- Fix build regression in the intel_pstate driver that doesn't
build without CONFIG_ACPI after recent changes (Dominik Brodowski).
- One of the heuristics in the menu cpuidle governor is based on a
function returning 0 most of the time, so drop it and clean up
the scheduler code related to it (Daniel Lezcano).
- Prevent the arm_big_little cpufreq driver from being used on ARM64
which is not suitable for it and drop the arm_big_little_dt driver
that is not used any more (Sudeep Holla).
- Prevent the hung task watchdog from triggering during resume from
system-wide sleep states by disabling it before freezing tasks and
enabling it again after they have been thawed (Vitaly Kuznetsov).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJb2BJ7AAoJEILEb/54YlRx/kwP/iD7tUUZ6mT84OI0FTbEj8A/
fM+uHrwy25PmqyWGGtbHpaWU9OxVxUReSicsBCt+2LZmX3sFYpbSb243mv3pmxqb
A0kLflG4lWCKJNIfa/a3OMDTUw26mxSTCidE3jJXkd8HkWrzeAWvMair+UCuzMf3
A4Omu0IkNL8C0MKtUOb3PlUk3dnLYMxuairNhozBPhi+P+0tLW9/9XvgPJBVhnbZ
CKn/aFsDoc08tAfxC8N32cgKwE7nbeIgTJTBFyu2lQmInsd4TTuoM50vSC5i+x88
AmBOoH9IX0fhXJ6hgm+VMW8+x9S+H7jAVy/3C2xoUBeCclzlxX6eUCtjV5YNZqqn
1nXQfGeAwgzX6Tyu6HjM7vjbfObk59ZwpmDRPJEUEhLDEBMS+iDStlp9zmKTedNm
G4iSTzS6qJCNPtx4y5wkLp/FvzTofIuWqVFJSJC4+EoVKkbbw9xwaY+JKXUt1Uwx
j+U6EtRhzL/kVX0nq+iQXXeANxCFNzI56Ov5O7mxjF1m/hDE/Gb2QEeIb6nRZC2A
H3I2so2J3h1yTgadpGFFvJWaqfHkgcBTsm06tSgHVb86quiTANJIQ9mqfFyOzDDJ
KaZ82MROt7UuCMI6X9n+oIBDZWLHmADge6RdHCD1wB+zrUmusCtNEHUZACXd0mPf
s8MUK4bWVhViVXGS5bMP
=/bnR
-----END PGP SIGNATURE-----
Merge tag 'pm-4.20-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull more power management updates from Rafael Wysocki:
"These remove a questionable heuristic from the menu cpuidle governor,
fix a recent build regression in the intel_pstate driver, clean up ARM
big-Little support in cpufreq and fix up hung task watchdog's
interaction with system-wide power management transitions.
Specifics:
- Fix build regression in the intel_pstate driver that doesn't build
without CONFIG_ACPI after recent changes (Dominik Brodowski).
- One of the heuristics in the menu cpuidle governor is based on a
function returning 0 most of the time, so drop it and clean up the
scheduler code related to it (Daniel Lezcano).
- Prevent the arm_big_little cpufreq driver from being used on ARM64
which is not suitable for it and drop the arm_big_little_dt driver
that is not used any more (Sudeep Holla).
- Prevent the hung task watchdog from triggering during resume from
system-wide sleep states by disabling it before freezing tasks and
enabling it again after they have been thawed (Vitaly Kuznetsov)"
* tag 'pm-4.20-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
kernel: hung_task.c: disable on suspend
cpufreq: remove unused arm_big_little_dt driver
cpufreq: drop ARM_BIG_LITTLE_CPUFREQ support for ARM64
cpufreq: intel_pstate: Fix compilation for !CONFIG_ACPI
cpuidle: menu: Remove get_loadavg() from the performance multiplier
sched: Factor out nr_iowait and nr_iowait_cpu
It's going to be used in a later patch. Keep the churn separate.
Link: http://lkml.kernel.org/r/20180828172258.3185-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Tested-by: Daniel Drake <drake@endlessm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are several definitions of those functions/macros in places that
mess with fixed-point load averages. Provide an official version.
[akpm@linux-foundation.org: fix missed conversion in block/blk-iolatency.c]
Link: http://lkml.kernel.org/r/20180828172258.3185-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Tested-by: Daniel Drake <drake@endlessm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The function get_loadavg() returns almost always zero. To be more
precise, statistically speaking for a total of 1023379 times passing
in the function, the load is equal to zero 1020728 times, greater than
100, 610 times, the remaining is between 0 and 5.
In 2011, the get_loadavg() was removed from the Android tree because
of the above [1]. At this time, the load was:
unsigned long this_cpu_load(void)
{
struct rq *this = this_rq();
return this->cpu_load[0];
}
In 2014, the code was changed by commit 372ba8cb46 (cpuidle: menu: Lookup CPU
runqueues less) and the load is:
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
struct rq *rq = this_rq();
*nr_waiters = atomic_read(&rq->nr_iowait);
*load = rq->load.weight;
}
with the same result.
Both measurements show using the load in this code path does no matter
anymore. Removing it.
[1] 4dedd9f124
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Pull siginfo updates from Eric Biederman:
"I have been slowly sorting out siginfo and this is the culmination of
that work.
