- Yosry has also eliminated cgroup's atomic rstat flushing.
- Nhat Pham adds the new cachestat() syscall. It provides userspace
with the ability to query pagecache status - a similar concept to
mincore() but more powerful and with improved usability.
- Mel Gorman provides more optimizations for compaction, reducing the
prevalence of page rescanning.
- Lorenzo Stoakes has done some maintanance work on the get_user_pages()
interface.
- Liam Howlett continues with cleanups and maintenance work to the maple
tree code. Peng Zhang also does some work on maple tree.
- Johannes Weiner has done some cleanup work on the compaction code.
- David Hildenbrand has contributed additional selftests for
get_user_pages().
- Thomas Gleixner has contributed some maintenance and optimization work
for the vmalloc code.
- Baolin Wang has provided some compaction cleanups,
- SeongJae Park continues maintenance work on the DAMON code.
- Huang Ying has done some maintenance on the swap code's usage of
device refcounting.
- Christoph Hellwig has some cleanups for the filemap/directio code.
- Ryan Roberts provides two patch series which yield some
rationalization of the kernel's access to pte entries - use the provided
APIs rather than open-coding accesses.
- Lorenzo Stoakes has some fixes to the interaction between pagecache
and directio access to file mappings.
- John Hubbard has a series of fixes to the MM selftesting code.
- ZhangPeng continues the folio conversion campaign.
- Hugh Dickins has been working on the pagetable handling code, mainly
with a view to reducing the load on the mmap_lock.
- Catalin Marinas has reduced the arm64 kmalloc() minimum alignment from
128 to 8.
- Domenico Cerasuolo has improved the zswap reclaim mechanism by
reorganizing the LRU management.
- Matthew Wilcox provides some fixups to make gfs2 work better with the
buffer_head code.
- Vishal Moola also has done some folio conversion work.
- Matthew Wilcox has removed the remnants of the pagevec code - their
functionality is migrated over to struct folio_batch.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZJejewAKCRDdBJ7gKXxA
joggAPwKMfT9lvDBEUnJagY7dbDPky1cSYZdJKxxM2cApGa42gEA6Cl8HRAWqSOh
J0qXCzqaaN8+BuEyLGDVPaXur9KirwY=
=B7yQ
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-06-24-19-15' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull mm updates from Andrew Morton:
- Yosry Ahmed brought back some cgroup v1 stats in OOM logs
- Yosry has also eliminated cgroup's atomic rstat flushing
- Nhat Pham adds the new cachestat() syscall. It provides userspace
with the ability to query pagecache status - a similar concept to
mincore() but more powerful and with improved usability
- Mel Gorman provides more optimizations for compaction, reducing the
prevalence of page rescanning
- Lorenzo Stoakes has done some maintanance work on the
get_user_pages() interface
- Liam Howlett continues with cleanups and maintenance work to the
maple tree code. Peng Zhang also does some work on maple tree
- Johannes Weiner has done some cleanup work on the compaction code
- David Hildenbrand has contributed additional selftests for
get_user_pages()
- Thomas Gleixner has contributed some maintenance and optimization
work for the vmalloc code
- Baolin Wang has provided some compaction cleanups,
- SeongJae Park continues maintenance work on the DAMON code
- Huang Ying has done some maintenance on the swap code's usage of
device refcounting
- Christoph Hellwig has some cleanups for the filemap/directio code
- Ryan Roberts provides two patch series which yield some
rationalization of the kernel's access to pte entries - use the
provided APIs rather than open-coding accesses
- Lorenzo Stoakes has some fixes to the interaction between pagecache
and directio access to file mappings
- John Hubbard has a series of fixes to the MM selftesting code
- ZhangPeng continues the folio conversion campaign
- Hugh Dickins has been working on the pagetable handling code, mainly
with a view to reducing the load on the mmap_lock
- Catalin Marinas has reduced the arm64 kmalloc() minimum alignment
from 128 to 8
- Domenico Cerasuolo has improved the zswap reclaim mechanism by
reorganizing the LRU management
- Matthew Wilcox provides some fixups to make gfs2 work better with the
buffer_head code
- Vishal Moola also has done some folio conversion work
- Matthew Wilcox has removed the remnants of the pagevec code - their
functionality is migrated over to struct folio_batch
* tag 'mm-stable-2023-06-24-19-15' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (380 commits)
mm/hugetlb: remove hugetlb_set_page_subpool()
mm: nommu: correct the range of mmap_sem_read_lock in task_mem()
hugetlb: revert use of page_cache_next_miss()
Revert "page cache: fix page_cache_next/prev_miss off by one"
mm/vmscan: fix root proactive reclaim unthrottling unbalanced node
mm: memcg: rename and document global_reclaim()
mm: kill [add|del]_page_to_lru_list()
mm: compaction: convert to use a folio in isolate_migratepages_block()
mm: zswap: fix double invalidate with exclusive loads
mm: remove unnecessary pagevec includes
mm: remove references to pagevec
mm: rename invalidate_mapping_pagevec to mapping_try_invalidate
mm: remove struct pagevec
net: convert sunrpc from pagevec to folio_batch
i915: convert i915_gpu_error to use a folio_batch
pagevec: rename fbatch_count()
mm: remove check_move_unevictable_pages()
drm: convert drm_gem_put_pages() to use a folio_batch
i915: convert shmem_sg_free_table() to use a folio_batch
scatterlist: add sg_set_folio()
...
* Whenever cpuset needs to rebuild sched_domain, it walked all tasks looking
for DEADLINE tasks as they need to be accounted on the new domain. Walking
all tasks can be expensive and there may not be any DEADLINE tasks at all.
Task iteration is now omitted if there are no DEADLINE tasks.
* Fixes DEADLINE bandwidth misaccounting after task migration failures.
* When no controller is enabled, -Wstringop-overflow warning is triggered.
The fix patch added an early exit which is too eager and got reverted for
now. Will fix later.
* Everything else are minor cleanups.
-----BEGIN PGP SIGNATURE-----
iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZJoRHw4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGZatAQCKTv8pb5HEgochph4n26laSdVZs6ce3Y+s7V1T
rum+3QD/TyJFmCkZSMscolZGFuafpg41sjPbmc4SexeuAMYCMgY=
=nioD
-----END PGP SIGNATURE-----
Merge tag 'cgroup-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
- Whenever cpuset needs to rebuild sched_domain, it walked all tasks
looking for DEADLINE tasks as they need to be accounted on the new
domain. Walking all tasks can be expensive and there may not be any
DEADLINE tasks at all. Task iteration is now omitted if there are no
DEADLINE tasks
- Fixes DEADLINE bandwidth misaccounting after task migration failures
- When no controller is enabled, -Wstringop-overflow warning is
triggered. The fix patch added an early exit which is too eager and
got reverted for now. Will fix later
- Everything else is minor cleanups
* tag 'cgroup-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
Revert "cgroup: Avoid -Wstringop-overflow warnings"
cgroup/misc: Expose misc.current on cgroup v2 root
cgroup: Avoid -Wstringop-overflow warnings
cgroup: remove obsolete comment on cgroup_on_dfl()
cgroup: remove unused task_cgroup_path()
cgroup/cpuset: remove unneeded header files
cgroup: make cgroup_is_threaded() and cgroup_is_thread_root() static
rdmacg: fix kernel-doc warnings in rdmacg
cgroup: Replace the css_set call with cgroup_get
cgroup: remove unused macro for_each_e_css()
cgroup: Update out-of-date comment in cgroup_migrate()
cgroup: Replace all non-returning strlcpy with strscpy
cgroup/cpuset: remove unneeded header files
cgroup/cpuset: Free DL BW in case can_attach() fails
sched/deadline: Create DL BW alloc, free & check overflow interface
cgroup/cpuset: Iterate only if DEADLINE tasks are present
sched/cpuset: Keep track of SCHED_DEADLINE task in cpusets
sched/cpuset: Bring back cpuset_mutex
cgroup/cpuset: Rename functions dealing with DEADLINE accounting
Patch series "cleanup the filemap / direct I/O interaction", v4.
This series cleans up some of the generic write helper calling conventions
and the page cache writeback / invalidation for direct I/O. This is a
spinoff from the no-bufferhead kernel project, for which we'll want to an
use iomap based buffered write path in the block layer.
This patch (of 12):
The last user of current->backing_dev_info disappeared in commit
b9b1335e64 ("remove bdi_congested() and wb_congested() and related
functions"). Remove the field and all assignments to it.
Link: https://lkml.kernel.org/r/20230601145904.1385409-1-hch@lst.de
Link: https://lkml.kernel.org/r/20230601145904.1385409-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Acked-by: Theodore Ts'o <tytso@mit.edu>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Anna Schumaker <anna@kernel.org>
Cc: Chao Yu <chao@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Xiubo Li <xiubli@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
While modifying wait_task_inactive() for PREEMPT_RT; the build robot
noted that UP got broken. This led to audit and consideration of the
UP implementation of wait_task_inactive().
It looks like the UP implementation is also broken for PREEMPT;
consider task_current_syscall() getting preempted between the two
calls to wait_task_inactive().
Therefore move the wait_task_inactive() implementation out of
CONFIG_SMP and unconditionally use it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230602103731.GA630648%40hirez.programming.kicks-ass.net
cpuset_can_attach() can fail. Postpone DL BW allocation until all tasks
have been checked. DL BW is not allocated per-task but as a sum over
all DL tasks migrating.
If multiple controllers are attached to the cgroup next to the cpuset
controller a non-cpuset can_attach() can fail. In this case free DL BW
in cpuset_cancel_attach().
Finally, update cpuset DL task count (nr_deadline_tasks) only in
cpuset_attach().
Suggested-by: Waiman Long <longman@redhat.com>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
While moving a set of tasks between exclusive cpusets,
cpuset_can_attach() -> task_can_attach() calls dl_cpu_busy(..., p) for
DL BW overflow checking and per-task DL BW allocation on the destination
root_domain for the DL tasks in this set.
This approach has the issue of not freeing already allocated DL BW in
the following error cases:
(1) The set of tasks includes multiple DL tasks and DL BW overflow
checking fails for one of the subsequent DL tasks.
(2) Another controller next to the cpuset controller which is attached
to the same cgroup fails in its can_attach().
To address this problem rework dl_cpu_busy():
(1) Split it into dl_bw_check_overflow() & dl_bw_alloc() and add a
dedicated dl_bw_free().
(2) dl_bw_alloc() & dl_bw_free() take a `u64 dl_bw` parameter instead of
a `struct task_struct *p` used in dl_cpu_busy(). This allows to
allocate DL BW for a set of tasks too rather than only for a single
task.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
- User events are finally ready!
After lots of collaboration between various parties, we finally locked
down on a stable interface for user events that can also work with user
space only tracing. This is implemented by telling the kernel (or user
space library, but that part is user space only and not part of this
patch set), where the variable is that the application uses to know if
something is listening to the trace. There's also an interface to tell
the kernel about these events, which will show up in the
/sys/kernel/tracing/events/user_events/ directory, where it can be
enabled. When it's enabled, the kernel will update the variable, to tell
the application to start writing to the kernel.
See https://lwn.net/Articles/927595/
- Cleaned up the direct trampolines code to simplify arm64 addition of
direct trampolines. Direct trampolines use the ftrace interface but
instead of jumping to the ftrace trampoline, applications (mostly BPF)
can register their own trampoline for performance reasons.
- Some updates to the fprobe infrastructure. fprobes are more efficient than
kprobes, as it does not need to save all the registers that kprobes on
ftrace do. More work needs to be done before the fprobes will be exposed
as dynamic events.
- More updates to references to the obsolete path of
/sys/kernel/debug/tracing for the new /sys/kernel/tracing path.
- Add a seq_buf_do_printk() helper to seq_bufs, to print a large buffer line
by line instead of all at once. There's users in production kernels that
have a large data dump that originally used printk() directly, but the
data dump was larger than what printk() allowed as a single print.
Using seq_buf() to do the printing fixes that.
- Add /sys/kernel/tracing/touched_functions that shows all functions that
was every traced by ftrace or a direct trampoline. This is used for
debugging issues where a traced function could have caused a crash by
a bpf program or live patching.
- Add a "fields" option that is similar to "raw" but outputs the fields of
the events. It's easier to read by humans.
- Some minor fixes and clean ups.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZEr36xQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6quZHAQCzuqnn2S8DsPd3Sy1vKIYaj0uajW5D
Kz1oUJH4F0H7kgEA8XwXkdtfKpOXWc/ZH4LWfL7Orx2wJZJQMV9dVqEPDAE=
=w0Z1
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing updates from Steven Rostedt:
- User events are finally ready!
After lots of collaboration between various parties, we finally
locked down on a stable interface for user events that can also work
with user space only tracing.
This is implemented by telling the kernel (or user space library, but
that part is user space only and not part of this patch set), where
the variable is that the application uses to know if something is
listening to the trace.
There's also an interface to tell the kernel about these events,
which will show up in the /sys/kernel/tracing/events/user_events/
directory, where it can be enabled.
When it's enabled, the kernel will update the variable, to tell the
application to start writing to the kernel.
See https://lwn.net/Articles/927595/
- Cleaned up the direct trampolines code to simplify arm64 addition of
direct trampolines.
Direct trampolines use the ftrace interface but instead of jumping to
the ftrace trampoline, applications (mostly BPF) can register their
own trampoline for performance reasons.
- Some updates to the fprobe infrastructure. fprobes are more efficient
than kprobes, as it does not need to save all the registers that
kprobes on ftrace do. More work needs to be done before the fprobes
will be exposed as dynamic events.
- More updates to references to the obsolete path of
/sys/kernel/debug/tracing for the new /sys/kernel/tracing path.
- Add a seq_buf_do_printk() helper to seq_bufs, to print a large buffer
line by line instead of all at once.
There are users in production kernels that have a large data dump
that originally used printk() directly, but the data dump was larger
than what printk() allowed as a single print.
Using seq_buf() to do the printing fixes that.
- Add /sys/kernel/tracing/touched_functions that shows all functions
that was every traced by ftrace or a direct trampoline. This is used
for debugging issues where a traced function could have caused a
crash by a bpf program or live patching.
- Add a "fields" option that is similar to "raw" but outputs the fields
of the events. It's easier to read by humans.
- Some minor fixes and clean ups.
