mm->mm_lock_seq effectively functions as a read/write lock; therefore it
must be used with acquire/release semantics.
A specific example is the interaction between userfaultfd_register() and
lock_vma_under_rcu().
userfaultfd_register() does the following from the point where it changes
a VMA's flags to the point where concurrent readers are permitted again
(in a simple scenario where only a single private VMA is accessed and no
merging/splitting is involved):
userfaultfd_register
userfaultfd_set_vm_flags
vm_flags_reset
vma_start_write
down_write(&vma->vm_lock->lock)
vma->vm_lock_seq = mm_lock_seq [marks VMA as busy]
up_write(&vma->vm_lock->lock)
vm_flags_init
[sets VM_UFFD_* in __vm_flags]
vma->vm_userfaultfd_ctx.ctx = ctx
mmap_write_unlock
vma_end_write_all
WRITE_ONCE(mm->mm_lock_seq, mm->mm_lock_seq + 1) [unlocks VMA]
There are no memory barriers in between the __vm_flags update and the
mm->mm_lock_seq update that unlocks the VMA, so the unlock can be
reordered to above the `vm_flags_init()` call, which means from the
perspective of a concurrent reader, a VMA can be marked as a userfaultfd
VMA while it is not VMA-locked. That's bad, we definitely need a
store-release for the unlock operation.
The non-atomic write to vma->vm_lock_seq in vma_start_write() is mostly
fine because all accesses to vma->vm_lock_seq that matter are always
protected by the VMA lock. There is a racy read in vma_start_read()
though that can tolerate false-positives, so we should be using
WRITE_ONCE() to keep things tidy and data-race-free (including for KCSAN).
On the other side, lock_vma_under_rcu() works as follows in the relevant
region for locking and userfaultfd check:
lock_vma_under_rcu
vma_start_read
vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq) [early bailout]
down_read_trylock(&vma->vm_lock->lock)
vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq) [main check]
userfaultfd_armed
checks vma->vm_flags & __VM_UFFD_FLAGS
Here, the interesting aspect is how far down the mm->mm_lock_seq read can
be reordered - if this read is reordered down below the vma->vm_flags
access, this could cause lock_vma_under_rcu() to partly operate on
information that was read while the VMA was supposed to be locked. To
prevent this kind of downwards bleeding of the mm->mm_lock_seq read, we
need to read it with a load-acquire.
Some of the comment wording is based on suggestions by Suren.
BACKPORT WARNING: One of the functions changed by this patch (which I've
written against Linus' tree) is vma_try_start_write(), but this function
no longer exists in mm/mm-everything. I don't know whether the merged
version of this patch will be ordered before or after the patch that
removes vma_try_start_write(). If you're backporting this patch to a tree
with vma_try_start_write(), make sure this patch changes that function.
Link: https://lkml.kernel.org/r/20230721225107.942336-1-jannh@google.com
Fixes: 5e31275cc9 ("mm: add per-VMA lock and helper functions to control it")
Signed-off-by: Jann Horn <jannh@google.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Introduce per-VMA locking. The lock implementation relies on a per-vma
and per-mm sequence counters to note exclusive locking:
- read lock - (implemented by vma_start_read) requires the vma
(vm_lock_seq) and mm (mm_lock_seq) sequence counters to differ.
If they match then there must be a vma exclusive lock held somewhere.
- read unlock - (implemented by vma_end_read) is a trivial vma->lock
unlock.
- write lock - (vma_start_write) requires the mmap_lock to be held
exclusively and the current mm counter is assigned to the vma counter.
This will allow multiple vmas to be locked under a single mmap_lock
write lock (e.g. during vma merging). The vma counter is modified
under exclusive vma lock.
- write unlock - (vma_end_write_all) is a batch release of all vma
locks held. It doesn't pair with a specific vma_start_write! It is
done before exclusive mmap_lock is released by incrementing mm
sequence counter (mm_lock_seq).
- write downgrade - if the mmap_lock is downgraded to the read lock, all
vma write locks are released as well (effectivelly same as write
unlock).
Link: https://lkml.kernel.org/r/20230227173632.3292573-13-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Move mmap_lock assert function definitions up so that they can be used by
other mmap_lock routines.
Link: https://lkml.kernel.org/r/20230227173632.3292573-12-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Print to the trace log before releasing the lock to avoid racing with
other trace log printers of the same lock type.
Link: https://lkml.kernel.org/r/20210903022041.1843024-1-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Suggested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michel Lespinasse <walken.cr@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The goal of these tracepoints is to be able to debug lock contention
issues. This lock is acquired on most (all?) mmap / munmap / page fault
operations, so a multi-threaded process which does a lot of these can
experience significant contention.
We trace just before we start acquisition, when the acquisition returns
(whether it succeeded or not), and when the lock is released (or
downgraded). The events are broken out by lock type (read / write).