The primary result is in several ways the signal infrastructure has
been made less error prone. The code has been updated so that manually
specifying SEND_SIG_FORCED is never necessary. The conversion to the
new siginfo sending functions is now complete, which makes it
difficult to send a signal without filling in the proper siginfo
fields.
At the tail end of the patchset comes the optimization of decreasing
the size of struct siginfo in the kernel from 128 bytes to about 48
bytes on 64bit. The fundamental observation that enables this is by
definition none of the known ways to use struct siginfo uses the extra
bytes.
This comes at the cost of a small user space observable difference.
For the rare case of siginfo being injected into the kernel only what
can be copied into kernel_siginfo is delivered to the destination, the
rest of the bytes are set to 0. For cases where the signal and the
si_code are known this is safe, because we know those bytes are not
used. For cases where the signal and si_code combination is unknown
the bits that won't fit into struct kernel_siginfo are tested to
verify they are zero, and the send fails if they are not.
I made an extensive search through userspace code and I could not find
anything that would break because of the above change. If it turns out
I did break something it will take just the revert of a single change
to restore kernel_siginfo to the same size as userspace siginfo.
Testing did reveal dependencies on preferring the signo passed to
sigqueueinfo over si->signo, so bit the bullet and added the
complexity necessary to handle that case.
Testing also revealed bad things can happen if a negative signal
number is passed into the system calls. Something no sane application
will do but something a malicious program or a fuzzer might do. So I
have fixed the code that performs the bounds checks to ensure negative
signal numbers are handled"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (80 commits)
signal: Guard against negative signal numbers in copy_siginfo_from_user32
signal: Guard against negative signal numbers in copy_siginfo_from_user
signal: In sigqueueinfo prefer sig not si_signo
signal: Use a smaller struct siginfo in the kernel
signal: Distinguish between kernel_siginfo and siginfo
signal: Introduce copy_siginfo_from_user and use it's return value
signal: Remove the need for __ARCH_SI_PREABLE_SIZE and SI_PAD_SIZE
signal: Fail sigqueueinfo if si_signo != sig
signal/sparc: Move EMT_TAGOVF into the generic siginfo.h
signal/unicore32: Use force_sig_fault where appropriate
signal/unicore32: Generate siginfo in ucs32_notify_die
signal/unicore32: Use send_sig_fault where appropriate
signal/arc: Use force_sig_fault where appropriate
signal/arc: Push siginfo generation into unhandled_exception
signal/ia64: Use force_sig_fault where appropriate
signal/ia64: Use the force_sig(SIGSEGV,...) in ia64_rt_sigreturn
signal/ia64: Use the generic force_sigsegv in setup_frame
signal/arm/kvm: Use send_sig_mceerr
signal/arm: Use send_sig_fault where appropriate
signal/arm: Use force_sig_fault where appropriate
...
Linus recently observed that if we did not worry about the padding
member in struct siginfo it is only about 48 bytes, and 48 bytes is
much nicer than 128 bytes for allocating on the stack and copying
around in the kernel.
The obvious thing of only adding the padding when userspace is
including siginfo.h won't work as there are sigframe definitions in
the kernel that embed struct siginfo.
So split siginfo in two; kernel_siginfo and siginfo. Keeping the
traditional name for the userspace definition. While the version that
is used internally to the kernel and ultimately will not be padded to
128 bytes is called kernel_siginfo.
The definition of struct kernel_siginfo I have put in include/signal_types.h
A set of buildtime checks has been added to verify the two structures have
the same field offsets.
To make it easy to verify the change kernel_siginfo retains the same
size as siginfo. The reduction in size comes in a following change.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
There are no more users of SEND_SIG_FORCED so it may be safely removed.
Remove the definition of SEND_SIG_FORCED, it's use in is_si_special,
it's use in TP_STORE_SIGINFO, and it's use in __send_signal as without
any users the uses of SEND_SIG_FORCED are now unncessary.
This makes the code simpler, easier to understand and use. Users of
signal sending functions now no longer need to ask themselves do I
need to use SEND_SIG_FORCED.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
None of the callers use the it so remove it.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The SD_ASYM_CPUCAPACITY sched_domain flag is supposed to mark the
sched_domain in the hierarchy where all CPU capacities are visible for
any CPU's point of view on asymmetric CPU capacity systems. The
scheduler can then take to take capacity asymmetry into account when
balancing at this level. It also serves as an indicator for how wide
task placement heuristics have to search to consider all available CPU
capacities as asymmetric systems might often appear symmetric at
smallest level(s) of the sched_domain hierarchy.
The flag has been around for while but so far only been set by
out-of-tree code in Android kernels. One solution is to let each
architecture provide the flag through a custom sched_domain topology
array and associated mask and flag functions. However,
SD_ASYM_CPUCAPACITY is special in the sense that it depends on the
capacity and presence of all CPUs in the system, i.e. when hotplugging
all CPUs out except those with one particular CPU capacity the flag
should disappear even if the sched_domains don't collapse. Similarly,
the flag is affected by cpusets where load-balancing is turned off.
Detecting when the flags should be set therefore depends not only on
topology information but also the cpuset configuration and hotplug
state. The arch code doesn't have easy access to the cpuset
configuration.
