Based on the normalized pattern:
this program is free software you can redistribute it and/or modify it
under the terms of the gnu general public license version 2 as
published by the free software foundation this program is distributed
as is without any warranty of any kind whether express or implied
without even the implied warranty of merchantability or fitness for a
particular purpose see the gnu general public license for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference.
Reviewed-by: Allison Randal <allison@lohutok.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on the normalized pattern:
this program is free software you can redistribute it and/or modify it
under the terms of the gnu general public license as published by the
free software foundation version 2 this program is distributed as is
without any warranty of any kind whether express or implied without
even the implied warranty of merchantability or fitness for a
particular purpose see the gnu general public license for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference.
Reviewed-by: Allison Randal <allison@lohutok.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In a multiplatform randconfig kernel, one can have
CONFIG_ARCH_OMAP1 enabled, but none of the specific SoCs.
This leads to some build issues as the code is not
meant to deal with this configuration at the moment:
arch/arm/mach-omap1/io.c:86:20: error: unused function 'omap1_map_common_io' [-Werror,-Wunused-function]
arch/arm/mach-omap1/pm.h:113:2: error: "Power management for this processor not implemented yet" [-Werror,-W#warnings]
Use the same trick as on OMAP2 and guard the actual compilation
of platform code with another Makefile ifdef check based
on an option that depends on having at least one SoC enabled.
The io.c file still needs to get compiled to allow building
device drivers with a dependency on CONFIG_ARCH_OMAP1.
Acked-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
There are three remaining header files that are used by omap1
specific device drivers:
- mach/soc.h provides cpu_is_omapXXX abstractions
- mach/hardware.h provides omap_read/omap_write functions
and physical addresses
- mach/mux.h provides an omap specific pinctrl abstraction
This is generally not how we do platform abstractions today,
and it would be good to completely get rid of these in favor
of passing information through platform devices and the pinctrl
subsystem.
However, given that nobody is working on that, just move it
one step forward by splitting out the header files that are
used by drivers today from the machine headers that are only
used internally.
Acked-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
The register definitions in this header are used in at least four
different places, with little hope of completely cleaning that up.
Split up the file into a portion that becomes a linux-wide header
under include/linux/soc/ti/, and the parts that are actually only
needed by board files.
Acked-by: Felipe Balbi <felipe.balbi@linux.intel.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
During the system suspend path we must set all queues to operate in
polled mode as it is possible for any protocol built using this mailbox,
such as TISCI, to require communication during the no irq phase of suspend,
and we cannot rely on interrupts there.
Polled mode is implemented by allowing the mailbox user to define an
RX channel as part of the message that is sent which is what gets polled
for a response. If polled mode is enabled, this will immediately be
polled for a response at the end of the mailbox send_data op before
returning success for the data send or timing out if no response is
received.
Finally, to ensure polled mode is always enabled during system suspend,
iterate through all queues to set RX queues to polled mode during system
suspend and disable polled mode for all in the resume handler.
Signed-off-by: Dave Gerlach <d-gerlach@ti.com>
Signed-off-by: Jassi Brar <jaswinder.singh@linaro.org>
The function has no users and is pointless now that the core frees the MSI
descriptors, which means potential users can just use msi_domain_free_irqs().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Nishanth Menon <nm@ti.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Link: https://lore.kernel.org/r/20211206210748.793119155@linutronix.de
The DMAs in AM64 have built in rings compared to AM654/J721e/J7200 where a
separate and generic ringacc is used.
The ring SW interface is similar to ringacc with some major architectural
differences, like
They are part of the DMA (BCDMA or PKTDMA).
They are dual mode rings are modeled as pair of Rings objects which has
common configuration and memory buffer, but separate real-time control
register sets for each direction mem2dev (forward) and dev2mem (reverse).
The ringacc driver must be initialized for DMA rings use with
k3_ringacc_dmarings_init() as it is not an independent device as ringacc
is.
