we'd rather write what is stored in the
source device than the data calculuated from parity.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It doens't make sense to process prealloc extents as pages will be
filled with zero when reading prealloc extents.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
bio_add_page() can fail for logical reasons as from the bio_add_page()
comments:
/*
* This will only fail if either bio->bi_vcnt == bio->bi_max_vecs or
* it's a cloned bio.
*/
Here we have just allocated the bio, so both of those failures can't
occur. So drop the check. We can also drop the error stats for write
error.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_device::scrub_device is not a device which is being scrubbed,
but it holds the scrub context, so rename to reflect the same. No
functional changes here.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The raid6 corruption is that,
suppose that all disks can be read without problems and if the content
that was read out doesn't match its checksum, currently for raid6
btrfs at most retries twice,
- the 1st retry is to rebuild with all other stripes, it'll eventually
be a raid5 xor rebuild,
- if the 1st fails, the 2nd retry will deliberately fail parity p so
that it will do raid6 style rebuild,
however, the chances are that another non-parity stripe content also
has something corrupted, so that the above retries are not able to
return correct content.
We've fixed normal reads to rebuild raid6 correctly with more retries
in Patch "Btrfs: make raid6 rebuild retry more"[1], this is to fix
scrub to do the exactly same rebuild process.
[1]: https://patchwork.kernel.org/patch/10091755/
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers pass either GFP_NOFS or GFP_KERNEL now, so we can sink the
parameter to the function, though we lose some of the slightly better
semantics of GFP_KERNEL in some places, it's worth cleaning up the
callchains.
Signed-off-by: David Sterba <dsterba@suse.com>
This changes to use struct completion directly and removes 'struct
scrub_bio_ret' along with the code using it.
This struct is used to get the return value from bio, but the caller can
access bio to get the return value directly and is holding a reference
on it so it won't go away underneath us and can be removed safely.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently device state is being managed by each individual int
variable such as struct btrfs_device::is_tgtdev_for_dev_replace.
Instead of that declare btrfs_device::dev_state
BTRFS_DEV_STATE_MISSING and use the bit operations.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
[ whitespace adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
Currently device state is being managed by each individual int
variable such as struct btrfs_device::missing. Instead of that
declare btrfs_device::dev_state BTRFS_DEV_STATE_MISSING and use
the bit operations.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by : Nikolay Borisov <nborisov@suse.com>
[ whitespace adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
Currently device state is being managed by each individual int
variable such as struct btrfs_device::in_fs_metadata. Instead of
that declare device state BTRFS_DEV_STATE_IN_FS_METADATA and use
the bit operations.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
[ whitespace adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
Currently device state is being managed by each individual int
variable such as struct btrfs_device::writeable. Instead of that
declare device state BTRFS_DEV_STATE_WRITEABLE and use the
bit operations.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
[ whitespace adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
The LOGICAL_INO ioctl provides a backward mapping from extent bytenr and
offset (encoded as a single logical address) to a list of extent refs.
LOGICAL_INO complements TREE_SEARCH, which provides the forward mapping
(extent ref -> extent bytenr and offset, or logical address). These are
useful capabilities for programs that manipulate extents and extent
references from userspace (e.g. dedup and defrag utilities).
When the extents are uncompressed (and not encrypted and not other),
check_extent_in_eb performs filtering of the extent refs to remove any
extent refs which do not contain the same extent offset as the 'logical'
parameter's extent offset. This prevents LOGICAL_INO from returning
references to more than a single block.
To find the set of extent references to an uncompressed extent from [a, b),
userspace has to run a loop like this pseudocode:
for (i = a; i < b; ++i)
extent_ref_set += LOGICAL_INO(i);
At each iteration of the loop (up to 32768 iterations for a 128M extent),
data we are interested in is collected in the kernel, then deleted by
the filter in check_extent_in_eb.
When the extents are compressed (or encrypted or other), the 'logical'
parameter must be an extent bytenr (the 'a' parameter in the loop).
No filtering by extent offset is done (or possible?) so the result is
the complete set of extent refs for the entire extent. This removes
the need for the loop, since we get all the extent refs in one call.
Add an 'ignore_offset' argument to iterate_inodes_from_logical,
[...several levels of function call graph...], and check_extent_in_eb, so
that we can disable the extent offset filtering for uncompressed extents.
This flag can be set by an improved version of the LOGICAL_INO ioctl to
get either behavior as desired.
There is no functional change in this patch. The new flag is always
false.
Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor coding style fixes ]
Signed-off-by: David Sterba <dsterba@suse.com>
The use of sector_t is not necessry, it's just for a warning. Switch to
u64 and rename the variable and use byte units instead of 512b, ie.
dropping the >> 9 shifts. The messages are adjusted as well.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs updates from David Sterba:
"The changes range through all types: cleanups, core chagnes, sanity
checks, fixes, other user visible changes, detailed list below:
- deprecated: user transaction ioctl
- mount option ssd does not change allocation alignments
- degraded read-write mount is allowed if all the raid profile
constraints are met, now based on more accurate check
- defrag: do not reset compression afterwards; the NOCOMPRESS flag
can be now overriden by defrag
- prep work for better extent reference tracking (related to the
qgroup slowness with balance)
- prep work for compression heuristics
- memory allocation reductions (may help latencies on a loaded
system)
- better accounting for io waiting states
- error handling improvements (removed BUGs)
- added more sanity checks for shared refs
- fix readdir vs pagefault deadlock under some circumstances
- fix for 'no-hole' mode, certain combination of compressed and
inline extents
- send: fix emission of invalid clone operations
- fixup file mode if setting acls fail
- more fixes from fuzzing
- oher cleanups"
* 'for-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (104 commits)
btrfs: submit superblock io with REQ_META and REQ_PRIO
btrfs: remove unnecessary memory barrier in btrfs_direct_IO
btrfs: remove superfluous chunk_tree argument from btrfs_alloc_dev_extent
btrfs: Remove chunk_objectid parameter of btrfs_alloc_dev_extent
btrfs: pass fs_info to btrfs_del_root instead of tree_root
Btrfs: add one more sanity check for shared ref type
Btrfs: remove BUG_ON in __add_tree_block
Btrfs: remove BUG() in add_data_reference
Btrfs: remove BUG() in print_extent_item
Btrfs: remove BUG() in btrfs_extent_inline_ref_size
Btrfs: convert to use btrfs_get_extent_inline_ref_type
Btrfs: add a helper to retrive extent inline ref type
btrfs: scrub: simplify scrub worker initialization
btrfs: scrub: clean up division in scrub_find_csum
btrfs: scrub: clean up division in __scrub_mark_bitmap
btrfs: scrub: use bool for flush_all_writes
btrfs: preserve i_mode if __btrfs_set_acl() fails
btrfs: Remove extraneous chunk_objectid variable
btrfs: Remove chunk_objectid argument from btrfs_make_block_group
btrfs: Remove extra parentheses from condition in copy_items()
...
This way we don't need a block_device structure to submit I/O. The
block_device has different life time rules from the gendisk and
request_queue and is usually only available when the block device node
is open. Other callers need to explicitly create one (e.g. the lightnvm
passthrough code, or the new nvme multipathing code).
For the actual I/O path all that we need is the gendisk, which exists
once per block device. But given that the block layer also does
partition remapping we additionally need a partition index, which is
used for said remapping in generic_make_request.
Note that all the block drivers generally want request_queue or
sometimes the gendisk, so this removes a layer of indirection all
over the stack.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
flush_all_writes is an atomic but does not use the semantics at all,
it's just on/off indicator, we can use bool.
Signed-off-by: David Sterba <dsterba@suse.com>
Though BTRFS_FSID_SIZE and BTRFS_UUID_SIZE are of the same size, we
should use the matching constant for the fsid buffer.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Correctly account for IO when waiting for a submitted bio in scrub. This
only for the accounting purposes and should not change other behaviour.
Signed-off-by: David Sterba <dsterba@suse.com>
The helpers append "\n" so we can keep the actual strings shorter. The
extra newline will print an empty line. Some messages have been
slightly modified to be more consistent with the rest (lowercase first
letter).
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs updates from David Sterba:
"The core updates improve error handling (mostly related to bios), with
the usual incremental work on the GFP_NOFS (mis)use removal,
refactoring or cleanups. Except the two top patches, all have been in
for-next for an extensive amount of time.
User visible changes:
- statx support
- quota override tunable
- improved compression thresholds
- obsoleted mount option alloc_start
Core updates:
- bio-related updates:
- faster bio cloning
- no allocation failures
- preallocated flush bios
- more kvzalloc use, memalloc_nofs protections, GFP_NOFS updates
- prep work for btree_inode removal
- dir-item validation
- qgoup fixes and updates
- cleanups:
- removed unused struct members, unused code, refactoring
- argument refactoring (fs_info/root, caller -> callee sink)
- SEARCH_TREE ioctl docs"
* 'for-4.13-part1' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (115 commits)
btrfs: Remove false alert when fiemap range is smaller than on-disk extent
btrfs: Don't clear SGID when inheriting ACLs
btrfs: fix integer overflow in calc_reclaim_items_nr
btrfs: scrub: fix target device intialization while setting up scrub context
btrfs: qgroup: Fix qgroup reserved space underflow by only freeing reserved ranges
btrfs: qgroup: Introduce extent changeset for qgroup reserve functions
btrfs: qgroup: Fix qgroup reserved space underflow caused by buffered write and quotas being enabled
btrfs: qgroup: Return actually freed bytes for qgroup release or free data
btrfs: qgroup: Cleanup btrfs_qgroup_prepare_account_extents function
btrfs: qgroup: Add quick exit for non-fs extents
Btrfs: rework delayed ref total_bytes_pinned accounting
Btrfs: return old and new total ref mods when adding delayed refs
Btrfs: always account pinned bytes when dropping a tree block ref
Btrfs: update total_bytes_pinned when pinning down extents
Btrfs: make BUG_ON() in add_pinned_bytes() an ASSERT()
Btrfs: make add_pinned_bytes() take an s64 num_bytes instead of u64
btrfs: fix validation of XATTR_ITEM dir items
btrfs: Verify dir_item in iterate_object_props
btrfs: Check name_len before in btrfs_del_root_ref
btrfs: Check name_len before reading btrfs_get_name
...