Instead, this patch implements the flag detection in generic code where
cpusets and hotplug state is already taken care of. All the arch is
responsible for is to implement arch_scale_cpu_capacity() and force a
full rebuild of the sched_domain hierarchy if capacities are updated,
e.g. later in the boot process when cpufreq has initialized.
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1532093554-30504-2-git-send-email-morten.rasmussen@arm.com
[ Fixed 'CPU' capitalization. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Merge more updates from Andrew Morton:
- the rest of MM
- procfs updates
- various misc things
- more y2038 fixes
- get_maintainer updates
- lib/ updates
- checkpatch updates
- various epoll updates
- autofs updates
- hfsplus
- some reiserfs work
- fatfs updates
- signal.c cleanups
- ipc/ updates
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (166 commits)
ipc/util.c: update return value of ipc_getref from int to bool
ipc/util.c: further variable name cleanups
ipc: simplify ipc initialization
ipc: get rid of ids->tables_initialized hack
lib/rhashtable: guarantee initial hashtable allocation
lib/rhashtable: simplify bucket_table_alloc()
ipc: drop ipc_lock()
ipc/util.c: correct comment in ipc_obtain_object_check
ipc: rename ipcctl_pre_down_nolock()
ipc/util.c: use ipc_rcu_putref() for failues in ipc_addid()
ipc: reorganize initialization of kern_ipc_perm.seq
ipc: compute kern_ipc_perm.id under the ipc lock
init/Kconfig: remove EXPERT from CHECKPOINT_RESTORE
fs/sysv/inode.c: use ktime_get_real_seconds() for superblock stamp
adfs: use timespec64 for time conversion
kernel/sysctl.c: fix typos in comments
drivers/rapidio/devices/rio_mport_cdev.c: remove redundant pointer md
fork: don't copy inconsistent signal handler state to child
signal: make get_signal() return bool
signal: make sigkill_pending() return bool
...
Patch series "signal: refactor some functions", v3.
This series refactors a bunch of functions in signal.c to simplify parts
of the code.
The greatest single change is declaring the static do_sigpending() helper
as void which makes it possible to remove a bunch of unnecessary checks in
the syscalls later on.
This patch (of 17):
force_sigsegv() returned 0 unconditionally so it doesn't make sense to have
it return at all. In addition, there are no callers that check
force_sigsegv()'s return value.
Link: http://lkml.kernel.org/r/20180602103653.18181-2-christian@brauner.io
Signed-off-by: Christian Brauner <christian@brauner.io>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: James Morris <james.morris@microsoft.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently task hung checking interval is equal to timeout, as the result
hung is detected anywhere between timeout and 2*timeout. This is fine for
most interactive environments, but this hurts automated testing setups
(syzbot). In an automated setup we need to strictly order CPU lockup <
RCU stall < workqueue lockup < task hung < silent loss, so that RCU stall
is not detected as task hung and task hung is not detected as silent
machine loss. The large variance in task hung detection timeout requires
setting silent machine loss timeout to a very large value (e.g. if task
hung is 3 mins, then silent loss need to be set to ~7 mins). The
additional 3 minutes significantly reduce testing efficiency because
usually we crash kernel within a minute, and this can add hours to bug
localization process as it needs to do dozens of tests.
Allow setting checking interval separately from timeout. This allows to
set timeout to, say, 3 minutes, but checking interval to 10 secs.
The interval is controlled via a new hung_task_check_interval_secs sysctl,
similar to the existing hung_task_timeout_secs sysctl. The default value
of 0 results in the current behavior: checking interval is equal to
timeout.
[akpm@linux-foundation.org: update hung_task_timeout_max's comment]
Link: http://lkml.kernel.org/r/20180611111004.203513-1-dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
refcount_t type and corresponding API should be used instead of atomic_t
wh en the variable is used as a reference counter. This avoids accidental
refcounter overflows that might lead to use-after-free situations.
Link: http://lkml.kernel.org/r/20180703200141.28415-6-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull core signal handling updates from Eric Biederman:
"It was observed that a periodic timer in combination with a
sufficiently expensive fork could prevent fork from every completing.
This contains the changes to remove the need for that restart.
This set of changes is split into several parts:
- The first part makes PIDTYPE_TGID a proper pid type instead
something only for very special cases. The part starts using
PIDTYPE_TGID enough so that in __send_signal where signals are
actually delivered we know if the signal is being sent to a a group
of processes or just a single process.
- With that prep work out of the way the logic in fork is modified so
that fork logically makes signals received while it is running
appear to be received after the fork completes"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (22 commits)
signal: Don't send signals to tasks that don't exist
signal: Don't restart fork when signals come in.
fork: Have new threads join on-going signal group stops
fork: Skip setting TIF_SIGPENDING in ptrace_init_task
signal: Add calculate_sigpending()
fork: Unconditionally exit if a fatal signal is pending
fork: Move and describe why the code examines PIDNS_ADDING
signal: Push pid type down into complete_signal.
signal: Push pid type down into __send_signal
signal: Push pid type down into send_signal
signal: Pass pid type into do_send_sig_info
signal: Pass pid type into send_sigio_to_task & send_sigurg_to_task
signal: Pass pid type into group_send_sig_info
signal: Pass pid and pid type into send_sigqueue
posix-timers: Noralize good_sigevent
signal: Use PIDTYPE_TGID to clearly store where file signals will be sent
pid: Implement PIDTYPE_TGID
pids: Move the pgrp and session pid pointers from task_struct to signal_struct
kvm: Don't open code task_pid in kvm_vcpu_ioctl
pids: Compute task_tgid using signal->leader_pid
...