* tag 'trace-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (41 commits)
ring-buffer: Sync IRQ works before buffer destruction
tracing: Add missing spaces in trace_print_hex_seq()
ring-buffer: Ensure proper resetting of atomic variables in ring_buffer_reset_online_cpus
recordmcount: Fix memory leaks in the uwrite function
tracing/user_events: Limit max fault-in attempts
tracing/user_events: Prevent same address and bit per process
tracing/user_events: Ensure bit is cleared on unregister
tracing/user_events: Ensure write index cannot be negative
seq_buf: Add seq_buf_do_printk() helper
tracing: Fix print_fields() for __dyn_loc/__rel_loc
tracing/user_events: Set event filter_type from type
ring-buffer: Clearly check null ptr returned by rb_set_head_page()
tracing: Unbreak user events
tracing/user_events: Use print_format_fields() for trace output
tracing/user_events: Align structs with tabs for readability
tracing/user_events: Limit global user_event count
tracing/user_events: Charge event allocs to cgroups
tracing/user_events: Update documentation for ABI
tracing/user_events: Use write ABI in example
tracing/user_events: Add ABI self-test
...
- Allow unprivileged PSI poll()ing
- Fix performance regression introduced by mm_cid
- Improve livepatch stalls by adding livepatch task switching to cond_resched(),
this resolves livepatching busy-loop stalls with certain CPU-bound kthreads.
- Improve sched_move_task() performance on autogroup configs.
- On core-scheduling CPUs, avoid selecting throttled tasks to run
- Misc cleanups, fixes and improvements.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmRK39cRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hXPhAAk2WqOV2cW4BjSCHjWWE05IfTb0HMn8si
mFGBAnr1GIkJRvICAusAwDU3FcmP5mWyXA+LK110d3x4fKJP15vCD5ru5lHnBfX7
fSD+Ml8uM4Xlp8iUoQspilbQwmWkQSwhudbDs3Nj7XGUzJCvNgm1sM3xPRDlqSJ5
6zumfVOPTfzSGcZY3a8sMuJnCepZHLRR6NkLzo/DuI1NMy2Jw1dK43dh77AO1mBF
M53PF2IQgm6Wu/67p2k5eDq4c0AKL4PyIb4dRTGOPyljWMf41n28jwMv1tjlvu+Y
uT0JD8MJSrFiylyT41x7Asr7orAGXj3cPhShK5R0vrutx/SbqBiaaE1MO9U3aC3B
7xVXEORHWD6KIDqTvzmWGrMBkIdyWB6CLk6EJKr3MqM9hUtP2ift7bkAgIad9h+4
G9DdVePGoCyh/TQtJ9EPIULAYeu9mmDZe8rTQ8C5MCSg//05/CTMgBbb0NiFWhnd
0JQl1B0nNUA87whVUxK8Hfu4DLh7m9jrzgQr9Ww8/FwQ6tQHBOKWgDdbv45ckkaG
cJIQt/+vLilddazc8u8E+BGaD5w2uIYF0uL7kvG6Q5oARX06AZ5dj1m06vhZe/Ym
laOVZEpJsbQnxviY6jwj1n+CSB9aK7feiQfDePBPbpJGGUHyZoKrnLN6wmW2se+H
VCHtdgsEl5I=
=Hgci
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Allow unprivileged PSI poll()ing
- Fix performance regression introduced by mm_cid
- Improve livepatch stalls by adding livepatch task switching to
cond_resched(). This resolves livepatching busy-loop stalls with
certain CPU-bound kthreads
- Improve sched_move_task() performance on autogroup configs
- On core-scheduling CPUs, avoid selecting throttled tasks to run
- Misc cleanups, fixes and improvements
* tag 'sched-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/clock: Fix local_clock() before sched_clock_init()
sched/rt: Fix bad task migration for rt tasks
sched: Fix performance regression introduced by mm_cid
sched/core: Make sched_dynamic_mutex static
sched/psi: Allow unprivileged polling of N*2s period
sched/psi: Extract update_triggers side effect
sched/psi: Rename existing poll members in preparation
sched/psi: Rearrange polling code in preparation
sched/fair: Fix inaccurate tally of ttwu_move_affine
vhost: Fix livepatch timeouts in vhost_worker()
livepatch,sched: Add livepatch task switching to cond_resched()
livepatch: Skip task_call_func() for current task
livepatch: Convert stack entries array to percpu
sched: Interleave cfs bandwidth timers for improved single thread performance at low utilization
sched/core: Reduce cost of sched_move_task when config autogroup
sched/core: Avoid selecting the task that is throttled to run when core-sched enable
sched/topology: Make sched_energy_mutex,update static
Core
----
- Introduce a config option to tweak MAX_SKB_FRAGS. Increasing the
default value allows for better BIG TCP performances.
- Reduce compound page head access for zero-copy data transfers.
- RPS/RFS improvements, avoiding unneeded NET_RX_SOFTIRQ when possible.
- Threaded NAPI improvements, adding defer skb free support and unneeded
softirq avoidance.
- Address dst_entry reference count scalability issues, via false
sharing avoidance and optimize refcount tracking.
- Add lockless accesses annotation to sk_err[_soft].
- Optimize again the skb struct layout.
- Extends the skb drop reasons to make it usable by multiple
subsystems.
- Better const qualifier awareness for socket casts.
BPF
---
- Add skb and XDP typed dynptrs which allow BPF programs for more
ergonomic and less brittle iteration through data and variable-sized
accesses.
- Add a new BPF netfilter program type and minimal support to hook
BPF programs to netfilter hooks such as prerouting or forward.
- Add more precise memory usage reporting for all BPF map types.
- Adds support for using {FOU,GUE} encap with an ipip device operating
in collect_md mode and add a set of BPF kfuncs for controlling encap
params.
- Allow BPF programs to detect at load time whether a particular kfunc
exists or not, and also add support for this in light skeleton.
- Bigger batch of BPF verifier improvements to prepare for upcoming BPF
open-coded iterators allowing for less restrictive looping capabilities.
- Rework RCU enforcement in the verifier, add kptr_rcu and enforce BPF
programs to NULL-check before passing such pointers into kfunc.
- Add support for kptrs in percpu hashmaps, percpu LRU hashmaps and in
local storage maps.
- Enable RCU semantics for task BPF kptrs and allow referenced kptr
tasks to be stored in BPF maps.
- Add support for refcounted local kptrs to the verifier for allowing
shared ownership, useful for adding a node to both the BPF list and
rbtree.
- Add BPF verifier support for ST instructions in convert_ctx_access()
which will help new -mcpu=v4 clang flag to start emitting them.
- Add ARM32 USDT support to libbpf.
- Improve bpftool's visual program dump which produces the control
flow graph in a DOT format by adding C source inline annotations.
Protocols
---------
- IPv4: Allow adding to IPv4 address a 'protocol' tag. Such value
indicates the provenance of the IP address.
- IPv6: optimize route lookup, dropping unneeded R/W lock acquisition.
- Add the handshake upcall mechanism, allowing the user-space
to implement generic TLS handshake on kernel's behalf.
- Bridge: support per-{Port, VLAN} neighbor suppression, increasing
resilience to nodes failures.
- SCTP: add support for Fair Capacity and Weighted Fair Queueing
schedulers.
- MPTCP: delay first subflow allocation up to its first usage. This
will allow for later better LSM interaction.
- xfrm: Remove inner/outer modes from input/output path. These are
not needed anymore.
- WiFi:
- reduced neighbor report (RNR) handling for AP mode
- HW timestamping support
- support for randomized auth/deauth TA for PASN privacy
- per-link debugfs for multi-link
- TC offload support for mac80211 drivers
- mac80211 mesh fast-xmit and fast-rx support
- enable Wi-Fi 7 (EHT) mesh support
Netfilter
---------
- Add nf_tables 'brouting' support, to force a packet to be routed
instead of being bridged.
- Update bridge netfilter and ovs conntrack helpers to handle
IPv6 Jumbo packets properly, i.e. fetch the packet length
from hop-by-hop extension header. This is needed for BIT TCP
support.
- The iptables 32bit compat interface isn't compiled in by default
anymore.
- Move ip(6)tables builtin icmp matches to the udptcp one.
This has the advantage that icmp/icmpv6 match doesn't load the
iptables/ip6tables modules anymore when iptables-nft is used.
- Extended netlink error report for netdevice in flowtables and
netdev/chains. Allow for incrementally add/delete devices to netdev
basechain. Allow to create netdev chain without device.
Driver API
----------
- Remove redundant Device Control Error Reporting Enable, as PCI core
has already error reporting enabled at enumeration time.
- Move Multicast DB netlink handlers to core, allowing devices other
then bridge to use them.
- Allow the page_pool to directly recycle the pages from safely
localized NAPI.
- Implement lockless TX queue stop/wake combo macros, allowing for
further code de-duplication and sanitization.
- Add YNL support for user headers and struct attrs.
- Add partial YNL specification for devlink.
- Add partial YNL specification for ethtool.
- Add tc-mqprio and tc-taprio support for preemptible traffic classes.
- Add tx push buf len param to ethtool, specifies the maximum number
of bytes of a transmitted packet a driver can push directly to the
underlying device.
- Add basic LED support for switch/phy.
- Add NAPI documentation, stop relaying on external links.
- Convert dsa_master_ioctl() to netdev notifier. This is a preparatory
work to make the hardware timestamping layer selectable by user
space.
- Add transceiver support and improve the error messages for CAN-FD
controllers.
New hardware / drivers
----------------------
- Ethernet:
- AMD/Pensando core device support
- MediaTek MT7981 SoC
- MediaTek MT7988 SoC
- Broadcom BCM53134 embedded switch
- Texas Instruments CPSW9G ethernet switch
- Qualcomm EMAC3 DWMAC ethernet
- StarFive JH7110 SoC
- NXP CBTX ethernet PHY
- WiFi:
- Apple M1 Pro/Max devices
- RealTek rtl8710bu/rtl8188gu
- RealTek rtl8822bs, rtl8822cs and rtl8821cs SDIO chipset
- Bluetooth:
- Realtek RTL8821CS, RTL8851B, RTL8852BS
- Mediatek MT7663, MT7922
- NXP w8997
- Actions Semi ATS2851
- QTI WCN6855
- Marvell 88W8997
- Can:
- STMicroelectronics bxcan stm32f429
Drivers
-------
- Ethernet NICs:
- Intel (1G, icg):
- add tracking and reporting of QBV config errors.
- add support for configuring max SDU for each Tx queue.
- Intel (100G, ice):
- refactor mailbox overflow detection to support Scalable IOV
- GNSS interface optimization
- Intel (i40e):
- support XDP multi-buffer
- nVidia/Mellanox:
- add the support for linux bridge multicast offload
- enable TC offload for egress and engress MACVLAN over bond
- add support for VxLAN GBP encap/decap flows offload
- extend packet offload to fully support libreswan
- support tunnel mode in mlx5 IPsec packet offload
- extend XDP multi-buffer support
- support MACsec VLAN offload
- add support for dynamic msix vectors allocation
- drop RX page_cache and fully use page_pool
- implement thermal zone to report NIC temperature
- Netronome/Corigine:
- add support for multi-zone conntrack offload
- Solarflare/Xilinx:
- support offloading TC VLAN push/pop actions to the MAE
- support TC decap rules
- support unicast PTP
- Other NICs:
- Broadcom (bnxt): enforce software based freq adjustments only
on shared PHC NIC
- RealTek (r8169): refactor to addess ASPM issues during NAPI poll.
- Micrel (lan8841): add support for PTP_PF_PEROUT
- Cadence (macb): enable PTP unicast
- Engleder (tsnep): add XDP socket zero-copy support
- virtio-net: implement exact header length guest feature
- veth: add page_pool support for page recycling
- vxlan: add MDB data path support
- gve: add XDP support for GQI-QPL format
- geneve: accept every ethertype
- macvlan: allow some packets to bypass broadcast queue
- mana: add support for jumbo frame
- Ethernet high-speed switches:
- Microchip (sparx5): Add support for TC flower templates.