AM64 rings must be requested only using k3_ringacc_request_rings_pair(),
and forward ring must always be initialized/configured. After this any
other Ringacc APIs can be used without any callers changes.
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Link: https://lore.kernel.org/r/20201208090440.31792-17-peter.ujfalusi@ti.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
In RING mode the ringacc does not access the ring memory. In this access
mode the ringacc coherency does not have meaning.
If the ring is configured in RING mode, then the ringacc itself will not
access to the ring memory. Only the requester (user) of the ring is going
to read/write to the memory.
Extend the ring configuration parameters with a device pointer to be used
for DMA API when the ring is configured in RING mode.
Extending the ring configuration struct will allow per ring selection of
device to be used for allocation, thus allowing per ring coherency.
To avoid regression, fall back to use the ringacc dev in case the alloc_dev
is not provided.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Reviewed-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
The ringacc driver has been converted to use the new set_cfg function to
configure the ring, the old config ops can be removed.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Reviewed-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
The sysfw ring configuration message has been extended to include virtid
and asel value for the ring.
Add the ASEL_VALID to TI_SCI_MSG_VALUE_RM_ALL_NO_ORDER as it is required
for DMA rings.
Instead of extending the current .config() ops - which would need same
patch change in the ringacc driver - add ti_sci_msg_rm_ring_cfg struct and
a new ops using it to configure the ring.
This will allow easy update path in case new members are added for the ring
configuration.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Reviewed-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
The ring_get_cfg (0x1111 message) is not used and it is not supported by
sysfw for a long time.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Reviewed-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Sysfw added 'extended_ch_type' to the tx_ch_cfg_req message which should be
used when BCDMA block copy channels are configured:
extended_ch_type = 0 : the channel is split tx channel (tchan)
extended_ch_type = 1 : the channel is block copy channel (bchan)
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Sysfw added support for a second range in the resource range API to be able
to describe complex allocations mainly for DMA channels.
Update the ti_sci part to consider the second range as well.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Use the ti_sci_resource_desc directly and update it's start and num members
directly instead of requiring individual parameters for them.
This will allow easy extension of the RM parameters without changing API.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
The system controller's resource manager have support for configuring the
TDTYPE of TCHAN_CFG register on j721e.
With this parameter the teardown completion can be controlled:
TDTYPE == 0: Return without waiting for peer to complete the teardown
TDTYPE == 1: Wait for peer to complete the teardown
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Reviewed-by: Tero Kristo <t-kristo@ti.com>
Tested-by: Keerthy <j-keerthy@ti.com>
Reviewed-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
With SYSFW ABI 3.0 changes, interrupts coming out of an interrupt
controller is identified by a type and it is consistent across SoCs.
Similarly global events for Interrupt aggregator. So add an API to get
resource range using a resource type.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Nishanth Menon <nm@ti.com>
Link: https://lore.kernel.org/r/20200806074826.24607-4-lokeshvutla@ti.com
Rationale:
Reduces attack surface on kernel devs opening the links for MITM
as HTTPS traffic is much harder to manipulate.
Signed-off-by: Alexander A. Klimov <grandmaster@al2klimov.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: http://lkml.kernel.org/r/20200726110117.16346-1-grandmaster@al2klimov.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rationale:
Reduces attack surface on kernel devs opening the links for MITM
as HTTPS traffic is much harder to manipulate.
Deterministic algorithm:
For each file:
If not .svg:
For each line:
If doesn't contain `\bxmlns\b`:
For each link, `\bhttp://[^# \t\r\n]*(?:\w|/)`:
If neither `\bgnu\.org/license`, nor `\bmozilla\.org/MPL\b`:
If both the HTTP and HTTPS versions
return 200 OK and serve the same content:
Replace HTTP with HTTPS.
Signed-off-by: Alexander A. Klimov <grandmaster@al2klimov.de>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Drop the repeated word "an" in a comment.