Patch series "Directed kmem charging", v8.
The Linux kernel's memory cgroup allows limiting the memory usage of the
jobs running on the system to provide isolation between the jobs. All
the kernel memory allocated in the context of the job and marked with
__GFP_ACCOUNT will also be included in the memory usage and be limited
by the job's limit.
The kernel memory can only be charged to the memcg of the process in
whose context kernel memory was allocated. However there are cases
where the allocated kernel memory should be charged to the memcg
different from the current processes's memcg. This patch series
contains two such concrete use-cases i.e. fsnotify and buffer_head.
The fsnotify event objects can consume a lot of system memory for large
or unlimited queues if there is either no or slow listener. The events
are allocated in the context of the event producer. However they should
be charged to the event consumer. Similarly the buffer_head objects can
be allocated in a memcg different from the memcg of the page for which
buffer_head objects are being allocated.
To solve this issue, this patch series introduces mechanism to charge
kernel memory to a given memcg. In case of fsnotify events, the memcg
of the consumer can be used for charging and for buffer_head, the memcg
of the page can be charged. For directed charging, the caller can use
the scope API memalloc_[un]use_memcg() to specify the memcg to charge
for all the __GFP_ACCOUNT allocations within the scope.
This patch (of 2):
A lot of memory can be consumed by the events generated for the huge or
unlimited queues if there is either no or slow listener. This can cause
system level memory pressure or OOMs. So, it's better to account the
fsnotify kmem caches to the memcg of the listener.
However the listener can be in a different memcg than the memcg of the
producer and these allocations happen in the context of the event
producer. This patch introduces remote memcg charging API which the
producer can use to charge the allocations to the memcg of the listener.
There are seven fsnotify kmem caches and among them allocations from
dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and
inotify_inode_mark_cachep happens in the context of syscall from the
listener. So, SLAB_ACCOUNT is enough for these caches.
The objects from fsnotify_mark_connector_cachep are not accounted as
they are small compared to the notification mark or events and it is
unclear whom to account connector to since it is shared by all events
attached to the inode.
The allocations from the event caches happen in the context of the event
producer. For such caches we will need to remote charge the allocations
to the listener's memcg. Thus we save the memcg reference in the
fsnotify_group structure of the listener.
This patch has also moved the members of fsnotify_group to keep the size
same, at least for 64 bit build, even with additional member by filling
the holes.
[shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it]
Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wen Yang <wen.yang99@zte.com.cn> and majiang <ma.jiang@zte.com.cn>
report that a periodic signal received during fork can cause fork to
continually restart preventing an application from making progress.
The code was being overly pessimistic. Fork needs to guarantee that a
signal sent to multiple processes is logically delivered before the
fork and just to the forking process or logically delivered after the
fork to both the forking process and it's newly spawned child. For
signals like periodic timers that are always delivered to a single
process fork can safely complete and let them appear to logically
delivered after the fork().
While examining this issue I also discovered that fork today will miss
signals delivered to multiple processes during the fork and handled by
another thread. Similarly the current code will also miss blocked
signals that are delivered to multiple process, as those signals will
not appear pending during fork.
Add a list of each thread that is currently forking, and keep on that
list a signal set that records all of the signals sent to multiple
processes. When fork completes initialize the new processes
shared_pending signal set with it. The calculate_sigpending function
will see those signals and set TIF_SIGPENDING causing the new task to
take the slow path to userspace to handle those signals. Making it
appear as if those signals were received immediately after the fork.
It is not possible to send real time signals to multiple processes and
exceptions don't go to multiple processes, which means that that are
no signals sent to multiple processes that require siginfo. This
means it is safe to not bother collecting siginfo on signals sent
during fork.
The sigaction of a child of fork is initially the same as the
sigaction of the parent process. So a signal the parent ignores the
child will also initially ignore. Therefore it is safe to ignore
signals sent to multiple processes and ignored by the forking process.
Signals sent to only a single process or only a single thread and delivered
during fork are treated as if they are received after the fork, and generally
not dealt with. They won't cause any problems.
V2: Added removal from the multiprocess list on failure.
V3: Use -ERESTARTNOINTR directly
V4: - Don't queue both SIGCONT and SIGSTOP
- Initialize signal_struct.multiprocess in init_task
- Move setting of shared_pending to before the new task
is visible to signals. This prevents signals from comming
in before shared_pending.signal is set to delayed.signal
and being lost.
V5: - rework list add and delete to account for idle threads
v6: - Use sigdelsetmask when removing stop signals
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=200447
Reported-by: Wen Yang <wen.yang99@zte.com.cn> and
Reported-by: majiang <ma.jiang@zte.com.cn>
Fixes: 4a2c7a7837 ("[PATCH] make fork() atomic wrt pgrp/session signals")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
There are only two signals that are delivered to every member of a
signal group: SIGSTOP and SIGKILL. Signal delivery requires every
signal appear to be delivered either before or after a clone syscall.
SIGKILL terminates the clone so does not need to be considered. Which
leaves only SIGSTOP that needs to be considered when creating new
threads.