- Ethernet embedded switches:
- Broadcom (b54):
- configure 6318 and 63268 RGMII ports
- Marvell (mv88e6xxx):
- faster C45 bus scan
- Microchip:
- lan966x:
- add support for IS1 VCAP
- better TX/RX from/to CPU performances
- ksz9477: add ETS Qdisc support
- ksz8: enhance static MAC table operations and error handling
- sama7g5: add PTP capability
- NXP (ocelot):
- add support for external ports
- add support for preemptible traffic classes
- Texas Instruments:
- add CPSWxG SGMII support for J7200 and J721E
- Intel WiFi (iwlwifi):
- preparation for Wi-Fi 7 EHT and multi-link support
- EHT (Wi-Fi 7) sniffer support
- hardware timestamping support for some devices/firwmares
- TX beacon protection on newer hardware
- Qualcomm 802.11ax WiFi (ath11k):
- MU-MIMO parameters support
- ack signal support for management packets
- RealTek WiFi (rtw88):
- SDIO bus support
- better support for some SDIO devices
(e.g. MAC address from efuse)
- RealTek WiFi (rtw89):
- HW scan support for 8852b
- better support for 6 GHz scanning
- support for various newer firmware APIs
- framework firmware backwards compatibility
- MediaTek WiFi (mt76):
- P2P support
- mesh A-MSDU support
- EHT (Wi-Fi 7) support
- coredump support
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEEg1AjqC77wbdLX2LbKSR5jcyPE6QFAmRI/mUSHHBhYmVuaUBy
ZWRoYXQuY29tAAoJECkkeY3MjxOkgO0QAJGxpuN67YgYV0BIM+/atWKEEexJYG7B
9MMpU4jMO3EW/pUS5t7VRsBLUybLYVPmqCZoHodObDfnu59jiPOegb6SikJv/ZwJ
Zw62PVk5MvDnQjlu4e6kDcGwkplteN08TlgI+a49BUTedpdFitrxHAYGW8f2fRO6
cK2XSld+ZucMoym5vRwf8yWS1BwdxnslPMxDJ+/8ZbWBZv44qAnG2vMB/kIx7ObC
Vel/4m6MzTwVsLYBsRvcwMVbNNlZ9GuhztlTzEbfGA4ZhTadIAMgb5VTWXB84Ws7
Aic5wTdli+q+x6/2cxhbyeoVuB9HHObYmLBAciGg4GNljP5rnQBY3X3+KVZ/x9TI
HQB7CmhxmAZVrO9pLARFV+ECrMTH2/dy3NyrZ7uYQ3WPOXJi8hJZjOTO/eeEGL7C
eTjdz0dZBWIBK2gON/6s4nExXVQUTEF2ZsPi52jTTClKjfe5pz/ddeFQIWaY1DTm
pInEiWPAvd28JyiFmhFNHsuIBCjX/Zqe2JuMfMBeBibDAC09o/OGdKJYUI15AiRf
F46Pdb7use/puqfrYW44kSAfaPYoBiE+hj1RdeQfen35xD9HVE4vdnLNeuhRlFF9
aQfyIRHYQofkumRDr5f8JEY66cl9NiKQ4IVW1xxQfYDNdC6wQqREPG1md7rJVMrJ
vP7ugFnttneg
=ITVa
-----END PGP SIGNATURE-----
Merge tag 'net-next-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Paolo Abeni:
"Core:
- Introduce a config option to tweak MAX_SKB_FRAGS. Increasing the
default value allows for better BIG TCP performances
- Reduce compound page head access for zero-copy data transfers
- RPS/RFS improvements, avoiding unneeded NET_RX_SOFTIRQ when
possible
- Threaded NAPI improvements, adding defer skb free support and
unneeded softirq avoidance
- Address dst_entry reference count scalability issues, via false
sharing avoidance and optimize refcount tracking
- Add lockless accesses annotation to sk_err[_soft]
- Optimize again the skb struct layout
- Extends the skb drop reasons to make it usable by multiple
subsystems
- Better const qualifier awareness for socket casts
BPF:
- Add skb and XDP typed dynptrs which allow BPF programs for more
ergonomic and less brittle iteration through data and
variable-sized accesses
- Add a new BPF netfilter program type and minimal support to hook
BPF programs to netfilter hooks such as prerouting or forward
- Add more precise memory usage reporting for all BPF map types
- Adds support for using {FOU,GUE} encap with an ipip device
operating in collect_md mode and add a set of BPF kfuncs for
controlling encap params
- Allow BPF programs to detect at load time whether a particular
kfunc exists or not, and also add support for this in light
skeleton
- Bigger batch of BPF verifier improvements to prepare for upcoming
BPF open-coded iterators allowing for less restrictive looping
capabilities
- Rework RCU enforcement in the verifier, add kptr_rcu and enforce
BPF programs to NULL-check before passing such pointers into kfunc
- Add support for kptrs in percpu hashmaps, percpu LRU hashmaps and
in local storage maps
- Enable RCU semantics for task BPF kptrs and allow referenced kptr
tasks to be stored in BPF maps
- Add support for refcounted local kptrs to the verifier for allowing
shared ownership, useful for adding a node to both the BPF list and
rbtree
- Add BPF verifier support for ST instructions in
convert_ctx_access() which will help new -mcpu=v4 clang flag to
start emitting them
- Add ARM32 USDT support to libbpf
- Improve bpftool's visual program dump which produces the control
flow graph in a DOT format by adding C source inline annotations
Protocols:
- IPv4: Allow adding to IPv4 address a 'protocol' tag. Such value
indicates the provenance of the IP address
- IPv6: optimize route lookup, dropping unneeded R/W lock acquisition
- Add the handshake upcall mechanism, allowing the user-space to
implement generic TLS handshake on kernel's behalf
- Bridge: support per-{Port, VLAN} neighbor suppression, increasing
resilience to nodes failures
- SCTP: add support for Fair Capacity and Weighted Fair Queueing
schedulers
- MPTCP: delay first subflow allocation up to its first usage. This
will allow for later better LSM interaction
- xfrm: Remove inner/outer modes from input/output path. These are
not needed anymore
- WiFi:
- reduced neighbor report (RNR) handling for AP mode
- HW timestamping support
- support for randomized auth/deauth TA for PASN privacy
- per-link debugfs for multi-link
- TC offload support for mac80211 drivers
- mac80211 mesh fast-xmit and fast-rx support
- enable Wi-Fi 7 (EHT) mesh support
Netfilter:
- Add nf_tables 'brouting' support, to force a packet to be routed
instead of being bridged
- Update bridge netfilter and ovs conntrack helpers to handle IPv6
Jumbo packets properly, i.e. fetch the packet length from
hop-by-hop extension header. This is needed for BIT TCP support
- The iptables 32bit compat interface isn't compiled in by default
anymore
- Move ip(6)tables builtin icmp matches to the udptcp one. This has
the advantage that icmp/icmpv6 match doesn't load the
iptables/ip6tables modules anymore when iptables-nft is used
- Extended netlink error report for netdevice in flowtables and
netdev/chains. Allow for incrementally add/delete devices to netdev
basechain. Allow to create netdev chain without device
Driver API:
- Remove redundant Device Control Error Reporting Enable, as PCI core
has already error reporting enabled at enumeration time
- Move Multicast DB netlink handlers to core, allowing devices other
then bridge to use them
- Allow the page_pool to directly recycle the pages from safely
localized NAPI
- Implement lockless TX queue stop/wake combo macros, allowing for
further code de-duplication and sanitization
- Add YNL support for user headers and struct attrs
- Add partial YNL specification for devlink
- Add partial YNL specification for ethtool
- Add tc-mqprio and tc-taprio support for preemptible traffic classes
- Add tx push buf len param to ethtool, specifies the maximum number
of bytes of a transmitted packet a driver can push directly to the
underlying device
- Add basic LED support for switch/phy
- Add NAPI documentation, stop relaying on external links
- Convert dsa_master_ioctl() to netdev notifier. This is a
preparatory work to make the hardware timestamping layer selectable
by user space
- Add transceiver support and improve the error messages for CAN-FD
controllers
New hardware / drivers:
- Ethernet:
- AMD/Pensando core device support
- MediaTek MT7981 SoC
- MediaTek MT7988 SoC
- Broadcom BCM53134 embedded switch
- Texas Instruments CPSW9G ethernet switch
- Qualcomm EMAC3 DWMAC ethernet
- StarFive JH7110 SoC
- NXP CBTX ethernet PHY
- WiFi:
- Apple M1 Pro/Max devices
- RealTek rtl8710bu/rtl8188gu
- RealTek rtl8822bs, rtl8822cs and rtl8821cs SDIO chipset
- Bluetooth:
- Realtek RTL8821CS, RTL8851B, RTL8852BS
- Mediatek MT7663, MT7922
- NXP w8997
- Actions Semi ATS2851
- QTI WCN6855
- Marvell 88W8997
- Can:
- STMicroelectronics bxcan stm32f429
Drivers:
- Ethernet NICs:
- Intel (1G, icg):
- add tracking and reporting of QBV config errors
- add support for configuring max SDU for each Tx queue
- Intel (100G, ice):
- refactor mailbox overflow detection to support Scalable IOV
- GNSS interface optimization
- Intel (i40e):
- support XDP multi-buffer
- nVidia/Mellanox:
- add the support for linux bridge multicast offload
- enable TC offload for egress and engress MACVLAN over bond
- add support for VxLAN GBP encap/decap flows offload
- extend packet offload to fully support libreswan
- support tunnel mode in mlx5 IPsec packet offload
- extend XDP multi-buffer support
- support MACsec VLAN offload
- add support for dynamic msix vectors allocation
- drop RX page_cache and fully use page_pool
- implement thermal zone to report NIC temperature
- Netronome/Corigine:
- add support for multi-zone conntrack offload
- Solarflare/Xilinx:
- support offloading TC VLAN push/pop actions to the MAE
- support TC decap rules
- support unicast PTP
- Other NICs:
- Broadcom (bnxt): enforce software based freq adjustments only on
shared PHC NIC
- RealTek (r8169): refactor to addess ASPM issues during NAPI poll
- Micrel (lan8841): add support for PTP_PF_PEROUT
- Cadence (macb): enable PTP unicast
- Engleder (tsnep): add XDP socket zero-copy support
- virtio-net: implement exact header length guest feature
- veth: add page_pool support for page recycling
- vxlan: add MDB data path support
- gve: add XDP support for GQI-QPL format
- geneve: accept every ethertype
- macvlan: allow some packets to bypass broadcast queue
- mana: add support for jumbo frame
- Ethernet high-speed switches:
- Microchip (sparx5): Add support for TC flower templates
- Ethernet embedded switches:
- Broadcom (b54):
- configure 6318 and 63268 RGMII ports
- Marvell (mv88e6xxx):
- faster C45 bus scan
- Microchip:
- lan966x:
- add support for IS1 VCAP
- better TX/RX from/to CPU performances
- ksz9477: add ETS Qdisc support
- ksz8: enhance static MAC table operations and error handling
- sama7g5: add PTP capability
- NXP (ocelot):
- add support for external ports
- add support for preemptible traffic classes
- Texas Instruments:
- add CPSWxG SGMII support for J7200 and J721E
- Intel WiFi (iwlwifi):
- preparation for Wi-Fi 7 EHT and multi-link support
- EHT (Wi-Fi 7) sniffer support
- hardware timestamping support for some devices/firwmares
- TX beacon protection on newer hardware
- Qualcomm 802.11ax WiFi (ath11k):
- MU-MIMO parameters support
- ack signal support for management packets
- RealTek WiFi (rtw88):
- SDIO bus support
- better support for some SDIO devices (e.g. MAC address from
efuse)
- RealTek WiFi (rtw89):
- HW scan support for 8852b
- better support for 6 GHz scanning
- support for various newer firmware APIs
- framework firmware backwards compatibility
- MediaTek WiFi (mt76):
- P2P support
- mesh A-MSDU support
- EHT (Wi-Fi 7) support
- coredump support"
* tag 'net-next-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2078 commits)
net: phy: hide the PHYLIB_LEDS knob
net: phy: marvell-88x2222: remove unnecessary (void*) conversions
tcp/udp: Fix memleaks of sk and zerocopy skbs with TX timestamp.
net: amd: Fix link leak when verifying config failed
net: phy: marvell: Fix inconsistent indenting in led_blink_set
lan966x: Don't use xdp_frame when action is XDP_TX
tsnep: Add XDP socket zero-copy TX support
tsnep: Add XDP socket zero-copy RX support
tsnep: Move skb receive action to separate function
tsnep: Add functions for queue enable/disable
tsnep: Rework TX/RX queue initialization
tsnep: Replace modulo operation with mask
net: phy: dp83867: Add led_brightness_set support
net: phy: Fix reading LED reg property
drivers: nfc: nfcsim: remove return value check of `dev_dir`
net: phy: dp83867: Remove unnecessary (void*) conversions
net: ethtool: coalesce: try to make user settings stick twice
net: mana: Check if netdev/napi_alloc_frag returns single page
net: mana: Rename mana_refill_rxoob and remove some empty lines
net: veth: add page_pool stats
...
Introduce per-mm/cpu current concurrency id (mm_cid) to fix a PostgreSQL
sysbench regression reported by Aaron Lu.
Keep track of the currently allocated mm_cid for each mm/cpu rather than
freeing them immediately on context switch. This eliminates most atomic
operations when context switching back and forth between threads
belonging to different memory spaces in multi-threaded scenarios (many
processes, each with many threads). The per-mm/per-cpu mm_cid values are
serialized by their respective runqueue locks.
Thread migration is handled by introducing invocation to
sched_mm_cid_migrate_to() (with destination runqueue lock held) in
activate_task() for migrating tasks. If the destination cpu's mm_cid is
unset, and if the source runqueue is not actively using its mm_cid, then
the source cpu's mm_cid is moved to the destination cpu on migration.
Introduce a task-work executed periodically, similarly to NUMA work,
which delays reclaim of cid values when they are unused for a period of
time.
Keep track of the allocation time for each per-cpu cid, and let the task
work clear them when they are observed to be older than
SCHED_MM_CID_PERIOD_NS and unused. This task work also clears all
mm_cids which are greater or equal to the Hamming weight of the mm
cidmask to keep concurrency ids compact.
Because we want to ensure the mm_cid converges towards the smaller
values as migrations happen, the prior optimization that was done when
context switching between threads belonging to the same mm is removed,
because it could delay the lazy release of the destination runqueue
mm_cid after it has been replaced by a migration. Removing this prior
optimization is not an issue performance-wise because the introduced
per-mm/per-cpu mm_cid tracking also covers this more specific case.
Fixes: af7f588d8f ("sched: Introduce per-memory-map concurrency ID")
Reported-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Link: https://lore.kernel.org/lkml/20230327080502.GA570847@ziqianlu-desk2/
During tracefs discussions it was decided instead of requiring a mapping
within a user-process to track the lifetime of memory descriptors we
should hook the appropriate calls. Do this by adding the minimal stubs
required for task fork, exec, and exit. Currently this is just a NOP.
Future patches will implement these calls fully.
Link: https://lkml.kernel.org/r/20230328235219.203-3-beaub@linux.microsoft.com
Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
In commit 3fbd7ee285 ("tasks: Add a count of task RCU users"), a
count on the number of RCU users was added to struct task_struct. This
was done so as to enable the removal of task_rcu_dereference(), and
allow tasks to be protected by RCU even after exiting and being removed
from the runqueue. In this commit, the 'refcount_t rcu_users' field that
keeps track of this refcount was put into a union co-located with
'struct rcu_head rcu', so as to avoid taking up any extra space in
task_struct. This was possible to do safely, because the field was only
ever decremented by a static set of specific callers, and then never
incremented again.
While this restriction of there only being a small, static set of users
of this field has worked fine, it prevents us from leveraging the field
to use RCU to protect tasks in other contexts.
During tracing, for example, it would be useful to be able to collect
some tasks that performed a certain operation, put them in a map, and
then periodically summarize who they are, which cgroup they're in, how
much CPU time they've utilized, etc. While this can currently be done
with 'usage', it becomes tricky when a task is already in a map, or if a
reference should only be taken if a task is valid and will not soon be
reaped. Ideally, we could do something like pass a reference to a map
value, and then try to acquire a reference to the task in an RCU read
region by using refcount_inc_not_zero().
Similarly, in sched_ext, schedulers are using integer pids to remember
tasks, and then looking them up with find_task_by_pid_ns(). This is
slow, error prone, and adds complexity. It would be more convenient and
performant if BPF schedulers could instead store tasks directly in maps,
and then leverage RCU to ensure they can be safely accessed with low
overhead.
Finally, overloading fields like this is error prone. Someone that wants
to use 'rcu_users' could easily overlook the fact that once the rcu
callback is scheduled, the refcount will go back to being nonzero, thus
precluding the use of refcount_inc_not_zero(). Furthermore, as described
below, it's possible to extract the fields of the union without changing
the size of task_struct.