Insert "and" between "source" and "destination" as is done a few
lines earlier.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Tero Kristo <t-kristo@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Add new API k3_ringacc_request_rings_pair() to request pair of rings at
once, as in the most cases Rings are used with DMA channels, which need to
request pair of rings - one to feed DMA with descriptors (TX/RX FDQ) and
one to receive completions (RX/TX CQ). This will allow to simplify Ringacc
API users.
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Reviewed-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
The Ring Accelerator (RINGACC or RA) provides hardware acceleration to
enable straightforward passing of work between a producer and a consumer.
There is one RINGACC module per NAVSS on TI AM65x SoCs.
The RINGACC converts constant-address read and write accesses to equivalent
read or write accesses to a circular data structure in memory. The RINGACC
eliminates the need for each DMA controller which needs to access ring
elements from having to know the current state of the ring (base address,
current offset). The DMA controller performs a read or write access to a
specific address range (which maps to the source interface on the RINGACC)
and the RINGACC replaces the address for the transaction with a new address
which corresponds to the head or tail element of the ring (head for reads,
tail for writes). Since the RINGACC maintains the state, multiple DMA
controllers or channels are allowed to coherently share the same rings as
applicable. The RINGACC is able to place data which is destined towards
software into cached memory directly.
Supported ring modes:
- Ring Mode
- Messaging Mode
- Credentials Mode
- Queue Manager Mode
TI-SCI integration:
Texas Instrument's System Control Interface (TI-SCI) Message Protocol now
has control over Ringacc module resources management (RM) and Rings
configuration.
The corresponding support of TI-SCI Ringacc module RM protocol
introduced as option through DT parameters:
- ti,sci: phandle on TI-SCI firmware controller DT node
- ti,sci-dev-id: TI-SCI device identifier as per TI-SCI firmware spec
if both parameters present - Ringacc driver will configure/free/reset Rings
using TI-SCI Message Ringacc RM Protocol.
The Ringacc driver manages Rings allocation by itself now and requests
TI-SCI firmware to allocate and configure specific Rings only. It's done
this way because, Linux driver implements two stage Rings allocation and
configuration (allocate ring and configure ring) while TI-SCI Message
Protocol supports only one combined operation (allocate+configure).
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Reviewed-by: Tero Kristo <t-kristo@ti.com>
Tested-by: Keerthy <j-keerthy@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Sysfw provides an option for requesting exclusive access for a
device using the flags MSG_FLAG_DEVICE_EXCLUSIVE. If this flag is
not used, the device is meant to be shared across hosts. Once a device
is requested from a host with this flag set, any request to this
device from a different host will be nacked by sysfw. Current tisci
driver enables this flag for every device requests. But this may not
be true for all the devices. So provide a separate commands in driver
for exclusive and shared device requests.