Today in the event of a group stop TIF_SIGPENDING will get set and the
fork will restart ensuring the fork syscall participates in the group
stop.
A fork (especially of a process with a lot of memory) is one of the
most expensive system so we really only want to restart a fork when
necessary.
It is easy so check to see if a SIGSTOP is ongoing and have the new
thread join it immediate after the clone completes. Making it appear
the clone completed happened just before the SIGSTOP.
The calculate_sigpending function will see the bits set in jobctl and
set TIF_SIGPENDING to ensure the new task takes the slow path to userspace.
V2: The call to task_join_group_stop was moved before the new task is
added to the thread group list. This should not matter as
sighand->siglock is held over both the addition of the threads,
the call to task_join_group_stop and do_signal_stop. But the change
is trivial and it is one less thing to worry about when reading
the code.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Add a function calculate_sigpending to test to see if any signals are
pending for a new task immediately following fork. Signals have to
happen either before or after fork. Today our practice is to push
all of the signals to before the fork, but that has the downside that
frequent or periodic signals can make fork take much much longer than
normal or prevent fork from completing entirely.
So we need move signals that we can after the fork to prevent that.
This updates the code to set TIF_SIGPENDING on a new task if there
are signals or other activities that have moved so that they appear
to happen after the fork.
As the code today restarts if it sees any such activity this won't
immediately have an effect, as there will be no reason for it
to set TIF_SIGPENDING immediately after the fork.
Adding calculate_sigpending means the code in fork can safely be
changed to not always restart if a signal is pending.
The new calculate_sigpending function sets sigpending if there
are pending bits in jobctl, pending signals, the freezer needs
to freeze the new task or the live kernel patching framework
need the new thread to take the slow path to userspace.
I have verified that setting TIF_SIGPENDING does make a new process
take the slow path to userspace before it executes it's first userspace
instruction.
I have looked at the callers of signal_wake_up and the code paths
setting TIF_SIGPENDING and I don't see anything else that needs to be
handled. The code probably doesn't need to set TIF_SIGPENDING for the
kernel live patching as it uses a separate thread flag as well. But
at this point it seems safer reuse the recalc_sigpending logic and get
the kernel live patching folks to sort out their story later.
V2: I have moved the test into schedule_tail where siglock can
be grabbed and recalc_sigpending can be reused directly.
Further as the last action of setting up a new task this
guarantees that TIF_SIGPENDING will be properly set in the
new process.
The helper calculate_sigpending takes the siglock and
uncontitionally sets TIF_SIGPENDING and let's recalc_sigpending
clear TIF_SIGPENDING if it is unnecessary. This allows reusing
the existing code and keeps maintenance of the conditions simple.
Oleg Nesterov <oleg@redhat.com> suggested the movement
and pointed out the need to take siglock if this code
was going to be called while the new task is discoverable.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
kernel_wait4() expects a userland address for status - it's only
rusage that goes as a kernel one (and needs a copyout afterwards)
[ Also, fix the prototype of kernel_wait4() to have that __user
annotation - Linus ]
Fixes: 92ebce5ac5 ("osf_wait4: switch to kernel_wait4()")
Cc: stable@kernel.org # v4.13+
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make the code more maintainable by performing more of the signal
related work in send_sigqueue.
A quick inspection of do_timer_create will show that this code path
does not lookup a thread group by a thread's pid. Making it safe
to find the task pointed to by it_pid with "pid_task(it_pid, type)";
This supports the changes needed in fork to tell if a signal was sent
to a single process or a group of processes.
Having the pid to task transition in signal.c will also make it easier
to sort out races with de_thread and and the thread group leader
exiting when it comes time to address that.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Everywhere except in the pid array we distinguish between a tasks pid and
a tasks tgid (thread group id). Even in the enumeration we want that
distinction sometimes so we have added __PIDTYPE_TGID. With leader_pid
we almost have an implementation of PIDTYPE_TGID in struct signal_struct.
Add PIDTYPE_TGID as a first class member of the pid_type enumeration and
into the pids array. Then remove the __PIDTYPE_TGID special case and the
leader_pid in signal_struct.
The net size increase is just an extra pointer added to struct pid and
an extra pair of pointers of an hlist_node added to task_struct.
The effect on code maintenance is the removal of a number of special
cases today and the potential to remove many more special cases as
PIDTYPE_TGID gets used to it's fullest. The long term potential
is allowing zombie thread group leaders to exit, which will remove
a lot more special cases in the code.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
To access these fields the code always has to go to group leader so
going to signal struct is no loss and is actually a fundamental simplification.
This saves a little bit of memory by only allocating the pid pointer array
once instead of once for every thread, and even better this removes a
few potential races caused by the fact that group_leader can be changed
by de_thread, while signal_struct can not.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The cost is the the same and this removes the need
to worry about complications that come from de_thread
and group_leader changing.
__task_pid_nr_ns has been updated to take advantage of this change.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
While revisiting my Btrfs swapfile series [1], I introduced a situation
in which reclaim would lock i_rwsem, and even though the swapon() path
clearly made GFP_KERNEL allocations while holding i_rwsem, I got no
complaints from lockdep. It turns out that the rework of the fs_reclaim
annotation was broken: if the current task has PF_MEMALLOC set, we don't
acquire the dummy fs_reclaim lock, but when reclaiming we always check
this _after_ we've just set the PF_MEMALLOC flag. In most cases, we can
fix this by moving the fs_reclaim_{acquire,release}() outside of the
memalloc_noreclaim_{save,restore}(), althought kswapd is slightly
different. After applying this, I got the expected lockdep splats.