There are several possible ways to enable this:
1. The lightest touch approach is likely the one proposed in this patch,
which is to simply extract 'rcu_users' and 'rcu' from the union, so
that scheduling the 'rcu' callback doesn't overwrite the 'rcu_users'
refcount. If we have a trusted task pointer, this would allow us to
use refcnt_inc_not_zero() inside of an RCU region to determine if we
can safely acquire a reference to the task and store it in a map. As
mentioned below, this can be done without changing the size of
task_struct, by moving the location of the union to another location
that has padding gaps we can fill in.
2. Removing 'refcount_t rcu_users', and instead having the entire task
be freed in an rcu callback. This is likely the most sound overall
design, though it changes the behavioral semantics exposed to
callers, who currently expect that a task that's successfully looked
up in e.g. the pid_list with find_task_by_pid_ns(), can always have a
'usage' reference acquired on them, as it's guaranteed to be >
0 until after the next gp. In order for this approach to work, we'd
have to audit all callers. This approach also slightly changes
behavior observed by user space by not invoking
trace_sched_process_free() until the whole task_struct is actually being
freed, rather than just after it's exited. It also may change
timings, as memory will be freed in an RCU callback rather than
immediately when the final 'usage' refcount drops to 0. This also is
arguably a benefit, as it provides more predictable performance to
callers who are refcounting tasks.
3. There may be other solutions as well that don't require changing the
layout of task_struct. For example, we could possibly do something
complex from the BPF side, such as listen for task exit and remove a
task from a map when the task is exiting. This would likely require
significant custom handling for task_struct in the verifier, so a
more generalizable solution is likely warranted.
As mentioned above, this patch proposes the lightest-touch approach
which allows callers elsewhere in the kernel to use 'rcu_users' to
ensure the lifetime of a task, by extracting 'rcu_users' and 'rcu' from
the union. There is no size change in task_struct with this patch.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: David Vernet <void@manifault.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lore.kernel.org/r/20230215233033.889644-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This adds a new flag, PF_USER_WORKER, that's used for behavior common to
to both PF_IO_WORKER and users like vhost which will use a new helper
instead of create_io_thread because they require different behavior for
operations like signal handling.
The common behavior PF_USER_WORKER covers is the vm reclaim handling.
Signed-off-by: Mike Christie <michael.christie@oracle.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
- Improve the scalability of the CFS bandwidth unthrottling logic
with large number of CPUs.
- Fix & rework various cpuidle routines, simplify interaction with
the generic scheduler code. Add __cpuidle methods as noinstr to
objtool's noinstr detection and fix boatloads of cpuidle bugs & quirks.
- Add new ABI: introduce MEMBARRIER_CMD_GET_REGISTRATIONS,
to query previously issued registrations.
- Limit scheduler slice duration to the sysctl_sched_latency period,
to improve scheduling granularity with a large number of SCHED_IDLE
tasks.
- Debuggability enhancement on sys_exit(): warn about disabled IRQs,
but also enable them to prevent a cascade of followup problems and
repeat warnings.
- Fix the rescheduling logic in prio_changed_dl().
- Micro-optimize cpufreq and sched-util methods.
- Micro-optimize ttwu_runnable()
- Micro-optimize the idle-scanning in update_numa_stats(),
select_idle_capacity() and steal_cookie_task().
- Update the RSEQ code & self-tests
- Constify various scheduler methods
- Remove unused methods
- Refine __init tags
- Documentation updates
- ... Misc other cleanups, fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmPzbJwRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iIvA//ZcEaB8Z6ChLRQjM+bsaudKJu3pdLQbPK
iYbP8Da+LsAfxbEfYuGV3m+jIp0LlBOtsI/EezxQrXV+V7FvNyAX9Y00eEu/zlj8
7Jn3LMy/DBYTwH7LwVdcU0MyIVI8ZPc6WNnkx0LOtGZn8n+qfHPSDzcP3CW+a5AV
UvllPYpYyEmsX0Eby7CF4Ue8mSmbViw/xR3rNr8ZSve0c25XzKabw8O9kE3jiHxP
d/zERJoAYeDyYUEuZqhfn5dTlB4an4IjNEkAfRE5SQ09RA8Gkxsa5Ar8gob9e9M1
eQsdd4/bdhnrkM8L5qDZczqmgCTZ2bukQrxkBXhRDhLgoFxwAn77b+2ZjmIW3Lae
AyGqRcDSg1q2oxaYm5ZiuO/t26aDOZu9vPHyHRDGt95EGbZlrp+GgeePyfCigJYz
UmPdZAAcHdSymnnnlcvdG37WVvaVkpgWZzd8LbtBi23QR+Zc4WQ2IlgnUS5WKNNf
VOBcAcP6E1IslDotZDQCc2dPFFQoQQEssVooyUc5oMytm7BsvxXLOeHG+Ncu/8uc
H+U8Qn8jnqTxJbC5hkWQIJlhVKCq2FJrHxxySYTKROfUNcDgCmxboFeAcXTCIU1K
T0S+sdoTS/CvtLklRkG0j6B8N4N98mOd9cFwUV3tX+/gMLMep3hCQs5L76JagvC5
skkQXoONNaM=
=l1nN
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Improve the scalability of the CFS bandwidth unthrottling logic with
large number of CPUs.
- Fix & rework various cpuidle routines, simplify interaction with the
generic scheduler code. Add __cpuidle methods as noinstr to objtool's
noinstr detection and fix boatloads of cpuidle bugs & quirks.
- Add new ABI: introduce MEMBARRIER_CMD_GET_REGISTRATIONS, to query
previously issued registrations.
- Limit scheduler slice duration to the sysctl_sched_latency period, to
improve scheduling granularity with a large number of SCHED_IDLE
tasks.
- Debuggability enhancement on sys_exit(): warn about disabled IRQs,
but also enable them to prevent a cascade of followup problems and
repeat warnings.
- Fix the rescheduling logic in prio_changed_dl().
- Micro-optimize cpufreq and sched-util methods.
- Micro-optimize ttwu_runnable()
- Micro-optimize the idle-scanning in update_numa_stats(),
select_idle_capacity() and steal_cookie_task().
- Update the RSEQ code & self-tests
- Constify various scheduler methods
- Remove unused methods
- Refine __init tags
- Documentation updates
- Misc other cleanups, fixes
* tag 'sched-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits)
sched/rt: pick_next_rt_entity(): check list_entry
sched/deadline: Add more reschedule cases to prio_changed_dl()
sched/fair: sanitize vruntime of entity being placed
sched/fair: Remove capacity inversion detection
sched/fair: unlink misfit task from cpu overutilized
objtool: mem*() are not uaccess safe
cpuidle: Fix poll_idle() noinstr annotation
sched/clock: Make local_clock() noinstr
sched/clock/x86: Mark sched_clock() noinstr
x86/pvclock: Improve atomic update of last_value in pvclock_clocksource_read()
x86/atomics: Always inline arch_atomic64*()
cpuidle: tracing, preempt: Squash _rcuidle tracing
cpuidle: tracing: Warn about !rcu_is_watching()
cpuidle: lib/bug: Disable rcu_is_watching() during WARN/BUG
cpuidle: drivers: firmware: psci: Dont instrument suspend code
KVM: selftests: Fix build of rseq test
exit: Detect and fix irq disabled state in oops
cpuidle, arm64: Fix the ARM64 cpuidle logic
cpuidle: mvebu: Fix duplicate flags assignment
sched/fair: Limit sched slice duration
...
Switch from a request_queue pointer and reference to a gendisk once
for the throttle information in struct task_struct.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Andreas Herrmann <aherrmann@suse.de>
Link: https://lore.kernel.org/r/20230203150400.3199230-8-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This feature allows the scheduler to expose a per-memory map concurrency
ID to user-space. This concurrency ID is within the possible cpus range,
and is temporarily (and uniquely) assigned while threads are actively
running within a memory map. If a memory map has fewer threads than
cores, or is limited to run on few cores concurrently through sched
affinity or cgroup cpusets, the concurrency IDs will be values close
to 0, thus allowing efficient use of user-space memory for per-cpu
data structures.
This feature is meant to be exposed by a new rseq thread area field.
The primary purpose of this feature is to do the heavy-lifting needed
by memory allocators to allow them to use per-cpu data structures
efficiently in the following situations:
- Single-threaded applications,
- Multi-threaded applications on large systems (many cores) with limited
cpu affinity mask,
- Multi-threaded applications on large systems (many cores) with
restricted cgroup cpuset per container.
One of the key concern from scheduler maintainers is the overhead
associated with additional spin locks or atomic operations in the
scheduler fast-path. This is why the following optimization is
implemented.
On context switch between threads belonging to the same memory map,
transfer the mm_cid from prev to next without any atomic ops. This
takes care of use-cases involving frequent context switch between
threads belonging to the same memory map.
Additional optimizations can be done if the spin locks added when
context switching between threads belonging to different memory maps end
up being a performance bottleneck. Those are left out of this patch
though. A performance impact would have to be clearly demonstrated to
justify the added complexity.
The credit goes to Paul Turner (Google) for the original virtual cpu id
idea. This feature is implemented based on the discussions with Paul
Turner and Peter Oskolkov (Google), but I took the liberty to implement
scheduler fast-path optimizations and my own NUMA-awareness scheme. The
rumor has it that Google have been running a rseq vcpu_id extension
internally in production for a year. The tcmalloc source code indeed has
comments hinting at a vcpu_id prototype extension to the rseq system
call [1].
The following benchmarks do not show any significant overhead added to
the scheduler context switch by this feature:
* perf bench sched messaging (process)
Baseline: 86.5±0.3 ms
With mm_cid: 86.7±2.6 ms
* perf bench sched messaging (threaded)
Baseline: 84.3±3.0 ms
With mm_cid: 84.7±2.6 ms
* hackbench (process)
Baseline: 82.9±2.7 ms
With mm_cid: 82.9±2.9 ms
* hackbench (threaded)
Baseline: 85.2±2.6 ms
With mm_cid: 84.4±2.9 ms
[1] https://github.com/google/tcmalloc/blob/master/tcmalloc/internal/linux_syscall_support.h#L26
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221122203932.231377-8-mathieu.desnoyers@efficios.com
Introduce the extensible rseq ABI, where the feature size supported by
the kernel and the required alignment are communicated to user-space
through ELF auxiliary vectors.
This allows user-space to call rseq registration with a rseq_len of
either 32 bytes for the original struct rseq size (which includes
padding), or larger.
If rseq_len is larger than 32 bytes, then it must be large enough to
contain the feature size communicated to user-space through ELF
auxiliary vectors.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221122203932.231377-4-mathieu.desnoyers@efficios.com
- More userfaultfs work from Peter Xu.
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying.
- Some filemap cleanups from Vishal Moola.
- David Hildenbrand added the ability to selftest anon memory COW handling.
- Some cpuset simplifications from Liu Shixin.
- Addition of vmalloc tracing support by Uladzislau Rezki.
- Some pagecache folioifications and simplifications from Matthew Wilcox.
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use it.
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword. This series shold have been in the
non-MM tree, my bad.
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages.
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages.
- Peter Xu utilized the PTE marker code for handling swapin errors.
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient.
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand.
- zram support for multiple compression streams from Sergey Senozhatsky.
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway.
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations.
- Vishal Moola removed the try_to_release_page() wrapper.
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache.
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking.
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend.
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range().
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen.
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect.
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages().
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting.
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines.
- Many singleton patches, as usual.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY5j6ZwAKCRDdBJ7gKXxA
jkDYAP9qNeVqp9iuHjZNTqzMXkfmJPsw2kmy2P+VdzYVuQRcJgEAgoV9d7oMq4ml
CodAgiA51qwzId3GRytIo/tfWZSezgA=
=d19R
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- More userfaultfs work from Peter Xu
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying
- Some filemap cleanups from Vishal Moola
- David Hildenbrand added the ability to selftest anon memory COW
handling
- Some cpuset simplifications from Liu Shixin
- Addition of vmalloc tracing support by Uladzislau Rezki
- Some pagecache folioifications and simplifications from Matthew
Wilcox
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use
it
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword.
This series should have been in the non-MM tree, my bad
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages
- Peter Xu utilized the PTE marker code for handling swapin errors
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand
- zram support for multiple compression streams from Sergey Senozhatsky
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations
- Vishal Moola removed the try_to_release_page() wrapper
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range()
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages()
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines
- Many singleton patches, as usual
* tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits)
mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio
mm: mmu_gather: allow more than one batch of delayed rmaps
mm: fix typo in struct pglist_data code comment
kmsan: fix memcpy tests
mm: add cond_resched() in swapin_walk_pmd_entry()
mm: do not show fs mm pc for VM_LOCKONFAULT pages
selftests/vm: ksm_functional_tests: fixes for 32bit
selftests/vm: cow: fix compile warning on 32bit
selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions
mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem
mm,thp,rmap: fix races between updates of subpages_mapcount
mm: memcg: fix swapcached stat accounting
mm: add nodes= arg to memory.reclaim
mm: disable top-tier fallback to reclaim on proactive reclaim
selftests: cgroup: make sure reclaim target memcg is unprotected
selftests: cgroup: refactor proactive reclaim code to reclaim_until()
mm: memcg: fix stale protection of reclaim target memcg
mm/mmap: properly unaccount memory on mas_preallocate() failure
omfs: remove ->writepage
jfs: remove ->writepage
...
- Implement persistent user-requested affinity: introduce affinity_context::user_mask
and unconditionally preserve the user-requested CPU affinity masks, for long-lived
tasks to better interact with cpusets & CPU hotplug events over longer timespans,
without destroying the original affinity intent if the underlying topology changes.
