-----BEGIN PGP SIGNATURE-----
iQJSBAABCAA8FiEEoEVH9lhNrxiMPSyI7MXwXhnZSjYFAmOQpWweHGJlbmphbWlu
LnRpc3NvaXJlc0ByZWRoYXQuY29tAAoJEOzF8F4Z2Uo23ooQAJR4JBv+WKxyDplY
m2Kk1t156kenJNhyRojwNWlYk7S0ziClwfjnJEsiki4S0RAwHcVNuuMLjKSjcDIP
TFrs3kFIlgLITpkPFdMIqMniq0Fynb3N5QDsaohQPQvtLeDx5ASH9D6J+20bcdky
PE+xOo1Nkn1DpnBiGX7P6irMsqrm5cXfBES2u9c7He9VLThviP2v+TvB80gmRi7w
zUU4Uikcr8wlt+9MZoLVoVwAOg5aZmVa/9ogNqaT+cKnW6hQ+3CymxiyiyOdRrAQ
e521+GhQOVTiM0w5C6BwhMx+Wu8r0Qz4Vp49UWf04U/KU+M1TzqAk1z7Vvt72TCr
965qb19TSRNTGQzebAIRd09mFb/nech54dhpyceONBGnUs9r2dDWjfDd/PA7e2WO
FbDE0HGnz/XK7GUrk/BXWU+n9VA7itnhJzB+zr3i6IKFgwwDJ1V4e81CWdBEsp9I
WNDC8LF2bcgHvzFVC23AkKujmbirS6K4Wq+R0f2PISQIs2FdUBl1mgjh2E47lK8E
zCozMRf9bMya5aGkd4S4dtn0NFGByFSXod2TMgfHPvBz06t6YG00DajALzcE5l8U
GAoP5Nz9hRSbmHJCNMqy0SN0WN9Cz+JIFx5Vlb9az3lduRRBOVptgnjx9LOjErVr
+aWWxuQgoHZmB5Ja5WNVN1lIf39/
=FX5W
-----END PGP SIGNATURE-----
Merge "do not rely on ALLOW_ERROR_INJECTION for fmod_ret" into bpf-next
Merge commit 5b481acab4 ("bpf: do not rely on ALLOW_ERROR_INJECTION for fmod_ret")
from hid tree into bpf-next.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The current way of expressing that a non-bpf kernel component is willing
to accept that bpf programs can be attached to it and that they can change
the return value is to abuse ALLOW_ERROR_INJECTION.
This is debated in the link below, and the result is that it is not a
reasonable thing to do.
Reuse the kfunc declaration structure to also tag the kernel functions
we want to be fmodret. This way we can control from any subsystem which
functions are being modified by bpf without touching the verifier.
Link: https://lore.kernel.org/all/20221121104403.1545f9b5@gandalf.local.home/
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20221206145936.922196-2-benjamin.tissoires@redhat.com
Commit 9bb00b2895 ("bpf: Add kfunc bpf_rcu_read_lock/unlock()")
introduced MEM_RCU and bpf_rcu_read_lock/unlock() support. In that
commit, a rcu pointer is tagged with both MEM_RCU and PTR_TRUSTED
so that it can be passed into kfuncs or helpers as an argument.
Martin raised a good question in [1] such that the rcu pointer,
although being able to accessing the object, might have reference
count of 0. This might cause a problem if the rcu pointer is passed
to a kfunc which expects trusted arguments where ref count should
be greater than 0.
This patch makes the following changes related to MEM_RCU pointer:
- MEM_RCU pointer might be NULL (PTR_MAYBE_NULL).
- Introduce KF_RCU so MEM_RCU ptr can be acquired with
a KF_RCU tagged kfunc which assumes ref count of rcu ptr
could be zero.
- For mem access 'b = ptr->a', say 'ptr' is a MEM_RCU ptr, and
'a' is tagged with __rcu as well. Let us mark 'b' as
MEM_RCU | PTR_MAYBE_NULL.
[1] https://lore.kernel.org/bpf/ac70f574-4023-664e-b711-e0d3b18117fd@linux.dev/
Fixes: 9bb00b2895 ("bpf: Add kfunc bpf_rcu_read_lock/unlock()")
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221203184602.477272-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Implement bpf_cast_to_kern_ctx() kfunc which does a type cast
of a uapi ctx object to the corresponding kernel ctx. Previously
if users want to access some data available in kctx but not
in uapi ctx, bpf_probe_read_kernel() helper is needed.