1: https://lwn.net/Articles/625412/
Link: http://lkml.kernel.org/r/9f8aa70652a98e98d7c4de0fc96a4addcee13efe.1523778026.git.osandov@fb.com
Fixes: d92a8cfcb3 ("locking/lockdep: Rework FS_RECLAIM annotation")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
including:
- Extensive RST conversions and organizational work in the
memory-management docs thanks to Mike Rapoport.
- An update of Documentation/features from Andrea Parri and a script to
keep it updated.
- Various LICENSES updates from Thomas, along with a script to check SPDX
tags.
- Work to fix dangling references to documentation files; this involved a
fair number of one-liner comment changes outside of Documentation/
...and the usual list of documentation improvements, typo fixes, etc.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJbFTkKAAoJEI3ONVYwIuV6t24P/0K9qltHkLwsBo2fbGu/emem
mb1QrZCFZGebKVrCIvET3YcT0q0xPW+ZldwMQYEUeCcu/vD3cGHGXlDbVJCa1fFD
2OS10W/sEObPnREtlHO/zAzpapKP9DO1/f6NhO55iBJLGOCgoLL5xvSqgsI8MTGd
vcJDXLitkh4CJEcfNLkQt8dEZzq9Tb6wdSFIvZBBXRNon2ItVN92D5xoQ0wtB+qt
KmcGYofajK9bjtZpnC4iNg3i+zdwkd80bGTEN9f0hJTRZK5emCILk8fip8CMhRuB
iwmcqb2RnMLydNLyK9RSs6OS5z3G4fYu9llRtLlZBAupcjRVpalWaBGxLOVO6jBG
mvkqdKPMtxV4c7NvwKwFQL9dcjtxsxO4RDRYVWN82dS1L6WKKk8UvTuJUBLH0YA5
af7ZKn7mJVhJ1cxPblaEBOBM3oQuk57LLkjmcpMOXyJ/IOkTIuV1Ezht+XzFyFQv
VWSyekiKo+8D6WHACPTaWiizjW15e8CyP+WIhKzJyn7VQQrZwhsOS+R//ITsuvQ0
vRdZ20lwUeBhR+mnXd5NfIo2w7G+OiqiREVAgxjgRrS0PnkzWG7lzzcSVU8HTfT4
S7VXqval2a9Xg+N8aU2JUe49W858J8hKvIa98hBxGoZa84wxOGtEo7pIKhnMwMSe
Uhkh/1/bQMxsK3fBEF74
=I6FG
-----END PGP SIGNATURE-----
Merge tag 'docs-4.18' of git://git.lwn.net/linux
Pull documentation updates from Jonathan Corbet:
"There's been a fair amount of work in the docs tree this time around,
including:
- Extensive RST conversions and organizational work in the
memory-management docs thanks to Mike Rapoport.
- An update of Documentation/features from Andrea Parri and a script
to keep it updated.
- Various LICENSES updates from Thomas, along with a script to check
SPDX tags.
- Work to fix dangling references to documentation files; this
involved a fair number of one-liner comment changes outside of
Documentation/
... and the usual list of documentation improvements, typo fixes, etc"
* tag 'docs-4.18' of git://git.lwn.net/linux: (103 commits)
Documentation: document hung_task_panic kernel parameter
docs/admin-guide/mm: add high level concepts overview
docs/vm: move ksm and transhuge from "user" to "internals" section.
docs: Use the kerneldoc comments for memalloc_no*()
doc: document scope NOFS, NOIO APIs
docs: update kernel versions and dates in tables
docs/vm: transhuge: split userspace bits to admin-guide/mm/transhuge
docs/vm: transhuge: minor updates
docs/vm: transhuge: change sections order
Documentation: arm: clean up Marvell Berlin family info
Documentation: gpio: driver: Fix a typo and some odd grammar
docs: ranoops.rst: fix location of ramoops.txt
scripts/documentation-file-ref-check: rewrite it in perl with auto-fix mode
docs: uio-howto.rst: use a code block to solve a warning
mm, THP, doc: Add document for thp_swpout/thp_swpout_fallback
w1: w1_io.c: fix a kernel-doc warning
Documentation/process/posting: wrap text at 80 cols
docs: admin-guide: add cgroup-v2 documentation
Revert "Documentation/features/vm: Remove arch support status file for 'pte_special'"
Documentation: refcount-vs-atomic: Update reference to LKMM doc.
...
Although the api is documented in the source code Ted has pointed out
that there is no mention in the core-api Documentation and there are
people looking there to find answers how to use a specific API.
Requested-by: "Theodore Y. Ts'o" <tytso@mit.edu>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Gaurav reported a perceived problem with TASK_PARKED, which turned out
to be a broken wait-loop pattern in __kthread_parkme(), but the
reported issue can (and does) in fact happen for states that do not do
condition based sleeps.
When the 'current->state = TASK_RUNNING' store of a previous
(concurrent) try_to_wake_up() collides with the setting of a 'special'
sleep state, we can loose the sleep state.