Reviewed-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Various driver updates for platforms and a couple of the small driver
subsystems we merge through our tree:
- A driver for SCU (system control) on NXP i.MX8QXP
- Qualcomm Always-on Subsystem messaging driver (AOSS QMP)
- Qualcomm PM support for MSM8998
- Support for a newer version of DRAM PHY driver for Broadcom (DPFE)
- Reset controller support for Bitmain BM1880
- TI SCI (System Control Interface) support for CPU control on AM654
processors
- More TI sysc refactoring and rework
-----BEGIN PGP SIGNATURE-----
iQJDBAABCAAtFiEElf+HevZ4QCAJmMQ+jBrnPN6EHHcFAl0yK3YPHG9sb2ZAbGl4
b20ubmV0AAoJEIwa5zzehBx3WdUQAJEFRzY4+8VfsUspKmGwzHsrk7t1038JUEDE
VL3yYlvSGeHg5a58AI5PCR5ZCsyPK7Yw9cAcYexd0frFR7BCwKWrjqem0Lb5ovdK
CYM517DRtYPSBMF08Xw4pbZlT0yg65F1e9cf6BlUpkUZ6lJn4gUy8Y4BE6Aw/zuF
QKtQNs6Q8BUZqS3uoOpJ/PY4JiUmLPQPO4Lry7Lud8Z7qgArCC326paC3wwqjLoC
TpoMqb6izt7Vzo4BtTo5TUCyiEFZDlb/thhDySVlYRE7DQJusHBvRO9qgjI2ahOo
1/935q1fJO7S6+Yvc8DIzrD/DrIUOvOshi31F/J6iWKkQkTUxtQwsVReZKaiOfSD
fYxNVCgTcMS6ailKQSMQ0SYgXDa2gWdV3tS9XU8qML3tnDthi1nDmZks0QAAnFPS
bXRcWGtgqeQJ+QJ7yyKrsD9POeaq3Hc5/f1DN34H//Cyn0ip/fD6fkLCMIfUDwmu
TmO2Mnj6/fG/iBK+ToF+DaJ0/u3RiV2MC2vCE+0m3cVI9jtq9iA1y3UlmoaKUhhC
t9znA+u8/Jc5S2zNQriI2Ja5q8nKfihL7Jf68ENvGzLc7YuAqP6yx1LMg1g6Wshc
nLT+kHOF6DCUC3W7a8VuNyaxCwVtTbNTti+nvQVOmV6eaGiD5vzpXkHBWMbOJ7Lh
YOBwGyb4
=ek+j
-----END PGP SIGNATURE-----
Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
Pull ARM SoC-related driver updates from Olof Johansson:
"Various driver updates for platforms and a couple of the small driver
subsystems we merge through our tree:
- A driver for SCU (system control) on NXP i.MX8QXP
- Qualcomm Always-on Subsystem messaging driver (AOSS QMP)
- Qualcomm PM support for MSM8998
- Support for a newer version of DRAM PHY driver for Broadcom (DPFE)
- Reset controller support for Bitmain BM1880
- TI SCI (System Control Interface) support for CPU control on AM654
processors
- More TI sysc refactoring and rework"
* tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc: (84 commits)
reset: remove redundant null check on pointer dev
soc: rockchip: work around clang warning
dt-bindings: reset: imx7: Fix the spelling of 'indices'
soc: imx: Add i.MX8MN SoC driver support
soc: aspeed: lpc-ctrl: Fix probe error handling
soc: qcom: geni: Add support for ACPI
firmware: ti_sci: Fix gcc unused-but-set-variable warning
firmware: ti_sci: Use the correct style for SPDX License Identifier
soc: imx8: Use existing of_root directly
soc: imx8: Fix potential kernel dump in error path
firmware/psci: psci_checker: Park kthreads before stopping them
memory: move jedec_ddr.h from include/memory to drivers/memory/
memory: move jedec_ddr_data.c from lib/ to drivers/memory/
MAINTAINERS: Remove myself as qcom maintainer
soc: aspeed: lpc-ctrl: make parameter optional
soc: qcom: apr: Don't use reg for domain id
soc: qcom: fix QCOM_AOSS_QMP dependency and build errors
memory: tegra: Fix -Wunused-const-variable
firmware: tegra: Early resume BPMP
soc/tegra: Select pinctrl for Tegra194
...
Texas Instrument's System Control Interface (TI-SCI) Message Protocol
is used in Texas Instrument's System on Chip (SoC) such as those
in K3 family AM654 SoC to communicate between various compute
processors with a central system controller entity.
The system controller provides various services including the control
of other compute processors within the SoC. Extend the TI-SCI protocol
support to add various TI-SCI commands to invoke services associated
with power and reset control, and boot vector management of the
various compute processors from the Linux kernel.
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Tero Kristo <t-kristo@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Configuration of NAVSS resource, like rings, UDMAP channels, flows
and PSI-L thread management need to be done via TISCI.