Dave Jones hit a WARN_ON(nr < 0) in btrfs_wait_ordered_roots() with
v4.12-rc6. This was because commit 70e7af244 made it possible for
calc_reclaim_items_nr() to return a negative number. It's not really a
bug in that commit, it just didn't go far enough down the stack to find
all the possible 64->32 bit overflows.
This switches calc_reclaim_items_nr() to return a u64 and changes everyone
that uses the results of that math to u64 as well.
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Fixes: 70e7af2 ("Btrfs: fix delalloc accounting leak caused by u32 overflow")
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The commit "btrfs: scrub: inline helper scrub_setup_wr_ctx" inlined a
helper but wrongly sets up the target device. Incidentally there's a
local variable with the same name as a parameter in the previous
function, so this got caught during runtime as crash in test btrfs/027.
Reported-by: Chris Mason <clm@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can hardcode GFP_NOFS to btrfs_io_bio_alloc, although it means we
change it back from GFP_KERNEL in scrub. I'd rather save a few stack
bytes from not passing the gfp flags in the remaining, more imporatant,
contexts and the bio allocating API now looks more consistent.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Update direct callers of btrfs_io_bio_alloc that do error handling, that
we can now remove.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
init_ipath is called from a safe ioctl context and from scrub when
printing an error. The protection is added for three reasons:
* init_data_container calls vmalloc and this does not work as expected
in the GFP_NOFS context, so this silently does GFP_KERNEL and might
deadlock in some cases
* keep the context constraint of GFP_NOFS, used by scrub
* we want to use GFP_KERNEL unconditionally inside init_ipath or its
callees
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The structure scrub_wr_ctx is not used anywhere just the scrub context,
we can move the members there. The tgtdev is renamed so it's more clear
that it belongs to the "wr" part.
Signed-off-by: David Sterba <dsterba@suse.com>
As we now have the node/block sizes in fs_info, we can use them and can
drop the local copies.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need to take the mutex and zero out wr_cur_bio, as this is
called after the scrub finished.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper scrub_free_wr_ctx is used only once and fits into
scrub_free_ctx as it continues sctx shutdown, no need to keep it
separate.
Signed-off-by: David Sterba <dsterba@suse.com>
The helper scrub_setup_wr_ctx is used only once and fits into
scrub_setup_ctx as it continues intialization, no need to keep it
separate.
Signed-off-by: David Sterba <dsterba@suse.com>
Once we remove the btree_inode we won't have an inode to pass anymore,
just pass the fs_info directly and the inum since we use that to print
out the repair message.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Replace bi_error with a new bi_status to allow for a clear conversion.
Note that device mapper overloaded bi_error with a private value, which
we'll have to keep arround at least for now and thus propagate to a
proper blk_status_t value.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
When scrubbing a RAID5 which has recoverable data corruption (only one
data stripe is corrupted), sometimes scrub will report more csum errors
than expected. Sometimes even unrecoverable error will be reported.
The problem can be easily reproduced by the following steps:
1) Create a btrfs with RAID5 data profile with 3 devs
2) Mount it with nospace_cache or space_cache=v2
To avoid extra data space usage.
3) Create a 128K file and sync the fs, unmount it
Now the 128K file lies at the beginning of the data chunk
4) Locate the physical bytenr of data chunk on dev3
Dev3 is the 1st data stripe.
5) Corrupt the first 64K of the data chunk stripe on dev3
6) Mount the fs and scrub it
The correct csum error number should be 16 (assuming using x86_64).
Larger csum error number can be reported in a 1/3 chance.
And unrecoverable error can also be reported in a 1/10 chance.
The root cause of the problem is RAID5/6 recover code has race
condition, due to the fact that full scrub is initiated per device.
While for other mirror based profiles, each mirror is independent with
each other, so race won't cause any big problem.
For example:
Corrupted | Correct | Correct |
| Scrub dev3 (D1) | Scrub dev2 (D2) | Scrub dev1(P) |
------------------------------------------------------------------------
Read out D1 |Read out D2 |Read full stripe |
Check csum |Check csum |Check parity |
Csum mismatch |Csum match, continue |Parity mismatch |
handle_errored_block | |handle_errored_block |
Read out full stripe | | Read out full stripe|
D1 csum error(err++) | | D1 csum error(err++)|
Recover D1 | | Recover D1 |
So D1's csum error is accounted twice, just because
handle_errored_block() doesn't have enough protection, and race can happen.
On even worse case, for example D1's recovery code is re-writing
D1/D2/P, and P's recovery code is just reading out full stripe, then we
can cause unrecoverable error.
This patch will use previously introduced lock_full_stripe() and
unlock_full_stripe() to protect the whole scrub_handle_errored_block()
function for RAID56 recovery.
So no extra csum error nor unrecoverable error.
Reported-by: Goffredo Baroncelli <kreijack@libero.it>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>