Normal condition based wait-loops are immune to this problem, but for
sleep states that are not condition based are subject to this problem.
There already is a fix for TASK_DEAD. Abstract that and also apply it
to TASK_STOPPED and TASK_TRACED, both of which are also without
condition based wait-loop.
Reported-by: Gaurav Kohli <gkohli@codeaurora.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mike Rapoport says:
These patches convert files in Documentation/vm to ReST format, add an
initial index and link it to the top level documentation.
There are no contents changes in the documentation, except few spelling
fixes. The relatively large diffstat stems from the indentation and
paragraph wrapping changes.
I've tried to keep the formatting as consistent as possible, but I could
miss some places that needed markup and add some markup where it was not
necessary.
[jc: significant conflicts in vm/hmm.rst]
Patch series "exec: Pin stack limit during exec".
Attempts to solve problems with the stack limit changing during exec
continue to be frustrated[1][2]. In addition to the specific issues
around the Stack Clash family of flaws, Andy Lutomirski pointed out[3]
other places during exec where the stack limit is used and is assumed to
be unchanging. Given the many places it gets used and the fact that it
can be manipulated/raced via setrlimit() and prlimit(), I think the only
way to handle this is to move away from the "current" view of the stack
limit and instead attach it to the bprm, and plumb this down into the
functions that need to know the stack limits. This series implements
the approach.
[1] 04e35f4495 ("exec: avoid RLIMIT_STACK races with prlimit()")
[2] 779f4e1c6c ("Revert "exec: avoid RLIMIT_STACK races with prlimit()"")
[3] to security@kernel.org, "Subject: existing rlimit races?"
This patch (of 3):
Since it is possible that the stack rlimit can change externally during
exec (either via another thread calling setrlimit() or another process
calling prlimit()), provide a way to pass the rlimit down into the
per-architecture mm layout functions so that the rlimit can stay in the
bprm structure instead of sitting in the signal structure until exec is
finalized.
Link: http://lkml.kernel.org/r/1518638796-20819-2-git-send-email-keescook@chromium.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Greg KH <greg@kroah.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ben Hutchings <ben.hutchings@codethink.co.uk>
Cc: Brad Spengler <spender@grsecurity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull general security layer updates from James Morris:
- Convert security hooks from list to hlist, a nice cleanup, saving
about 50% of space, from Sargun Dhillon.
- Only pass the cred, not the secid, to kill_pid_info_as_cred and
security_task_kill (as the secid can be determined from the cred),
from Stephen Smalley.
- Close a potential race in kernel_read_file(), by making the file
unwritable before calling the LSM check (vs after), from Kees Cook.
* 'next-general' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security:
security: convert security hooks to use hlist
exec: Set file unwritable before LSM check
usb, signal, security: only pass the cred, not the secid, to kill_pid_info_as_cred and security_task_kill
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAlqvCPYeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGOaAH/171cgZGFEXSONxK
3O1AAv61wN5K/ISMt6mnelWR6fZg195FarOx0Rnq7Ot8OWuVa8CGcyT4vX4Z7nb9
SVMQKNMPCVQE4WCDOv6S0njChmRC0BxBoVJtTN9fhywdYgX1KcaTS/drMRHACF5n
rB9eouMQScfMzKGAW08gp5NvEGJ6W1SLX7La3/u0751dYisdJSP7+vFZNxUrGXEA
yIPOQjFu0Tfo8GXz/BwC678RZVzVLN0sE6+/vM7zNnoDlsRVkdDIVMo3UiVqm/NK
B37/TlZz8CYoapoKnRRB5giXnSPDSXtsikbGy3mcy0u5imGe+ZgdjrdYSaLk31cR
NVZY08k=
=pu3X
-----END PGP SIGNATURE-----
Merge tag 'v4.16-rc6' into next-general
Merge to Linux 4.16-rc6 at the request of Jarkko, for his TPM updates.
It was suggested that a migration hint might be usefull for the
CPU-freq governors.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The primary observation is that nohz enter/exit is always from the
current CPU, therefore NOHZ_TICK_STOPPED does not in fact need to be
an atomic.
Secondary is that we appear to have 2 nearly identical hooks in the
nohz enter code, set_cpu_sd_state_idle() and
nohz_balance_enter_idle(). Fold the whole set_cpu_sd_state thing into
nohz_balance_{enter,exit}_idle.
Removes an atomic op from both enter and exit paths.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of trying to duplicate scheduler state to track if an RT task
is running, directly use the scheduler runqueue state for it.
This vastly simplifies things and fixes a number of bugs related to
sugov and the scheduler getting out of sync wrt this state.
As a consequence we not also update the remove cfs/dl state when
iterating the shared mask.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
commit d178bc3a70 ("user namespace: usb:
make usb urbs user namespace aware (v2)") changed kill_pid_info_as_uid
to kill_pid_info_as_cred, saving and passing a cred structure instead of
uids. Since the secid can be obtained from the cred, drop the secid fields
from the usb_dev_state and async structures, and drop the secid argument to
kill_pid_info_as_cred. Replace the secid argument to security_task_kill
with the cred. Update SELinux, Smack, and AppArmor to use the cred, which
avoids the need for Smack and AppArmor to use a secid at all in this hook.