Add the needed structures and functions for NAVSS resource configuration of
the following:
Rings from Ring Accelerator
PSI-L thread management
UDMAP tchan, rchan and rflow configuration.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Reviewed-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Tero Kristo <t-kristo@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Future SoCs are going to have more than 255 device clocks in certain cases,
and thus the API must be extended to support this. The support is done in
backwards compatible extension, in which the new u32 clock identifier
fields are only used if the existing u8 size clock identifier is set as
255. In all the other cases, the existing u8 clock identifier is used. As
the size of the messages sent / received is not verified for existing
devices / old firmware, increasing the size of the messages from the end
is also fine. Due to this reason, depending on ABI version isn't necessary
either.
Acked-by: Santosh Shilimkar <ssantosh@kernel.org>
Signed-off-by: Tero Kristo <t-kristo@ti.com>
With the system coprocessor managing the range allocation of the
inputs to Interrupt Aggregator, it is difficult to represent
the device IRQs from DT.
The suggestion is to use MSI in such cases where devices wants
to allocate and group interrupts dynamically.
Create a MSI domain bus layer that allocates and frees MSIs for
a device.
APIs that are implemented:
- ti_sci_inta_msi_create_irq_domain() that creates a MSI domain
- ti_sci_inta_msi_domain_alloc_irqs() that creates MSIs for the
specified device and resource.
- ti_sci_inta_msi_domain_free_irqs() frees the irqs attached to the device.
- ti_sci_inta_msi_get_virq() for getting the virq attached to a specific event.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Each resource with in the device can be uniquely identified as defined
by TISCI. Since this is generic across the devices, resource allocation
also can be made generic instead of each client driver handling the
resource. So add helper apis to manage the resource.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Acked-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
TISCI abstracts the handling of IRQ routes where interrupt sources
are not directly connected to host interrupt controller. Add support
for the set of TISCI commands for requesting and releasing IRQs.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Acked-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
TISCI provides support for getting the resources(IRQ, RING etc..)
assigned to a specific device. These resources can be handled by
the client and in turn sends TISCI cmd to configure the resources.
It is very important that client should keep track on usage of these
resources.
Add support for TISCI commands to get resource ranges.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Acked-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
TISCI has been updated to have support for Resource management(like
interrupts etc..). And there can be multiple device instances of a
resource type in a SoC. So every driver corresponding to a resource type
should get a TISCI handle so that it can make TISCI calls. And each
DT node corresponding to a device should exist under its corresponding
bus node as per the SoC architecture.
But existing apis in TISCI library assumes that all TISCI users are
child nodes of TISCI. Which is not true in the above case. So introduce
(devm_)ti_sci_get_by_phandle() apis that can be used by TISCI users
to get TISCI handle using of phandle property.
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Acked-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This branch contains platform-related driver updates for ARM and ARM64.
Highlights:
- ARM SCMI (System Control & Management Interface) driver cleanups
- Hisilicon support for LPC bus w/ ACPI
- Reset driver updates for several platforms: Uniphier,
- Rockchip power domain bindings and hardware descriptions for several SoCs.