The introduction of bpf_cast_to_kern_ctx() allows direct
memory access which makes code simpler and easier to understand.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195432.3113982-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Kfuncs currently support specifying the KF_TRUSTED_ARGS flag to signal
to the verifier that it should enforce that a BPF program passes it a
"safe", trusted pointer. Currently, "safe" means that the pointer is
either PTR_TO_CTX, or is refcounted. There may be cases, however, where
the kernel passes a BPF program a safe / trusted pointer to an object
that the BPF program wishes to use as a kptr, but because the object
does not yet have a ref_obj_id from the perspective of the verifier, the
program would be unable to pass it to a KF_ACQUIRE | KF_TRUSTED_ARGS
kfunc.
The solution is to expand the set of pointers that are considered
trusted according to KF_TRUSTED_ARGS, so that programs can invoke kfuncs
with these pointers without getting rejected by the verifier.
There is already a PTR_UNTRUSTED flag that is set in some scenarios,
such as when a BPF program reads a kptr directly from a map
without performing a bpf_kptr_xchg() call. These pointers of course can
and should be rejected by the verifier. Unfortunately, however,
PTR_UNTRUSTED does not cover all the cases for safety that need to
be addressed to adequately protect kfuncs. Specifically, pointers
obtained by a BPF program "walking" a struct are _not_ considered
PTR_UNTRUSTED according to BPF. For example, say that we were to add a
kfunc called bpf_task_acquire(), with KF_ACQUIRE | KF_TRUSTED_ARGS, to
acquire a struct task_struct *. If we only used PTR_UNTRUSTED to signal
that a task was unsafe to pass to a kfunc, the verifier would mistakenly
allow the following unsafe BPF program to be loaded:
SEC("tp_btf/task_newtask")
int BPF_PROG(unsafe_acquire_task,
struct task_struct *task,
u64 clone_flags)
{
struct task_struct *acquired, *nested;
nested = task->last_wakee;
/* Would not be rejected by the verifier. */
acquired = bpf_task_acquire(nested);
if (!acquired)
return 0;
bpf_task_release(acquired);
return 0;
}
To address this, this patch defines a new type flag called PTR_TRUSTED
which tracks whether a PTR_TO_BTF_ID pointer is safe to pass to a
KF_TRUSTED_ARGS kfunc or a BPF helper function. PTR_TRUSTED pointers are
passed directly from the kernel as a tracepoint or struct_ops callback
argument. Any nested pointer that is obtained from walking a PTR_TRUSTED
pointer is no longer PTR_TRUSTED. From the example above, the struct
task_struct *task argument is PTR_TRUSTED, but the 'nested' pointer
obtained from 'task->last_wakee' is not PTR_TRUSTED.
A subsequent patch will add kfuncs for storing a task kfunc as a kptr,
and then another patch will add selftests to validate.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221120051004.3605026-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
As we continue to add more features, argument types, kfunc flags, and
different extensions to kfuncs, the code to verify the correctness of
the kfunc prototype wrt the passed in registers has become ad-hoc and
ugly to read. To make life easier, and make a very clear split between
different stages of argument processing, move all the code into
verifier.c and refactor into easier to read helpers and functions.
This also makes sharing code within the verifier easier with kfunc
argument processing. This will be more and more useful in later patches
as we are now moving to implement very core BPF helpers as kfuncs, to
keep them experimental before baking into UAPI.
Remove all kfunc related bits now from btf_check_func_arg_match, as
users have been converted away to refactored kfunc argument handling.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-12-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Ensure that there can be no ownership cycles among different types by
way of having owning objects that can hold some other type as their
element. For instance, a map value can only hold allocated objects, but
these are allowed to have another bpf_list_head. To prevent unbounded
recursion while freeing resources, elements of bpf_list_head in local
kptrs can never have a bpf_list_head which are part of list in a map
value. Later patches will verify this by having dedicated BTF selftests.
Also, to make runtime destruction easier, once btf_struct_metas is fully
populated, we can stash the metadata of the value type directly in the
metadata of the list_head fields, as that allows easier access to the
value type's layout to destruct it at runtime from the btf_field entry
of the list head itself.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Allow specifying bpf_spin_lock, bpf_list_head, bpf_list_node fields in a
allocated object.
Also update btf_struct_access to reject direct access to these special
fields.
A bpf_list_head allows implementing map-in-map style use cases, where an
allocated object with bpf_list_head is linked into a list in a map
value. This would require embedding a bpf_list_node, support for which
is also included. The bpf_spin_lock is used to protect the bpf_list_head
and other data.