- Uclamp updates: fix relationship between uclamp and fits_capacity()
- PSI fixes
- Misc fixes & updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmOXkmgRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1j/dQ//WYW/JaBpydqnVxDu6C21z0w3+fHDdlsN
nQ6jyLPlouFjI2Ink1E7i7Iq8C73sdewCgD7Jq3xGa1GhsPEJIrPAaBgacxYjOqc
x9HHZoygSkAihTfrVvzq37YttD2t/gQQxc81tBziMBVP2A+gb9z44u+ezMlxjiGz
irgE07qNfiLyTeD/dJhEU2EOsPJm/gestW3+Cd8uwYAe6pj0X4FE3n8ipmr0BzNZ
6nxFJaSspwAkREjpAIZVENEArq7XrkGqUFKgKpYqWn0HAnuTWgFcW8E2NrDw7Qbf
4aAdBuzimbWdbkqRoX9r7++r5wqc3KW+is8Y97aEUsc0zhrXHAW1Hn2w7en5XxiQ
btaPi77Boi69sHvOrfMy3i6UZ895yh2sROIkYBDT485w57BR75HsMLkk2LNIm7qE
mATrrZ65bbGAgAxZouqlnQk40BUlniIfDlfZyReyFtXkW8UH5tTNX6qtpWzzdwfy
posrm+XvgDcP96/7DIczZwT6VEJE5GBZbPvk2Vw4GNq6/QeW7g9GPhYTaV6CXzzW
lCk/MV1n+IWCUqjkGXXCTS53TIyC6WZh2ehegcsh1KYyWcVijEs42S6eqXZI9cO7
F4oU7sehg4vlhMm1uE5JgaABfYqqzzKlvZySdwXbne2Vjt4nsWlWoe6u6JAdA4EB
PRwmUDRMyEE=
=aao/
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2022-12-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Implement persistent user-requested affinity: introduce
affinity_context::user_mask and unconditionally preserve the
user-requested CPU affinity masks, for long-lived tasks to better
interact with cpusets & CPU hotplug events over longer timespans,
without destroying the original affinity intent if the underlying
topology changes.
- Uclamp updates: fix relationship between uclamp and fits_capacity()
- PSI fixes
- Misc fixes & updates
* tag 'sched-core-2022-12-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Clear ttwu_pending after enqueue_task()
sched/psi: Use task->psi_flags to clear in CPU migration
sched/psi: Stop relying on timer_pending() for poll_work rescheduling
sched/psi: Fix avgs_work re-arm in psi_avgs_work()
sched/psi: Fix possible missing or delayed pending event
sched: Always clear user_cpus_ptr in do_set_cpus_allowed()
sched: Enforce user requested affinity
sched: Always preserve the user requested cpumask
sched: Introduce affinity_context
sched: Add __releases annotations to affine_move_task()
sched/fair: Check if prev_cpu has highest spare cap in feec()
sched/fair: Consider capacity inversion in util_fits_cpu()
sched/fair: Detect capacity inversion
sched/uclamp: Cater for uclamp in find_energy_efficient_cpu()'s early exit condition
sched/uclamp: Make cpu_overutilized() use util_fits_cpu()
sched/uclamp: Make asym_fits_capacity() use util_fits_cpu()
sched/uclamp: Make select_idle_capacity() use util_fits_cpu()
sched/uclamp: Fix fits_capacity() check in feec()
sched/uclamp: Make task_fits_capacity() use util_fits_cpu()
sched/uclamp: Fix relationship between uclamp and migration margin
Currently mm_struct maintains rss_stats which are updated on page fault
and the unmapping codepaths. For page fault codepath the updates are
cached per thread with the batch of TASK_RSS_EVENTS_THRESH which is 64.
The reason for caching is performance for multithreaded applications
otherwise the rss_stats updates may become hotspot for such applications.
However this optimization comes with the cost of error margin in the rss
stats. The rss_stats for applications with large number of threads can be
very skewed. At worst the error margin is (nr_threads * 64) and we have a
lot of applications with 100s of threads, so the error margin can be very
high. Internally we had to reduce TASK_RSS_EVENTS_THRESH to 32.
Recently we started seeing the unbounded errors for rss_stats for specific
applications which use TCP rx0cp. It seems like vm_insert_pages()
codepath does not sync rss_stats at all.
This patch converts the rss_stats into percpu_counter to convert the error
margin from (nr_threads * 64) to approximately (nr_cpus ^ 2). However
this conversion enable us to get the accurate stats for situations where
accuracy is more important than the cpu cost.
This patch does not make such tradeoffs - we can just use
percpu_counter_add_local() for the updates and percpu_counter_sum() (or
percpu_counter_sync() + percpu_counter_read) for the readers. At the
moment the readers are either procfs interface, oom_killer and memory
reclaim which I think are not performance critical and should be ok with
slow read. However I think we can make that change in a separate patch.
Link: https://lkml.kernel.org/r/20221024052841.3291983-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The commit d583d360a6 ("psi: Fix psi state corruption when schedule()
races with cgroup move") fixed a race problem by making cgroup_move_task()
use task->psi_flags instead of looking at the scheduler state.
We can extend task->psi_flags usage to CPU migration, which should be
a minor optimization for performance and code simplicity.
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/r/20220926081931.45420-1-zhouchengming@bytedance.com
There have been various issues and limitations with the way perf uses
(task) contexts to track events. Most notable is the single hardware
PMU task context, which has resulted in a number of yucky things (both
proposed and merged).
Notably:
- HW breakpoint PMU
- ARM big.little PMU / Intel ADL PMU
- Intel Branch Monitoring PMU
- AMD IBS PMU
- S390 cpum_cf PMU
- PowerPC trace_imc PMU
*Current design:*
Currently we have a per task and per cpu perf_event_contexts:
task_struct::perf_events_ctxp[] <-> perf_event_context <-> perf_cpu_context
^ | ^ | ^
`---------------------------------' | `--> pmu ---'
v ^
perf_event ------'
Each task has an array of pointers to a perf_event_context. Each
perf_event_context has a direct relation to a PMU and a group of
events for that PMU. The task related perf_event_context's have a
pointer back to that task.
Each PMU has a per-cpu pointer to a per-cpu perf_cpu_context, which
includes a perf_event_context, which again has a direct relation to
that PMU, and a group of events for that PMU.
The perf_cpu_context also tracks which task context is currently
associated with that CPU and includes a few other things like the
hrtimer for rotation etc.
Each perf_event is then associated with its PMU and one
perf_event_context.
*Proposed design:*
New design proposed by this patch reduce to a single task context and
a single CPU context but adds some intermediate data-structures:
task_struct::perf_event_ctxp -> perf_event_context <- perf_cpu_context
^ | ^ ^
`---------------------------' | |
| | perf_cpu_pmu_context <--.
| `----. ^ |
| | | |
| v v |
| ,--> perf_event_pmu_context |
| | |
| | |
v v |
perf_event ---> pmu ----------------'
With the new design, perf_event_context will hold all events for all
pmus in the (respective pinned/flexible) rbtrees. This can be achieved
by adding pmu to rbtree key:
{cpu, pmu, cgroup, group_index}
Each perf_event_context carries a list of perf_event_pmu_context which
is used to hold per-pmu-per-context state. For example, it keeps track
of currently active events for that pmu, a pmu specific task_ctx_data,
a flag to tell whether rotation is required or not etc.
Additionally, perf_cpu_pmu_context is used to hold per-pmu-per-cpu
state like hrtimer details to drive the event rotation, a pointer to
perf_event_pmu_context of currently running task and some other
ancillary information.
Each perf_event is associated to it's pmu, perf_event_context and
perf_event_pmu_context.
Further optimizations to current implementation are possible. For
example, ctx_resched() can be optimized to reschedule only single pmu
events.
Much thanks to Ravi for picking this up and pushing it towards
completion.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Co-developed-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221008062424.313-1-ravi.bangoria@amd.com
refcounting errors in ZONE_DEVICE pages.
- Peter Xu fixes some userfaultfd test harness instability.
- Various other patches in MM, mainly fixes.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0j6igAKCRDdBJ7gKXxA
jnGxAP99bV39ZtOsoY4OHdZlWU16BUjKuf/cb3bZlC2G849vEwD+OKlij86SG20j
MGJQ6TfULJ8f1dnQDd6wvDfl3FMl7Qc=
=tbdp
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-10-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull more MM updates from Andrew Morton:
- fix a race which causes page refcounting errors in ZONE_DEVICE pages
(Alistair Popple)
- fix userfaultfd test harness instability (Peter Xu)
- various other patches in MM, mainly fixes
* tag 'mm-stable-2022-10-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (29 commits)
highmem: fix kmap_to_page() for kmap_local_page() addresses
mm/page_alloc: fix incorrect PGFREE and PGALLOC for high-order page
mm/selftest: uffd: explain the write missing fault check
mm/hugetlb: use hugetlb_pte_stable in migration race check
mm/hugetlb: fix race condition of uffd missing/minor handling
zram: always expose rw_page
LoongArch: update local TLB if PTE entry exists
mm: use update_mmu_tlb() on the second thread
kasan: fix array-bounds warnings in tests
hmm-tests: add test for migrate_device_range()
nouveau/dmem: evict device private memory during release
nouveau/dmem: refactor nouveau_dmem_fault_copy_one()
mm/migrate_device.c: add migrate_device_range()
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page()
mm/memremap.c: take a pgmap reference on page allocation
mm: free device private pages have zero refcount
mm/memory.c: fix race when faulting a device private page
mm/damon: use damon_sz_region() in appropriate place
mm/damon: move sz_damon_region to damon_sz_region
lib/test_meminit: add checks for the allocation functions
...
linux-next for a couple of months without, to my knowledge, any negative
reports (or any positive ones, come to that).
- Also the Maple Tree from Liam R. Howlett. An overlapping range-based
tree for vmas. It it apparently slight more efficient in its own right,
but is mainly targeted at enabling work to reduce mmap_lock contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
(https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com).
This has yet to be addressed due to Liam's unfortunately timed
vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down to
the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support
file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA
joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf
bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU=
=xfWx
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any
negative reports (or any positive ones, come to that).
- Also the Maple Tree from Liam Howlett. An overlapping range-based
tree for vmas. It it apparently slightly more efficient in its own
right, but is mainly targeted at enabling work to reduce mmap_lock
contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
at [1]. This has yet to be addressed due to Liam's unfortunately
timed vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down
to the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
support file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging
activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]
* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
hugetlb: allocate vma lock for all sharable vmas
hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
hugetlb: fix vma lock handling during split vma and range unmapping
mglru: mm/vmscan.c: fix imprecise comments
mm/mglru: don't sync disk for each aging cycle
mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
mm: memcontrol: use do_memsw_account() in a few more places
mm: memcontrol: deprecate swapaccounting=0 mode
mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
mm/secretmem: remove reduntant return value
mm/hugetlb: add available_huge_pages() func
mm: remove unused inline functions from include/linux/mm_inline.h
selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
selftests/vm: add thp collapse shmem testing
selftests/vm: add thp collapse file and tmpfs testing
selftests/vm: modularize thp collapse memory operations
selftests/vm: dedup THP helpers
mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
mm/madvise: add file and shmem support to MADV_COLLAPSE
...
Major changes:
- Changed location of tracing repo from personal git repo to:
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace.git
- Added Masami Hiramatsu as co-maintainer
- Updated MAINTAINERS file to separate out FTRACE as it is
more than just TRACING.
Minor changes:
- Added Mark Rutland as FTRACE reviewer
- Updated user_events to make it on its way to remove the BROKEN tag.
The changes should now be acceptable but will run it through
a cycle and hopefully we can remove the BROKEN tag next release.
- Added filtering to eprobes
- Added a delta time to the benchmark trace event
- Have the histogram and filter callbacks called via a switch
statement instead of indirect functions. This speeds it up to
avoid retpolines.
- Add a way to wake up ring buffer waiters waiting for the
ring buffer to fill up to its watermark.
- New ioctl() on the trace_pipe_raw file to wake up ring buffer
waiters.
- Wake up waiters when the ring buffer is disabled.
A reader may block when the ring buffer is disabled,
but if it was blocked when the ring buffer is disabled
it should then wake up.
Fixes:
- Allow splice to read partially read ring buffer pages
Fixes splice never moving forward.
- Fix inverted compare that made the "shortest" ring buffer
wait queue actually the longest.
- Fix a race in the ring buffer between resetting a page when
a writer goes to another page, and the reader.
- Fix ftrace accounting bug when function hooks are added at
boot up before the weak functions are set to "disabled".
- Fix bug that freed a user allocated snapshot buffer when
enabling a tracer.
- Fix possible recursive locks in osnoise tracer
- Fix recursive locking direct functions
- And other minor clean ups and fixes
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCYz70cxQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qpLKAP4+yOje7ZY/b3R4tTx0EIWiKdhqPx6t
Nvam2+WR2PN3QQEAqiK2A+oIbh3Zjp1MyhQWuulssWKtSTXhIQkbs7ioYAc=
=MsQw
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing updates from Steven Rostedt:
"Major changes:
- Changed location of tracing repo from personal git repo to:
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace.git
- Added Masami Hiramatsu as co-maintainer
- Updated MAINTAINERS file to separate out FTRACE as it is more than
just TRACING.
Minor changes:
- Added Mark Rutland as FTRACE reviewer
- Updated user_events to make it on its way to remove the BROKEN tag.
The changes should now be acceptable but will run it through a
cycle and hopefully we can remove the BROKEN tag next release.
- Added filtering to eprobes
- Added a delta time to the benchmark trace event
- Have the histogram and filter callbacks called via a switch
statement instead of indirect functions. This speeds it up to avoid
retpolines.
- Add a way to wake up ring buffer waiters waiting for the ring
buffer to fill up to its watermark.
- New ioctl() on the trace_pipe_raw file to wake up ring buffer
waiters.
- Wake up waiters when the ring buffer is disabled. A reader may
block when the ring buffer is disabled, but if it was blocked when
the ring buffer is disabled it should then wake up.
Fixes:
- Allow splice to read partially read ring buffer pages. This fixes
splice never moving forward.
- Fix inverted compare that made the "shortest" ring buffer wait
queue actually the longest.
- Fix a race in the ring buffer between resetting a page when a
writer goes to another page, and the reader.
- Fix ftrace accounting bug when function hooks are added at boot up
before the weak functions are set to "disabled".
- Fix bug that freed a user allocated snapshot buffer when enabling a
tracer.
- Fix possible recursive locks in osnoise tracer
- Fix recursive locking direct functions
- Other minor clean ups and fixes"
* tag 'trace-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (44 commits)
ftrace: Create separate entry in MAINTAINERS for function hooks
tracing: Update MAINTAINERS to reflect new tracing git repo
tracing: Do not free snapshot if tracer is on cmdline
ftrace: Still disable enabled records marked as disabled
tracing/user_events: Move pages/locks into groups to prepare for namespaces
tracing: Add Masami Hiramatsu as co-maintainer
tracing: Remove unused variable 'dups'
MAINTAINERS: add myself as a tracing reviewer
ring-buffer: Fix race between reset page and reading page
tracing/user_events: Update ABI documentation to align to bits vs bytes
tracing/user_events: Use bits vs bytes for enabled status page data
tracing/user_events: Use refcount instead of atomic for ref tracking
tracing/user_events: Ensure user provided strings are safely formatted
tracing/user_events: Use WRITE instead of READ for io vector import
tracing/user_events: Use NULL for strstr checks
tracing: Fix spelling mistake "preapre" -> "prepare"
tracing: Wake up waiters when tracing is disabled
tracing: Add ioctl() to force ring buffer waiters to wake up
tracing: Wake up ring buffer waiters on closing of the file
ring-buffer: Add ring_buffer_wake_waiters()
...