- Tegra memory controller reset improvements
-----BEGIN PGP SIGNATURE-----
iQJDBAABCAAtFiEElf+HevZ4QCAJmMQ+jBrnPN6EHHcFAlsfB94PHG9sb2ZAbGl4
b20ubmV0AAoJEIwa5zzehBx3k2IP/i9T71QoanZ3k6o/d+YUqmTuUiA+EJWFANry
8KSjBKmYDON/GLgRCiNZR8P0NZ3d1LgFk5gZDdhMrOtoGtd8k8q0KyqLxjKAWHt6
opSrGucmE1gy9FvJdUkK+y148vM+Ea4SXRVOZxbLV5qm3inPwnopJjgKAfnhIn4X
QmkSca90CyEc3kPdBdfMeAKL+7SRb4mbFHAXXVE7QiWvjrEjUkvtNVTazf5Nroc4
PbI97zSFrmSFO4ZK0jZHCd4R2xhsJwzDQ/UKHC9C9/IdFMLfnJ7dxIf97QYn41Kl
H46FneMZZZ1FibN+Mj5hC/tByE8FrMtWh636z031s6kkamSqLiBAZFlGpHABxQJs
3tN1vBP40R7hzm76yQAC4Uopr5xOtmLr6KBMBBRr+Axf9jHMS4m/WP1chwZFpFjI
Awxc0VCjBUm+haHvK85J4eHrzbWPjG+8aV5Ar5DHVo8et3MzCdX0ycoDeUT787qc
qzEcCjGPbXHBR1aXUX8stRW5x8zoGH/4IUYMo5IGadiFuXSna6ERG9IHq3fAU5Fp
ZzNNKedtodn9NoMr3NJJk1ndyrUr0lpXwlVqFeksRTa+INk2FHKd0cQfxwV33kS9
wHXw+v323uxa3Tz2TXKS7PavY5yr6fZ0dLC2+xEDqHq6bsLxo1DnBEnaola+Jg+u
9hKEuSff
=xs+f
-----END PGP SIGNATURE-----
Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM SoC driver updates from Olof Johansson:
"This contains platform-related driver updates for ARM and ARM64.
Highlights:
- ARM SCMI (System Control & Management Interface) driver cleanups
- Hisilicon support for LPC bus w/ ACPI
- Reset driver updates for several platforms: Uniphier,
- Rockchip power domain bindings and hardware descriptions for
several SoCs.
- Tegra memory controller reset improvements"
* tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (59 commits)
ARM: tegra: fix compile-testing PCI host driver
soc: rockchip: power-domain: add power domain support for px30
dt-bindings: power: add binding for px30 power domains
dt-bindings: power: add PX30 SoCs header for power-domain
soc: rockchip: power-domain: add power domain support for rk3228
dt-bindings: power: add binding for rk3228 power domains
dt-bindings: power: add RK3228 SoCs header for power-domain
soc: rockchip: power-domain: add power domain support for rk3128
dt-bindings: power: add binding for rk3128 power domains
dt-bindings: power: add RK3128 SoCs header for power-domain
soc: rockchip: power-domain: add power domain support for rk3036
dt-bindings: power: add binding for rk3036 power domains
dt-bindings: power: add RK3036 SoCs header for power-domain
dt-bindings: memory: tegra: Remove Tegra114 SATA and AFI reset definitions
memory: tegra: Remove Tegra114 SATA and AFI reset definitions
memory: tegra: Register SMMU after MC driver became ready
soc: mediatek: remove unneeded semicolon
soc: mediatek: add a fixed wait for SRAM stable
soc: mediatek: introduce a CAPS flag for scp_domain_data
soc: mediatek: reuse regmap_read_poll_timeout helpers
...
Switch to SPDX licensing and drop the GPL text which comes redundant.
Acked-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
This patch provide APIs to allow client drivers to support
probe deferral. On K2G SoC, devices can be probed only
after the ti_sci_pm_domains driver is probed and ready.
As drivers may get probed at different order, any driver
that depends on knav dma and qmss drivers, for example
netcp network driver, needs to defer probe until
knav devices are probed and ready to service. To do this,
add an API to query the device ready status from the knav
dma and qmss devices.
Signed-off-by: Murali Karicheri <m-karicheri2@ti.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
A header file cleanup apparently caused a build regression
with one driver using the knav infrastructure:
In file included from drivers/net/ethernet/ti/netcp_core.c:30:0:
include/linux/soc/ti/knav_dma.h:129:30: error: field 'direction' has incomplete type
enum dma_transfer_direction direction;
^~~~~~~~~
drivers/net/ethernet/ti/netcp_core.c: In function 'netcp_txpipe_open':
drivers/net/ethernet/ti/netcp_core.c:1349:21: error: 'DMA_MEM_TO_DEV' undeclared (first use in this function); did you mean 'DMA_MEMORY_MAP'?