The events are also broken out by memcg path. For container-based
workloads, users often think of several processes in a memcg as a single
logical "task", so collecting statistics at this level is useful.
The end goal is to get latency information. This isn't directly included
in the trace events. Instead, users are expected to compute the time
between "start locking" and "acquire returned", using e.g. synthetic
events or BPF. The benefit we get from this is simpler code.
Because we use tracepoint_enabled() to decide whether or not to trace,
this patch has effectively no overhead unless tracepoints are enabled at
runtime. If tracepoints are enabled, there is a performance impact, but
how much depends on exactly what e.g. the BPF program does.
[axelrasmussen@google.com: fix use-after-free race and css ref leak in tracepoints]
Link: https://lkml.kernel.org/r/20201130233504.3725241-1-axelrasmussen@google.com
[axelrasmussen@google.com: v3]
Link: https://lkml.kernel.org/r/20201207213358.573750-1-axelrasmussen@google.com
[rostedt@goodmis.org: in-depth examples of tracepoint_enabled() usage, and per-cpu-per-context buffer design]
Link: https://lkml.kernel.org/r/20201105211739.568279-2-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Jann Horn <jannh@google.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Try to release mmap_lock temporarily in smaps_rollup", v4.
Recently, we have observed some janky issues caused by unpleasantly long
contention on mmap_lock which is held by smaps_rollup when probing large
processes. To address the problem, we let smaps_rollup detect if anyone
wants to acquire mmap_lock for write attempts. If yes, just release the
lock temporarily to ease the contention.
smaps_rollup is a procfs interface which allows users to summarize the
process's memory usage without the overhead of seq_* calls. Android uses
it to sample the memory usage of various processes to balance its memory
pool sizes. If no one wants to take the lock for write requests,
smaps_rollup with this patch will behave like the original one.
Although there are on-going mmap_lock optimizations like range-based
locks, the lock applied to smaps_rollup would be the coarse one, which is
hard to avoid the occurrence of aforementioned issues. So the detection
and temporary release for write attempts on mmap_lock in smaps_rollup is
still necessary.
This patch (of 3):
Add new API to query if someone wants to acquire mmap_lock for write
attempts.
Using this instead of rwsem_is_contended makes it more tolerant of future
changes to the lock type.
Signed-off-by: Chinwen Chang <chinwen.chang@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Steven Price <steven.price@arm.com>
Acked-by: Michel Lespinasse <walken@google.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Daniel Kiss <daniel.kiss@arm.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jimmy Assarsson <jimmyassarsson@gmail.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/1597715898-3854-1-git-send-email-chinwen.chang@mediatek.com
Link: http://lkml.kernel.org/r/1597715898-3854-2-git-send-email-chinwen.chang@mediatek.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename the mmap_sem field to mmap_lock. Any new uses of this lock should
now go through the new mmap locking api. The mmap_lock is still
implemented as a rwsem, though this could change in the future.
[akpm@linux-foundation.org: fix it for mm-gup-might_lock_readmmap_sem-in-get_user_pages_fast.patch]
Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Davidlohr Bueso <dbueso@suse.de>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-11-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add new APIs to assert that mmap_sem is held.
Using this instead of rwsem_is_locked and lockdep_assert_held[_write]
makes the assertions more tolerant of future changes to the lock type.
Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-10-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Define a new initializer for the mmap locking api. Initially this just
evaluates to __RWSEM_INITIALIZER as the API is defined as wrappers around
rwsem.
Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-9-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a couple APIs used by kernel/bpf/stackmap.c only:
- mmap_read_trylock_non_owner()
- mmap_read_unlock_non_owner() (may be called from a work queue).
It's still not ideal that bpf/stackmap subverts the lock ownership in this
way. Thanks to Peter Zijlstra for suggesting this API as the least-ugly
way of addressing this in the short term.
Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-8-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch series adds a new mmap locking API replacing the existing
mmap_sem lock and unlocks. Initially the API is just implemente in terms
of inlined rwsem calls, so it doesn't provide any new functionality.
There are two justifications for the new API:
- At first, it provides an easy hooking point to instrument mmap_sem
locking latencies independently of any other rwsems.
- In the future, it may be a starting point for replacing the rwsem
implementation with a different one, such as range locks. This is
something that is being explored, even though there is no wide concensus
about this possible direction yet. (see
https://patchwork.kernel.org/cover/11401483/)
This patch (of 12):
This change wraps the existing mmap_sem related rwsem calls into a new
mmap locking API. There are two justifications for the new API:
- At first, it provides an easy hooking point to instrument mmap_sem
locking latencies independently of any other rwsems.
- In the future, it may be a starting point for replacing the rwsem
implementation with a different one, such as range locks.
Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Davidlohr Bueso <dbueso@suse.de>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ying Han <yinghan@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Michel Lespinasse <walken@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-1-walken@google.com
Link: http://lkml.kernel.org/r/20200520052908.204642-2-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>