- Debuggability:
- Change most occurances of BUG_ON() to WARN_ON_ONCE()
- Reorganize & fix TASK_ state comparisons, turn it into a bitmap
- Update/fix misc scheduler debugging facilities
- Load-balancing & regular scheduling:
- Improve the behavior of the scheduler in presence of lot of
SCHED_IDLE tasks - in particular they should not impact other
scheduling classes.
- Optimize task load tracking, cleanups & fixes
- Clean up & simplify misc load-balancing code
- Freezer:
- Rewrite the core freezer to behave better wrt thawing and be simpler
in general, by replacing PF_FROZEN with TASK_FROZEN & fixing/adjusting
all the fallout.
- Deadline scheduler:
- Fix the DL capacity-aware code
- Factor out dl_task_is_earliest_deadline() & replenish_dl_new_period()
- Relax/optimize locking in task_non_contending()
- Cleanups:
- Factor out the update_current_exec_runtime() helper
- Various cleanups, simplifications
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmM/01cRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1geZA/+PB4KC1T9aVxzaTHI36R03YgJYZmIdtxw
wTf02MixePmz+gQCbepJbempGOh5ST28aOcI0xhdYOql5B63MaUBBMlB0HvGUyDG
IU3zETqLMRtAbnSTdQFv8m++ECUtZYp8/x1FCel4WO7ya4ETkRu1NRfCoUepEhpZ
aVAlae9LH3NBaF9t7s0PT2lTjf3pIzMFRkddJ0ywJhbFR3VnWat05fAK+J6fGY8+
LS54coefNlJD4oDh5TY8uniL1j5SmWmmwbk9Cdj7bLU5P3dFSS0/+5FJNHJPVGDE
srGT7wstRUcDrN0CnZo48VIUBiApJCCDqTfJYi9wNYd0NAHvwY6MIJJgEIY8mKsI
L/qH26H81Wt+ezSZ/5JIlGlZ/LIeNaa6OO/fbWEYABBQogvvx3nxsRNUYKSQzumH
CnSBasBjLnjWyLlK4qARM9cI7NFSEK6NUigrEx/7h8JFu/8T4DlSy6LsF1HUyKgq
4+FJLAqG6cL0tcwB/fHYd0oRESN8dStnQhGxSojgufwLc7dlFULvCYF5JM/dX+/V
IKwbOfIOeOn6ViMtSOXAEGdII+IQ2/ZFPwr+8Z5JC7NzvTVL6xlu/3JXkLZR3L7o
yaXTSaz06h1vil7Z+GRf7RHc+wUeGkEpXh5vnarGZKXivhFdWsBdROIJANK+xR0i
TeSLCxQxXlU=
=KjMD
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"Debuggability:
- Change most occurances of BUG_ON() to WARN_ON_ONCE()
- Reorganize & fix TASK_ state comparisons, turn it into a bitmap
- Update/fix misc scheduler debugging facilities
Load-balancing & regular scheduling:
- Improve the behavior of the scheduler in presence of lot of
SCHED_IDLE tasks - in particular they should not impact other
scheduling classes.
- Optimize task load tracking, cleanups & fixes
- Clean up & simplify misc load-balancing code
Freezer:
- Rewrite the core freezer to behave better wrt thawing and be
simpler in general, by replacing PF_FROZEN with TASK_FROZEN &
fixing/adjusting all the fallout.
Deadline scheduler:
- Fix the DL capacity-aware code
- Factor out dl_task_is_earliest_deadline() &
replenish_dl_new_period()
- Relax/optimize locking in task_non_contending()
Cleanups:
- Factor out the update_current_exec_runtime() helper
- Various cleanups, simplifications"
* tag 'sched-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
sched: Fix more TASK_state comparisons
sched: Fix TASK_state comparisons
sched/fair: Move call to list_last_entry() in detach_tasks
sched/fair: Cleanup loop_max and loop_break
sched/fair: Make sure to try to detach at least one movable task
sched: Show PF_flag holes
freezer,sched: Rewrite core freezer logic
sched: Widen TAKS_state literals
sched/wait: Add wait_event_state()
sched/completion: Add wait_for_completion_state()
sched: Add TASK_ANY for wait_task_inactive()
sched: Change wait_task_inactive()s match_state
freezer,umh: Clean up freezer/initrd interaction
freezer: Have {,un}lock_system_sleep() save/restore flags
sched: Rename task_running() to task_on_cpu()
sched/fair: Cleanup for SIS_PROP
sched/fair: Default to false in test_idle_cores()
sched/fair: Remove useless check in select_idle_core()
sched/fair: Avoid double search on same cpu
sched/fair: Remove redundant check in select_idle_smt()
...
For each memory location KernelMemorySanitizer maintains two types of
metadata:
1. The so-called shadow of that location - а byte:byte mapping describing
whether or not individual bits of memory are initialized (shadow is 0)
or not (shadow is 1).
2. The origins of that location - а 4-byte:4-byte mapping containing
4-byte IDs of the stack traces where uninitialized values were
created.
Each struct page now contains pointers to two struct pages holding KMSAN
metadata (shadow and origins) for the original struct page. Utility
routines in mm/kmsan/core.c and mm/kmsan/shadow.c handle the metadata
creation, addressing, copying and checking. mm/kmsan/report.c performs
error reporting in the cases an uninitialized value is used in a way that
leads to undefined behavior.
KMSAN compiler instrumentation is responsible for tracking the metadata
along with the kernel memory. mm/kmsan/instrumentation.c provides the
implementation for instrumentation hooks that are called from files
compiled with -fsanitize=kernel-memory.
To aid parameter passing (also done at instrumentation level), each
task_struct now contains a struct kmsan_task_state used to track the
metadata of function parameters and return values for that task.
Finally, this patch provides CONFIG_KMSAN that enables KMSAN, and declares
CFLAGS_KMSAN, which are applied to files compiled with KMSAN. The
KMSAN_SANITIZE:=n Makefile directive can be used to completely disable
KMSAN instrumentation for certain files.
Similarly, KMSAN_ENABLE_CHECKS:=n disables KMSAN checks and makes newly
created stack memory initialized.
Users can also use functions from include/linux/kmsan-checks.h to mark
certain memory regions as uninitialized or initialized (this is called
"poisoning" and "unpoisoning") or check that a particular region is
initialized.
Link: https://lkml.kernel.org/r/20220915150417.722975-12-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The trace of "struct task_struct" was no longer used since
commit 345ddcc882 ("ftrace: Have set_ftrace_pid use the
bitmap like events do"), and the functions about flags for
current->trace is useless, so remove them.
Link: https://lkml.kernel.org/r/20220923090012.505990-1-cuigaosheng1@huawei.com
Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
By using the maple tree and the maple tree state, the vmacache is no
longer beneficial and is complicating the VMA code. Remove the vmacache
to reduce the work in keeping it up to date and code complexity.
Link: https://lkml.kernel.org/r/20220906194824.2110408-26-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Evictable pages are divided into multiple generations for each lruvec.
The youngest generation number is stored in lrugen->max_seq for both
anon and file types as they are aged on an equal footing. The oldest
generation numbers are stored in lrugen->min_seq[] separately for anon
and file types as clean file pages can be evicted regardless of swap
constraints. These three variables are monotonically increasing.
Generation numbers are truncated into order_base_2(MAX_NR_GENS+1) bits
in order to fit into the gen counter in folio->flags. Each truncated
generation number is an index to lrugen->lists[]. The sliding window
technique is used to track at least MIN_NR_GENS and at most
MAX_NR_GENS generations. The gen counter stores a value within [1,
MAX_NR_GENS] while a page is on one of lrugen->lists[]. Otherwise it
stores 0.
There are two conceptually independent procedures: "the aging", which
produces young generations, and "the eviction", which consumes old
generations. They form a closed-loop system, i.e., "the page reclaim".
Both procedures can be invoked from userspace for the purposes of working
set estimation and proactive reclaim. These techniques are commonly used
to optimize job scheduling (bin packing) in data centers [1][2].
To avoid confusion, the terms "hot" and "cold" will be applied to the
multi-gen LRU, as a new convention; the terms "active" and "inactive" will
be applied to the active/inactive LRU, as usual.
The protection of hot pages and the selection of cold pages are based
on page access channels and patterns. There are two access channels:
one through page tables and the other through file descriptors. The
protection of the former channel is by design stronger because:
1. The uncertainty in determining the access patterns of the former
channel is higher due to the approximation of the accessed bit.
2. The cost of evicting the former channel is higher due to the TLB
flushes required and the likelihood of encountering the dirty bit.
3. The penalty of underprotecting the former channel is higher because
applications usually do not prepare themselves for major page
faults like they do for blocked I/O. E.g., GUI applications
commonly use dedicated I/O threads to avoid blocking rendering
threads.
There are also two access patterns: one with temporal locality and the
other without. For the reasons listed above, the former channel is
assumed to follow the former pattern unless VM_SEQ_READ or VM_RAND_READ is
present; the latter channel is assumed to follow the latter pattern unless
outlying refaults have been observed [3][4].
The next patch will address the "outlying refaults". Three macros, i.e.,
LRU_REFS_WIDTH, LRU_REFS_PGOFF and LRU_REFS_MASK, used later are added in
this patch to make the entire patchset less diffy.
A page is added to the youngest generation on faulting. The aging needs
to check the accessed bit at least twice before handing this page over to
the eviction. The first check takes care of the accessed bit set on the
initial fault; the second check makes sure this page has not been used
since then. This protocol, AKA second chance, requires a minimum of two
generations, hence MIN_NR_GENS.
[1] https://dl.acm.org/doi/10.1145/3297858.3304053
[2] https://dl.acm.org/doi/10.1145/3503222.3507731
[3] https://lwn.net/Articles/495543/
[4] https://lwn.net/Articles/815342/
Link: https://lkml.kernel.org/r/20220918080010.2920238-6-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Brian Geffon <bgeffon@google.com>
Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Acked-by: Steven Barrett <steven@liquorix.net>
Acked-by: Suleiman Souhlal <suleiman@google.com>
Tested-by: Daniel Byrne <djbyrne@mtu.edu>
Tested-by: Donald Carr <d@chaos-reins.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
Tested-by: Sofia Trinh <sofia.trinh@edi.works>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Once upon a time, we only support accounting thrashing of page cache.
Then Joonsoo introduced workingset detection for anonymous pages and we
gained the ability to account thrashing of them[1].
For page cache thrashing accounting, there is no suitable place to do it
in fs level likes swap_readpage(). So we have to do it in
folio_wait_bit_common().
Then for anonymous pages thrashing accounting, we have to do it in both
swap_readpage() and folio_wait_bit_common(). This likes PSI, so we should
let thrashing accounting supports re-entrance detection.
This patch is to prepare complete thrashing accounting, and is based on
patch "filemap: make the accounting of thrashing more consistent".
[1] commit aae466b005 ("mm/swap: implement workingset detection for anonymous LRU")
Link: https://lkml.kernel.org/r/20220815071134.74551-1-yang.yang29@zte.com.cn
Signed-off-by: Yang Yang <yang.yang29@zte.com.cn>
Signed-off-by: CGEL ZTE <cgel.zte@gmail.com>
Reviewed-by: Ran Xiaokai <ran.xiaokai@zte.com.cn>
Reviewed-by: wangyong <wang.yong12@zte.com.cn>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Guard wakeups that the user can trigger, and that may end up triggering a
call back into eventfd_signal. This is in addition to the current approach
that only guards in eventfd_signal.
Rename in_eventfd_signal -> in_eventfd at the same time to reflect this.
Without this there would be a deadlock in the following code using libaio:
int main()
{
struct io_context *ctx = NULL;
struct iocb iocb;
struct iocb *iocbs[] = { &iocb };
int evfd;
uint64_t val = 1;
evfd = eventfd(0, EFD_CLOEXEC);
assert(!io_setup(2, &ctx));
io_prep_poll(&iocb, evfd, POLLIN);
io_set_eventfd(&iocb, evfd);
assert(1 == io_submit(ctx, 1, iocbs));
write(evfd, &val, 8);
}
Signed-off-by: Dylan Yudaken <dylany@fb.com>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Link: https://lore.kernel.org/r/20220816135959.1490641-1-dylany@fb.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Rewrite the core freezer to behave better wrt thawing and be simpler
in general.
By replacing PF_FROZEN with TASK_FROZEN, a special block state, it is
ensured frozen tasks stay frozen until thawed and don't randomly wake
up early, as is currently possible.
As such, it does away with PF_FROZEN and PF_FREEZER_SKIP, freeing up
two PF_flags (yay!).
Specifically; the current scheme works a little like:
freezer_do_not_count();
schedule();
freezer_count();
And either the task is blocked, or it lands in try_to_freezer()
through freezer_count(). Now, when it is blocked, the freezer
considers it frozen and continues.
However, on thawing, once pm_freezing is cleared, freezer_count()
stops working, and any random/spurious wakeup will let a task run
before its time.
That is, thawing tries to thaw things in explicit order; kernel
threads and workqueues before doing bringing SMP back before userspace
etc.. However due to the above mentioned races it is entirely possible
for userspace tasks to thaw (by accident) before SMP is back.
This can be a fatal problem in asymmetric ISA architectures (eg ARMv9)
where the userspace task requires a special CPU to run.
As said; replace this with a special task state TASK_FROZEN and add
the following state transitions:
TASK_FREEZABLE -> TASK_FROZEN
__TASK_STOPPED -> TASK_FROZEN
__TASK_TRACED -> TASK_FROZEN
The new TASK_FREEZABLE can be set on any state part of TASK_NORMAL
(IOW. TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE) -- any such state
is already required to deal with spurious wakeups and the freezer
causes one such when thawing the task (since the original state is
lost).
The special __TASK_{STOPPED,TRACED} states *can* be restored since
their canonical state is in ->jobctl.
With this, frozen tasks need an explicit TASK_FROZEN wakeup and are
free of undue (early / spurious) wakeups.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/r/20220822114649.055452969@infradead.org
In preparation of adding more states, add a few 0s to the literals as
we've just about ran out.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Now that wait_task_inactive()'s @match_state argument is a mask (like
ttwu()) it is possible to replace the special !match_state case with
an 'all-states' value such that any blocked state will match.