config.direction = DMA_MEM_TO_DEV;
^~~~~~~~~~~~~~
DMA_MEMORY_MAP
drivers/net/ethernet/ti/netcp_core.c:1349:21: note: each undeclared identifier is reported only once for each function it appears in
drivers/net/ethernet/ti/netcp_core.c: In function 'netcp_setup_navigator_resources':
drivers/net/ethernet/ti/netcp_core.c:1659:22: error: 'DMA_DEV_TO_MEM' undeclared (first use in this function); did you mean 'DMA_DESC_HOST'?
config.direction = DMA_DEV_TO_MEM;
As the header is no longer included implicitly through netdevice.h,
we should include it in the header that references the enum.
Fixes: 0dd5759dbb ("net: remove dmaengine.h inclusion from netdevice.h")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
Extract the eflag bits from the received desc and pass it down
the rx_hook chain to be available for netcp modules. Also the
psdata and epib data has to be inspected by the netcp modules.
So the desc can be freed only after returning from the rx_hook.
So move knav_pool_desc_put() after the rx_hook processing.
Signed-off-by: Murali Karicheri <m-karicheri2@ti.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since system controller now has control over SoC power management, it
needs to be explicitly requested to reboot the SoC. Add support for
it.
In some systems however, SoC needs to toggle a GPIO or send event to an
external entity (like a PMIC) for a system reboot to take place. To
facilitate that, we allow for a DT property to determine if the reboot
handler will be registered and further, the service is also made
available to other drivers (such as PMIC driver) to sequence the
additional operation and trigger the SoC reboot as the last step.
Tested-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Tero Kristo <t-kristo@ti.com>
Texas Instrument's System Control Interface (TI-SCI) Message Protocol
is used in Texas Instrument's System on Chip (SoC) such as those
in keystone family K2G SoC to communicate between various compute
processors with a central system controller entity.
TI-SCI message protocol provides support for management of various
hardware entities within the SoC. Add support driver to allow
communication with system controller entity within the SoC using the
mailbox client.
In general, we expect to function at a device level of abstraction,
however, for proper operation of hardware blocks, many clocks directly
supplying the hardware block needs to be queried or configured.
Introduce support for the set of SCI message protocol support that
provide us with this capability.
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Tero Kristo <t-kristo@ti.com>
Texas Instrument's System Control Interface (TI-SCI) Message Protocol
is used in Texas Instrument's System on Chip (SoC) such as those
in keystone family K2G SoC to communicate between various compute
processors with a central system controller entity.
TI-SCI message protocol provides support for management of various
hardware entitites within the SoC. Add support driver to allow
communication with system controller entity within the SoC using the
mailbox client.
We introduce the fundamental device management capability support to
the driver protocol as part of this change.
[d-gerlach@ti.com: Contributed device reset handling]
Signed-off-by: Dave Gerlach <d-gerlach@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Tero Kristo <t-kristo@ti.com>
Texas Instrument's System Control Interface (TI-SCI) Message Protocol
is used in Texas Instrument's System on Chip (SoC) such as those
in keystone family K2G SoC to communicate between various compute
processors with a central system controller entity.
TI-SCI message protocol provides support for management of various
hardware entities within the SoC. Add support driver to allow
communication with system controller entity within the SoC using the
mailbox client.
We introduce the basic registration and query capability for the
driver protocol as part of this change. Subsequent patches add in
functionality specific to the TI-SCI features.
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Tero Kristo <t-kristo@ti.com>
Pull more mailbox updates from Jassi Brar:
"Device tree bindings and driver for TI's Message-Manager controller.
Due to some last minute cosmetic changes, the driver was not included
in the first pull request, otherwise the driver has been reviewed
twice"
* 'mailbox-for-next' of git://git.linaro.org/landing-teams/working/fujitsu/integration:
mailbox: Introduce TI message manager driver
Documentation: dt: mailbox: Add TI Message Manager
Support for TI Message Manager Module. This hardware block manages a
bunch of hardware queues meant for communication between processor
entities.