Further changes to Smack might still be required to take full advantage of
this change, since it should now be possible to perform capability
checking based on the supplied cred. The changes to Smack and AppArmor
have only been compile-tested.
Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov>
Acked-by: Paul Moore <paul@paul-moore.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: John Johansen <john.johansen@canonical.com>
Signed-off-by: James Morris <james.morris@microsoft.com>
Do the following cleanups and simplifications:
- sched/sched.h already includes <asm/paravirt.h>, so no need to
include it in sched/core.c again.
- order the <linux/sched/*.h> headers alphabetically
- add all <linux/sched/*.h> headers to kernel/sched/sched.h
- remove all unnecessary includes from the .c files that
are already included in kernel/sched/sched.h.
Finally, make all scheduler .c files use a single common header:
#include "sched.h"
... which now contains a union of the relied upon headers.
This makes the various .c files easier to read and easier to handle.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Merge misc fixes from Andrew Morton:
"16 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
mm: don't defer struct page initialization for Xen pv guests
lib/Kconfig.debug: enable RUNTIME_TESTING_MENU
vmalloc: fix __GFP_HIGHMEM usage for vmalloc_32 on 32b systems
selftests/memfd: add run_fuse_test.sh to TEST_FILES
bug.h: work around GCC PR82365 in BUG()
mm/swap.c: make functions and their kernel-doc agree (again)
mm/zpool.c: zpool_evictable: fix mismatch in parameter name and kernel-doc
ida: do zeroing in ida_pre_get()
mm, swap, frontswap: fix THP swap if frontswap enabled
certs/blacklist_nohashes.c: fix const confusion in certs blacklist
kernel/relay.c: limit kmalloc size to KMALLOC_MAX_SIZE
mm, mlock, vmscan: no more skipping pagevecs
mm: memcontrol: fix NR_WRITEBACK leak in memcg and system stats
Kbuild: always define endianess in kconfig.h
include/linux/sched/mm.h: re-inline mmdrop()
tools: fix cross-compile var clobbering
Each read from a file in efivarfs results in two calls to EFI
(one to get the file size, another to get the actual data).
On X86 these EFI calls result in broadcast system management
interrupts (SMI) which affect performance of the whole system.
A malicious user can loop performing reads from efivarfs bringing
the system to its knees.
Linus suggested per-user rate limit to solve this.
So we add a ratelimit structure to "user_struct" and initialize
it for the root user for no limit. When allocating user_struct for
other users we set the limit to 100 per second. This could be used
for other places that want to limit the rate of some detrimental
user action.
In efivarfs if the limit is exceeded when reading, we take an
interruptible nap for 50ms and check the rate limit again.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As Peter points out, Doing a CALL+RET for just the decrement is a bit silly.
Fixes: d70f2a14b7 ("include/linux/sched/mm.h: uninline mmdrop_async(), etc")
Acked-by: Peter Zijlstra (Intel) <peterz@infraded.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that the 1Hz tick is offloaded to workqueues, we can safely remove
the residual code that used to handle it locally.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1519186649-3242-7-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As we prepare for offloading the residual 1hz scheduler ticks to
workqueue, let's affine those to housekeepers so that they don't
interrupt the CPUs that don't want to be disturbed.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1519186649-3242-5-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Provide core serializing membarrier command to support memory reclaim
by JIT.
Each architecture needs to explicitly opt into that support by
documenting in their architecture code how they provide the core
serializing instructions required when returning from the membarrier
IPI, and after the scheduler has updated the curr->mm pointer (before
going back to user-space). They should then select
ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on
their architecture.
Architectures selecting this feature need to either document that
they issue core serializing instructions when returning to user-space,
or implement their architecture-specific sync_core_before_usermode().
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Andrew Hunter <ahh@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Avi Kivity <avi@scylladb.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: David Sehr <sehr@google.com>
Cc: Greg Hackmann <ghackmann@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maged Michael <maged.michael@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-api@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Allow expedited membarrier to be used for data shared between processes
through shared memory.
Processes wishing to receive the membarriers register with
MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. Those which want to issue
membarrier invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED.
This allows extremely simple kernel-level implementation: we have almost
everything we need with the PRIVATE_EXPEDITED barrier code. All we need
to do is to add a flag in the mm_struct that will be used to check
whether we need to send the IPI to the current thread of each CPU.
There is a slight downside to this approach compared to targeting
specific shared memory users: when performing a membarrier operation,
all registered "global" receivers will get the barrier, even if they
don't share a memory mapping with the sender issuing
MEMBARRIER_CMD_GLOBAL_EXPEDITED.
This registration approach seems to fit the requirement of not
disturbing processes that really deeply care about real-time: they
simply should not register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED.
In order to align the membarrier command names, the "MEMBARRIER_CMD_SHARED"
command is renamed to "MEMBARRIER_CMD_GLOBAL", keeping an alias of
MEMBARRIER_CMD_SHARED to MEMBARRIER_CMD_GLOBAL for UAPI header backward
compatibility.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Andrew Hunter <ahh@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Avi Kivity <avi@scylladb.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: David Sehr <sehr@google.com>
Cc: Greg Hackmann <ghackmann@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maged Michael <maged.michael@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-api@vger.kernel.org
Link: http://lkml.kernel.org/r/20180129202020.8515-5-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>