Suggested-by: Ingo Molnar (mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/YxhkzfuFTvRnpUaH@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmLuvmwRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gONQ/+KkkPTeKgGDvrahTfeYZlmRyvcI1R78r9
yooa8v+DtifznBW2eXDBc8WTruzqr78VyUY+1YSjfKS6FRQWYMficJ3qk3hxgBru
998KZbvl3jXBBlRkqgGeFlF5Ty2KaryEZgX97a7IF/0xWDgpm972jFkJ/KCo/YTY
WSQrzutz2FKe71EjK4cAplYxPZIiy/zo2hSGTbsso4M7bO5VLc1Y4qMtFGcCZ7JB
s9JYkj2Rfz+AS5wioDRcGuec4A4SrroxKszZA6QDDBuhMJukqexO02xs/fxZ2W4Z
DF4U5MFOrtz9AWSGsf1P6XXbgJO8qTgQXZchFsEcJwypV13w8U0IViXQfD/Pvx2X
y+WHdnZVIO2sDwOJ15ew7IuoJZ2LsVygrBNFJJaIFOtIz3RzprI0BJN7LeWFALOa
IPmbtiY8hVwhKmjRgMHWDwJhMEHLuhGx3idiD89w1pknzTUnKDiwLyEUtyynxeGd
ft9uCvPefrYQVx9AiH7wf0W+fg334FCccC+0f8LyduyftUyQCfZIZY6LUSKuKded
Odm7k0ngLDPbdZwAHs0Nf/ilRwd91Z7b6hGt5U3ptx+8BPMKB+/k1VoKog7OISPc
zGaP7DrtuC4sEdX4X6bqX+mEQhpkLcQw15gVGxhKoHqygWNSZrV634aSSXwfVXJx
eT5m/K9a7L0=
=CYl5
-----END PGP SIGNATURE-----
Merge tag 'sched-urgent-2022-08-06' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar:
"Various fixes: a deadline scheduler fix, a migration fix, a Sparse fix
and a comment fix"
* tag 'sched-urgent-2022-08-06' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/core: Do not requeue task on CPU excluded from cpus_mask
sched/rt: Fix Sparse warnings due to undefined rt.c declarations
exit: Fix typo in comment: s/sub-theads/sub-threads
sched, cpuset: Fix dl_cpu_busy() panic due to empty cs->cpus_allowed
- Runtime verification infrastructure
This is the biggest change for this pull request. It introduces the
runtime verification that is necessary for running Linux on safety
critical systems. It allows for deterministic automata models to be
inserted into the kernel that will attach to tracepoints, where the
information on these tracepoints will move the model from state to state.
If a state is encountered that does not belong to the model, it will then
activate a given reactor, that could just inform the user or even panic
the kernel (for which safety critical systems will detect and can recover
from).
- Two monitor models are also added: Wakeup In Preemptive (WIP - not to be
confused with "work in progress"), and Wakeup While Not Running (WWNR).
- Added __vstring() helper to the TRACE_EVENT() macro to replace several
vsnprintf() usages that were all doing it wrong.
- eprobes now can have their event autogenerated when the event name is left
off.
- The rest is various cleanups and fixes.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCYu0yzRQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qj4HAP4tQtV55rjj4DQ5XIXmtI3/64PmyRSJ
+y4DEXi1UvEUCQD/QAuQfWoT/7gh35ltkfeS4t3ockzy14rrkP5drZigiQA=
=kEtM
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
- Runtime verification infrastructure
This is the biggest change here. It introduces the runtime
verification that is necessary for running Linux on safety critical
systems.
It allows for deterministic automata models to be inserted into the
kernel that will attach to tracepoints, where the information on
these tracepoints will move the model from state to state.
If a state is encountered that does not belong to the model, it will
then activate a given reactor, that could just inform the user or
even panic the kernel (for which safety critical systems will detect
and can recover from).
- Two monitor models are also added: Wakeup In Preemptive (WIP - not to
be confused with "work in progress"), and Wakeup While Not Running
(WWNR).
- Added __vstring() helper to the TRACE_EVENT() macro to replace
several vsnprintf() usages that were all doing it wrong.
- eprobes now can have their event autogenerated when the event name is
left off.
- The rest is various cleanups and fixes.
* tag 'trace-v6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (50 commits)
rv: Unlock on error path in rv_unregister_reactor()
tracing: Use alignof__(struct {type b;}) instead of offsetof()
tracing/eprobe: Show syntax error logs in error_log file
scripts/tracing: Fix typo 'the the' in comment
tracepoints: It is CONFIG_TRACEPOINTS not CONFIG_TRACEPOINT
tracing: Use free_trace_buffer() in allocate_trace_buffers()
tracing: Use a struct alignof to determine trace event field alignment
rv/reactor: Add the panic reactor
rv/reactor: Add the printk reactor
rv/monitor: Add the wwnr monitor
rv/monitor: Add the wip monitor
rv/monitor: Add the wip monitor skeleton created by dot2k
Documentation/rv: Add deterministic automata instrumentation documentation
Documentation/rv: Add deterministic automata monitor synthesis documentation
tools/rv: Add dot2k
Documentation/rv: Add deterministic automaton documentation
tools/rv: Add dot2c
Documentation/rv: Add a basic documentation
rv/include: Add instrumentation helper functions
rv/include: Add deterministic automata monitor definition via C macros
...
With cgroup v2, the cpuset's cpus_allowed mask can be empty indicating
that the cpuset will just use the effective CPUs of its parent. So
cpuset_can_attach() can call task_can_attach() with an empty mask.
This can lead to cpumask_any_and() returns nr_cpu_ids causing the call
to dl_bw_of() to crash due to percpu value access of an out of bound
CPU value. For example:
[80468.182258] BUG: unable to handle page fault for address: ffffffff8b6648b0
:
[80468.191019] RIP: 0010:dl_cpu_busy+0x30/0x2b0
:
[80468.207946] Call Trace:
[80468.208947] cpuset_can_attach+0xa0/0x140
[80468.209953] cgroup_migrate_execute+0x8c/0x490
[80468.210931] cgroup_update_dfl_csses+0x254/0x270
[80468.211898] cgroup_subtree_control_write+0x322/0x400
[80468.212854] kernfs_fop_write_iter+0x11c/0x1b0
[80468.213777] new_sync_write+0x11f/0x1b0
[80468.214689] vfs_write+0x1eb/0x280
[80468.215592] ksys_write+0x5f/0xe0
[80468.216463] do_syscall_64+0x5c/0x80
[80468.224287] entry_SYSCALL_64_after_hwframe+0x44/0xae
Fix that by using effective_cpus instead. For cgroup v1, effective_cpus
is the same as cpus_allowed. For v2, effective_cpus is the real cpumask
to be used by tasks within the cpuset anyway.
Also update task_can_attach()'s 2nd argument name to cs_effective_cpus to
reflect the change. In addition, a check is added to task_can_attach()
to guard against the possibility that cpumask_any_and() may return a
value >= nr_cpu_ids.
Fixes: 7f51412a41 ("sched/deadline: Fix bandwidth check/update when migrating tasks between exclusive cpusets")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220803015451.2219567-1-longman@redhat.com
This pull request contains the following branches:
doc.2022.06.21a: Documentation updates.
fixes.2022.07.19a: Miscellaneous fixes.
nocb.2022.07.19a: Callback-offload updates, perhaps most notably a new
RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to
be offloaded at boot time, regardless of kernel boot parameters.
This is useful to battery-powered systems such as ChromeOS
and Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel
boot parameter prevents offloaded callbacks from interfering
with real-time workloads and with energy-efficiency mechanisms.
poll.2022.07.21a: Polled grace-period updates, perhaps most notably
making these APIs account for both normal and expedited grace
periods.
rcu-tasks.2022.06.21a: Tasks RCU updates, perhaps most notably reducing
the CPU overhead of RCU tasks trace grace periods by more than
a factor of two on a system with 15,000 tasks. The reduction
is expected to increase with the number of tasks, so it seems
reasonable to hypothesize that a system with 150,000 tasks might
see a 20-fold reduction in CPU overhead.
torture.2022.06.21a: Torture-test updates.
ctxt.2022.07.05a: Updates that merge RCU's dyntick-idle tracking into
context tracking, thus reducing the overhead of transitioning to
kernel mode from either idle or nohz_full userspace execution
for kernels that track context independently of RCU. This is
expected to be helpful primarily for kernels built with
CONFIG_NO_HZ_FULL=y.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmLgMcgTHHBhdWxtY2tA
a2VybmVsLm9yZwAKCRCevxLzctn7jArXD/0fjbCwqpRjHVTzjMY8jN4zDkqZZD6m
g8Fx27hZ4ToNFwRptyHwNezrNj14skjAJEXfdjaVw32W62ivXvf0HINvSzsTLCSq
k2kWyBdXLc9CwY5p5W4smnpn5VoAScjg5PoPL59INoZ/Zziji323C7Zepl/1DYJt
0T6bPCQjo1ZQoDUCyVpSjDmAqxnderWG0MeJVt74GkLqmnYLANg0GH8c7mH4+9LL
kVGlLp5nlPgNJ4FEoFdMwNU8T/ETmaVld/m2dkiawjkXjJzB2XKtBigU91DDmXz5
7DIdV4ABrxiy4kGNqtIe/jFgnKyVD7xiDpyfjd6KTeDr/rDS8u2ZH7+1iHsyz3g0
Np/tS3vcd0KR+gI/d0eXxPbgm5sKlCmKw/nU2eArpW/+4LmVXBUfHTG9Jg+LJmBc
JrUh6aEdIZJZHgv/nOQBNig7GJW43IG50rjuJxAuzcxiZNEG5lUSS23ysaA9CPCL
PxRWKSxIEfK3kdmvVO5IIbKTQmIBGWlcWMTcYictFSVfBgcCXpPAksGvqA5JiUkc
egW+xLFo/7K+E158vSKsVqlWZcEeUbsNJ88QOlpqnRgH++I2Yv/LhK41XfJfpH+Y
ALxVaDd+mAq6v+qSHNVq9wT3ozXIPy/zK1hDlMIqx40h2YvaEsH4je+521oSoN9r
vX60+QNxvUBLwA==
=vUNm
-----END PGP SIGNATURE-----
Merge tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull RCU updates from Paul McKenney:
- Documentation updates
- Miscellaneous fixes
- Callback-offload updates, perhaps most notably a new
RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to be
offloaded at boot time, regardless of kernel boot parameters.
This is useful to battery-powered systems such as ChromeOS and
Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel boot
parameter prevents offloaded callbacks from interfering with
real-time workloads and with energy-efficiency mechanisms
- Polled grace-period updates, perhaps most notably making these APIs
account for both normal and expedited grace periods
- Tasks RCU updates, perhaps most notably reducing the CPU overhead of
RCU tasks trace grace periods by more than a factor of two on a
system with 15,000 tasks.
The reduction is expected to increase with the number of tasks, so it
seems reasonable to hypothesize that a system with 150,000 tasks
might see a 20-fold reduction in CPU overhead
- Torture-test updates
- Updates that merge RCU's dyntick-idle tracking into context tracking,
thus reducing the overhead of transitioning to kernel mode from
either idle or nohz_full userspace execution for kernels that track
context independently of RCU.
This is expected to be helpful primarily for kernels built with
CONFIG_NO_HZ_FULL=y
* tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (98 commits)
rcu: Add irqs-disabled indicator to expedited RCU CPU stall warnings
rcu: Diagnose extended sync_rcu_do_polled_gp() loops
rcu: Put panic_on_rcu_stall() after expedited RCU CPU stall warnings
rcutorture: Test polled expedited grace-period primitives
rcu: Add polled expedited grace-period primitives
rcutorture: Verify that polled GP API sees synchronous grace periods
rcu: Make Tiny RCU grace periods visible to polled APIs
rcu: Make polled grace-period API account for expedited grace periods
rcu: Switch polled grace-period APIs to ->gp_seq_polled
rcu/nocb: Avoid polling when my_rdp->nocb_head_rdp list is empty
rcu/nocb: Add option to opt rcuo kthreads out of RT priority
rcu: Add nocb_cb_kthread check to rcu_is_callbacks_kthread()
rcu/nocb: Add an option to offload all CPUs on boot
rcu/nocb: Fix NOCB kthreads spawn failure with rcu_nocb_rdp_deoffload() direct call
rcu/nocb: Invert rcu_state.barrier_mutex VS hotplug lock locking order
rcu/nocb: Add/del rdp to iterate from rcuog itself
rcu/tree: Add comment to describe GP-done condition in fqs loop
rcu: Initialize first_gp_fqs at declaration in rcu_gp_fqs()
rcu/kvfree: Remove useless monitor_todo flag
rcu: Cleanup RCU urgency state for offline CPU
...
RV is a lightweight (yet rigorous) method that complements classical
exhaustive verification techniques (such as model checking and
theorem proving) with a more practical approach to complex systems.
RV works by analyzing the trace of the system's actual execution,
comparing it against a formal specification of the system behavior.
RV can give precise information on the runtime behavior of the
monitored system while enabling the reaction for unexpected
events, avoiding, for example, the propagation of a failure on
safety-critical systems.
The development of this interface roots in the development of the
paper:
De Oliveira, Daniel Bristot; Cucinotta, Tommaso; De Oliveira, Romulo
Silva. Efficient formal verification for the Linux kernel. In:
International Conference on Software Engineering and Formal Methods.
Springer, Cham, 2019. p. 315-332.
And:
De Oliveira, Daniel Bristot. Automata-based formal analysis
and verification of the real-time Linux kernel. PhD Thesis, 2020.
The RV interface resembles the tracing/ interface on purpose. The current
path for the RV interface is /sys/kernel/tracing/rv/.
It presents these files:
"available_monitors"
- List the available monitors, one per line.
For example:
# cat available_monitors
wip
wwnr
"enabled_monitors"
- Lists the enabled monitors, one per line;
- Writing to it enables a given monitor;
- Writing a monitor name with a '!' prefix disables it;
- Truncating the file disables all enabled monitors.
For example:
# cat enabled_monitors
# echo wip > enabled_monitors
# echo wwnr >> enabled_monitors
# cat enabled_monitors
wip
wwnr
# echo '!wip' >> enabled_monitors
# cat enabled_monitors
wwnr
# echo > enabled_monitors
# cat enabled_monitors
#
Note that more than one monitor can be enabled concurrently.