Clients sitting on top of this would manage the required protocol
for communicating with the counterpart entities.
For more details on TI Message Manager hardware block, see documentation
that will is available here: http://www.ti.com/lit/ug/spruhy8/spruhy8.pdf
Chapter 8.1(Message Manager)
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Jassi Brar <jaswinder.singh@linaro.org>
Rename the pad to sw_data as per description of this field in the hardware
spec(refer sprugr9 from www.ti.com). Latest version of the document is
at http://www.ti.com/lit/ug/sprugr9h/sprugr9h.pdf and section 3.1
Host Packet Descriptor describes this field.
Define and use a constant for the size of sw_data field similar to
other fields in the struct for desc and document the sw_data field
in the header. As the sw_data is not touched by hw, it's type can be
changed to u32.
Rename the helpers to match with the updated dma desc field sw_data.
Cc: Wingman Kwok <w-kwok2@ti.com>
Cc: Mugunthan V N <mugunthanvnm@ti.com>
CC: Arnd Bergmann <arnd@arndb.de>
CC: Grygorii Strashko <grygorii.strashko@ti.com>
CC: David Laight <David.Laight@ACULAB.COM>
Signed-off-by: Murali Karicheri <m-karicheri2@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
The netcp driver produces tons of warnings when CONFIG_LPAE is enabled
on ARM:
drivers/net/ethernet/ti/netcp_core.c: In function 'netcp_tx_map_skb':
drivers/net/ethernet/ti/netcp_core.c:1084:13: warning: passing argument 1 of 'set_words' from incompatible pointer type [-Wincompatible-pointer-types]
This is the result of trying to pass a pointer to a dma_addr_t to
a function that expects a u32 pointer to copy that into a DMA descriptor.
Looking at that code in more detail to fix the warnings, I see multiple
related problems:
* The conversion functions are not endian-safe, as the DMA descriptors
are almost certainly fixed-endian, but the CPU is not.
* On 64-bit machines, passing a pointer through a u32 variable is a
bug, accessing an indirect pointer as a u32 pointer even more so.
* The handling of epib and psdata mixes native-endian and device-endian
data.
In this patch, I try to sort out the types for most accesses here,
adding le32_to_cpu/cpu_to_le32 where appropriate, and passing pointers
through two 32-bit words in the descriptor padding, to make it plausible
that the driver does the right thing if compiled for big-endian or
64-bit systems.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fixes below build break by not switching to stubs when the driver is a module:
drivers/soc/ti/knav_dma.c:418:7: error: redefinition of 'knav_dma_open_channel'
void *knav_dma_open_channel(struct device *dev, const char *name,
^
In file included from drivers/soc/ti/knav_dma.c:26:0:
include/linux/soc/ti/knav_dma.h:165:21: note: previous definition of 'knav_dma_open_channel' was here
static inline void *knav_dma_open_channel(struct device *dev, const char *name,
^
Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Olof Johansson <olof@lixom.net>
The Keystone Navigator DMA driver sets up the dma channels and flows for
the QMSS(Queue Manager SubSystem) who triggers the actual data movements
across clients using destination queues. Every client modules like
NETCP(Network Coprocessor), SRIO(Serial Rapid IO) and CRYPTO
Engines has its own instance of packet dma hardware. QMSS has also
an internal packet DMA module which is used as an infrastructure
DMA with zero copy.
Initially this driver was proposed as DMA engine driver but since the
hardware is not typical DMA engine and hence doesn't comply with typical
DMA engine driver needs, that approach was naked. Link to that
discussion -
https://lkml.org/lkml/2014/3/18/340
As aligned, now we pair the Navigator DMA with its companion Navigator
QMSS subsystem driver.
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Kumar Gala <galak@codeaurora.org>
Cc: Olof Johansson <olof@lixom.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sandeep Nair <sandeep_n@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>