"monitoring_on"
- It is an on/off general switcher for monitoring. Note
that it does not disable enabled monitors or detach events,
but stop the per-entity monitors of monitoring the events
received from the system. It resembles the "tracing_on" switcher.
"monitors/"
Each monitor will have its one directory inside "monitors/". There
the monitor specific files will be presented.
The "monitors/" directory resembles the "events" directory on
tracefs.
For example:
# cd monitors/wip/
# ls
desc enable
# cat desc
wakeup in preemptive per-cpu testing monitor.
# cat enable
0
For further information, see the comments in the header of
kernel/trace/rv/rv.c from this patch.
Link: https://lkml.kernel.org/r/a4bfe038f50cb047bfb343ad0e12b0e646ab308b.1659052063.git.bristot@kernel.org
Cc: Wim Van Sebroeck <wim@linux-watchdog.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marco Elver <elver@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: Gabriele Paoloni <gpaoloni@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Tao Zhou <tao.zhou@linux.dev>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-trace-devel@vger.kernel.org
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
effective_cpu_util() already has a `int cpu' parameter which allows to
retrieve the CPU capacity scale factor (or maximum CPU capacity) inside
this function via an arch_scale_cpu_capacity(cpu).
A lot of code calling effective_cpu_util() (or the shim
sched_cpu_util()) needs the maximum CPU capacity, i.e. it will call
arch_scale_cpu_capacity() already.
But not having to pass it into effective_cpu_util() will make the EAS
wake-up code easier, especially when the maximum CPU capacity reduced
by the thermal pressure is passed through the EAS wake-up functions.
Due to the asymmetric CPU capacity support of arm/arm64 architectures,
arch_scale_cpu_capacity(int cpu) is a per-CPU variable read access via
per_cpu(cpu_scale, cpu) on such a system.
On all other architectures it is a a compile-time constant
(SCHED_CAPACITY_SCALE).
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lkml.kernel.org/r/20220621090414.433602-4-vdonnefort@google.com
Currently, the RCU Tasks Trace grace-period kthread IPIs each online CPU
using smp_call_function_single() in order to track any tasks currently in
RCU Tasks Trace read-side critical sections during which the corresponding
task has neither blocked nor been preempted. These IPIs are annoying
and are also not strictly necessary because any task that blocks or is
preempted within its current RCU Tasks Trace read-side critical section
will be tracked on one of the per-CPU rcu_tasks_percpu structure's
->rtp_blkd_tasks list. So the only time that this is a problem is if
one of the CPUs runs through a long-duration RCU Tasks Trace read-side
critical section without a context switch.
Note that the task_call_func() function cannot help here because there is
no safe way to identify the target task. Of course, the task_call_func()
function will be very useful later, when processing the list of tasks,
but it needs to know the task.
This commit therefore creates a cpu_curr_snapshot() function that returns
a pointer the task_struct structure of some task that happened to be
running on the specified CPU more or less during the time that the
cpu_curr_snapshot() function was executing. If there was no context
switch during this time, this function will return a pointer to the
task_struct structure of the task that was running throughout. If there
was a context switch, then the outgoing task will be taken care of by
RCU's context-switch hook, and the incoming task was either already taken
care during some previous context switch, or it is not currently within an
RCU Tasks Trace read-side critical section. And in this latter case, the
grace period already started, so there is no need to wait on this task.
This new cpu_curr_snapshot() function is invoked on each CPU early in
the RCU Tasks Trace grace-period processing, and the resulting tasks
are queued for later quiescent-state inspection.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: KP Singh <kpsingh@kernel.org>
This commit adds fields to task_struct and to rcu_tasks_percpu that will
be used to avoid the task-list scan for RCU Tasks Trace grace periods,
and also initializes these fields.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: KP Singh <kpsingh@kernel.org>
This commit gets rid of the task_struct structure's ->trc_reader_checked
field, making it instead be a bit within the task_struct structure's
existing ->trc_reader_special.b.need_qs field. This commit also
atomically loads, stores, and checks the resulting combination of the
reader-checked and need-quiescent state flags. This will in turn allow
significant simplification of the rcu_tasks_trace_postgp() function
as well as elimination of the trc_n_readers_need_end counter in later
commits. These changes will in turn simplify later elimination of the
RCU Tasks Trace scan of the task list, which will make RCU Tasks Trace
grace periods less CPU-intensive.
[ paulmck: Apply kernel test robot feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: KP Singh <kpsingh@kernel.org>
of Peter Zijlstra was encountering with ptrace in his freezer rewrite
I identified some cleanups to ptrace_stop that make sense on their own
and move make resolving the other problems much simpler.
The biggest issue is the habbit of the ptrace code to change task->__state
from the tracer to suppress TASK_WAKEKILL from waking up the tracee. No
other code in the kernel does that and it is straight forward to update
signal_wake_up and friends to make that unnecessary.
Peter's task freezer sets frozen tasks to a new state TASK_FROZEN and
then it stores them by calling "wake_up_state(t, TASK_FROZEN)" relying
on the fact that all stopped states except the special stop states can
tolerate spurious wake up and recover their state.
The state of stopped and traced tasked is changed to be stored in
task->jobctl as well as in task->__state. This makes it possible for
the freezer to recover tasks in these special states, as well as
serving as a general cleanup. With a little more work in that
direction I believe TASK_STOPPED can learn to tolerate spurious wake
ups and become an ordinary stop state.
The TASK_TRACED state has to remain a special state as the registers for
a process are only reliably available when the process is stopped in
the scheduler. Fundamentally ptrace needs acess to the saved
register values of a task.
There are bunch of semi-random ptrace related cleanups that were found
while looking at these issues.
One cleanup that deserves to be called out is from commit 57b6de08b5
("ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs"). This
makes a change that is technically user space visible, in the handling
of what happens to a tracee when a tracer dies unexpectedly.
According to our testing and our understanding of userspace nothing
cares that spurious SIGTRAPs can be generated in that case.
The entire discussion can be found at:
https://lkml.kernel.org/r/87a6bv6dl6.fsf_-_@email.froward.int.ebiederm.org
Eric W. Biederman (11):
signal: Rename send_signal send_signal_locked
signal: Replace __group_send_sig_info with send_signal_locked
ptrace/um: Replace PT_DTRACE with TIF_SINGLESTEP
ptrace/xtensa: Replace PT_SINGLESTEP with TIF_SINGLESTEP
ptrace: Remove arch_ptrace_attach
signal: Use lockdep_assert_held instead of assert_spin_locked
ptrace: Reimplement PTRACE_KILL by always sending SIGKILL
ptrace: Document that wait_task_inactive can't fail
ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs
ptrace: Don't change __state
ptrace: Always take siglock in ptrace_resume
Peter Zijlstra (1):
sched,signal,ptrace: Rework TASK_TRACED, TASK_STOPPED state
arch/ia64/include/asm/ptrace.h | 4 --
arch/ia64/kernel/ptrace.c | 57 ----------------
arch/um/include/asm/thread_info.h | 2 +
arch/um/kernel/exec.c | 2 +-
arch/um/kernel/process.c | 2 +-
arch/um/kernel/ptrace.c | 8 +--
arch/um/kernel/signal.c | 4 +-
arch/x86/kernel/step.c | 3 +-
arch/xtensa/kernel/ptrace.c | 4 +-
arch/xtensa/kernel/signal.c | 4 +-
drivers/tty/tty_jobctrl.c | 4 +-
include/linux/ptrace.h | 7 --
include/linux/sched.h | 10 ++-
include/linux/sched/jobctl.h | 8 +++
include/linux/sched/signal.h | 20 ++++--
include/linux/signal.h | 3 +-
kernel/ptrace.c | 87 ++++++++---------------
kernel/sched/core.c | 5 +-
kernel/signal.c | 140 +++++++++++++++++---------------------
kernel/time/posix-cpu-timers.c | 6 +-
20 files changed, 140 insertions(+), 240 deletions(-)
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEgjlraLDcwBA2B+6cC/v6Eiajj0AFAmKaXaYACgkQC/v6Eiaj
j0CgoA/+JncSQ6PY2D5Jh1apvHzmnRsFXzr3DRvtv/CVx4oIebOXRQFyVDeD5tRn
TmMgB29HpBlHRDLojlmlZRGAld1HR/aPEW9j8W1D3Sy/ZFO5L8lQitv9aDHO9Ntw
4lZvlhS1M0KhATudVVBqSPixiG6CnV5SsGmixqdOyg7xcXSY6G1l2nB7Zk9I3Tat
ZlmhuZ6R5Z5qsm4MEq0vUSrnsHiGxYrpk6uQOaVz8Wkv8ZFmbutt6XgxF0tsyZNn
mHSmWSiZzIgBjTlaibEmxi8urYJTPj3vGBeJQVYHblFwLFi6+Oy7bDxQbWjQvaZh
DsgWPScfBF4Jm0+8hhCiSYpvPp8XnZuklb4LNCeok/VFr+KfSmpJTIhn00kagQ1u
vxQDqLws8YLW4qsfGydfx9uUIFCbQE/V2VDYk5J3Re3gkUNDOOR1A56hPniKv6VB
2aqGO2Fl0RdBbUa3JF+XI5Pwq5y1WrqR93EUvj+5+u5W9rZL/8WLBHBMEz6gbmfD
DhwFE0y8TG2WRlWJVEDRId+5zo3di/YvasH0vJZ5HbrxhS2RE/yIGAd+kKGx/lZO
qWDJC7IHvFJ7Mw5KugacyF0SHeNdloyBM7KZW6HeXmgKn9IMJBpmwib92uUkRZJx
D8j/bHHqD/zsgQ39nO+c4M0MmhO/DsPLG/dnGKrRCu7v1tmEnkY=
=ZUuO
-----END PGP SIGNATURE-----
Merge tag 'ptrace_stop-cleanup-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull ptrace_stop cleanups from Eric Biederman:
"While looking at the ptrace problems with PREEMPT_RT and the problems
Peter Zijlstra was encountering with ptrace in his freezer rewrite I
identified some cleanups to ptrace_stop that make sense on their own
and move make resolving the other problems much simpler.
The biggest issue is the habit of the ptrace code to change
task->__state from the tracer to suppress TASK_WAKEKILL from waking up
the tracee. No other code in the kernel does that and it is straight
forward to update signal_wake_up and friends to make that unnecessary.
Peter's task freezer sets frozen tasks to a new state TASK_FROZEN and
then it stores them by calling "wake_up_state(t, TASK_FROZEN)" relying
on the fact that all stopped states except the special stop states can
tolerate spurious wake up and recover their state.
The state of stopped and traced tasked is changed to be stored in
task->jobctl as well as in task->__state. This makes it possible for
the freezer to recover tasks in these special states, as well as
serving as a general cleanup. With a little more work in that
direction I believe TASK_STOPPED can learn to tolerate spurious wake
ups and become an ordinary stop state.
The TASK_TRACED state has to remain a special state as the registers
for a process are only reliably available when the process is stopped
in the scheduler. Fundamentally ptrace needs acess to the saved
register values of a task.
There are bunch of semi-random ptrace related cleanups that were found
while looking at these issues.
One cleanup that deserves to be called out is from commit 57b6de08b5
("ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs"). This
makes a change that is technically user space visible, in the handling
of what happens to a tracee when a tracer dies unexpectedly. According
to our testing and our understanding of userspace nothing cares that
spurious SIGTRAPs can be generated in that case"
* tag 'ptrace_stop-cleanup-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
sched,signal,ptrace: Rework TASK_TRACED, TASK_STOPPED state
ptrace: Always take siglock in ptrace_resume
ptrace: Don't change __state
ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs
ptrace: Document that wait_task_inactive can't fail
ptrace: Reimplement PTRACE_KILL by always sending SIGKILL
signal: Use lockdep_assert_held instead of assert_spin_locked
ptrace: Remove arch_ptrace_attach
ptrace/xtensa: Replace PT_SINGLESTEP with TIF_SINGLESTEP
ptrace/um: Replace PT_DTRACE with TIF_SINGLESTEP
signal: Replace __group_send_sig_info with send_signal_locked
signal: Rename send_signal send_signal_locked
- Make life miserable for apps using split locks by slowing them down
considerably while the rest of the system remains responsive. The hope
is it will hurt more and people will really fix their misaligned locks
apps. As a result, free a TIF bit.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmKL5PQACgkQEsHwGGHe
VUrz1Q//QjAKyKsAwCzGSPergtnZp9drimSuNsZAz6/xL8wFnn2nfWJTxugNF5jg
n0Hal2oUGC8lg13mliB7NuDNu4RUWpkFzTzcIbPT8K9h7CUBdQPzqS7E3/p4s/eG
ZCHp8psBGNp8+/+/LFfu9yhzYsAH9ji5KWmOzTVx9UdP3ovgR8BuCI7FCVJSfRz7
cY690XgvcuKoXKckVNaCcoQXPJxykfk4Y1yt1TpITqivFbs2I0vLgzEhoRcTAhPA
nX3pR3uy6oaA6rZAapRt8lbLWOwIEWoI0Tt1v+r5p28+nFiCRfm1XdPYK6CDBlox
UuMBK4WyvSKjKHLu3wEdLCvYbs1kw2l9pXvS3hrqsKhbdeXKrxrNZ3zshwFMAYap
MY/nSTsKSWUUgMgUbWI084csapGFB+hxwY8OVr6JXbxE8YYD/yCbPGOe1cLI7MMt
/H3F6vNqSzdp1N3mAaaKVxiiT21lHIn6oJuSZcDE5sOvBwvpXsOp/w3FxhJCOX49
PXrZLZmSHkDQSbh1XnvT/a+rq3XX1TFXFz71HYZf1yDk+xTijECglNtGnGSdj2Za
iOw6M8VduV5Wy3ED9ubonruuHEJn6njpx/MH1B9+mAZsuLBpmuYFBxOn6AHOkXSb
MVJD4flHXj0ugYm4Q5Y3yi24iWLsRI9utTOU079VL6i6DmFXeZc=
=svvI
-----END PGP SIGNATURE-----
Merge tag 'x86_splitlock_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 splitlock updates from Borislav Petkov:
- Add Raptor Lake to the set of CPU models which support splitlock
- Make life miserable for apps using split locks by slowing them down
considerably while the rest of the system remains responsive. The
hope is it will hurt more and people will really fix their misaligned
locks apps. As a result, free a TIF bit.
* tag 'x86_splitlock_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/split_lock: Enable the split lock feature on Raptor Lake
x86/split-lock: Remove unused TIF_SLD bit
x86/split_lock: Make life miserable for split lockers