While we strictly don't require to hold a bpf_spin_lock while touching
the bpf_list_head in such objects, as when have access to it, we have
complete ownership of the object, the locking constraint is still kept
and may be conditionally lifted in the future.
Note that the specification of such types can be done just like map
values, e.g.:
struct bar {
struct bpf_list_node node;
};
struct foo {
struct bpf_spin_lock lock;
struct bpf_list_head head __contains(bar, node);
struct bpf_list_node node;
};
struct map_value {
struct bpf_spin_lock lock;
struct bpf_list_head head __contains(foo, node);
};
To recognize such types in user BTF, we build a btf_struct_metas array
of metadata items corresponding to each BTF ID. This is done once during
the btf_parse stage to avoid having to do it each time during the
verification process's requirement to inspect the metadata.
Moreover, the computed metadata needs to be passed to some helpers in
future patches which requires allocating them and storing them in the
BTF that is pinned by the program itself, so that valid access can be
assumed to such data during program runtime.
A key thing to note is that once a btf_struct_meta is available for a
type, both the btf_record and btf_field_offs should be available. It is
critical that btf_field_offs is available in case special fields are
present, as we extensively rely on special fields being zeroed out in
map values and allocated objects in later patches. The code ensures that
by bailing out in case of errors and ensuring both are available
together. If the record is not available, the special fields won't be
recognized, so not having both is also fine (in terms of being a
verification error and not a runtime bug).
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Refactor map->off_arr handling into generic functions that can work on
their own without hardcoding map specific code. The btf_fields_offs
structure is now returned from btf_parse_field_offs, which can be reused
later for types in program BTF.
All functions like copy_map_value, zero_map_value call generic
underlying functions so that they can also be reused later for copying
to values allocated in programs which encode specific fields.
Later, some helper functions will also require access to this
btf_field_offs structure to be able to skip over special fields at
runtime.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-9-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Now that kptr_off_tab has been refactored into btf_record, and can hold
more than one specific field type, accomodate bpf_spin_lock and
bpf_timer as well.
While they don't require any more metadata than offset, having all
special fields in one place allows us to share the same code for
allocated user defined types and handle both map values and these
allocated objects in a similar fashion.
As an optimization, we still keep spin_lock_off and timer_off offsets in
the btf_record structure, just to avoid having to find the btf_field
struct each time their offset is needed. This is mostly needed to
manipulate such objects in a map value at runtime. It's ok to hardcode
just one offset as more than one field is disallowed.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
To prepare the BPF verifier to handle special fields in both map values
and program allocated types coming from program BTF, we need to refactor
the kptr_off_tab handling code into something more generic and reusable
across both cases to avoid code duplication.
Later patches also require passing this data to helpers at runtime, so
that they can work on user defined types, initialize them, destruct
them, etc.
The main observation is that both map values and such allocated types
point to a type in program BTF, hence they can be handled similarly. We
can prepare a field metadata table for both cases and store them in
struct bpf_map or struct btf depending on the use case.
Hence, refactor the code into generic btf_record and btf_field member
structs. The btf_record represents the fields of a specific btf_type in
user BTF. The cnt indicates the number of special fields we successfully
recognized, and field_mask is a bitmask of fields that were found, to
enable quick determination of availability of a certain field.
Subsequently, refactor the rest of the code to work with these generic
types, remove assumptions about kptr and kptr_off_tab, rename variables
to more meaningful names, etc.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This is useful in particular to mark the pointer as volatile, so that
compiler treats each load and store to the field as a volatile access.
The alternative is having to define and use READ_ONCE and WRITE_ONCE in
the BPF program.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Allow dynamic pointers (struct bpf_dynptr_kern *) to be specified as
parameters in kfuncs. Also, ensure that dynamic pointers passed as argument
are valid and initialized, are a pointer to the stack, and of the type
local. More dynamic pointer types can be supported in the future.
To properly detect whether a parameter is of the desired type, introduce
the stringify_struct() macro to compare the returned structure name with
the desired name. In addition, protect against structure renames, by
halting the build with BUILD_BUG_ON(), so that developers have to revisit
the code.
To check if a dynamic pointer passed to the kfunc is valid and initialized,
and if its type is local, export the existing functions
is_dynptr_reg_valid_init() and is_dynptr_type_expected().
Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220920075951.929132-5-roberto.sassu@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For drivers (outside of network), the incoming data is not statically
defined in a struct. Most of the time the data buffer is kzalloc-ed
and thus we can not rely on eBPF and BTF to explore the data.
This commit allows to return an arbitrary memory, previously allocated by
the driver.
An interesting extra point is that the kfunc can mark the exported
memory region as read only or read/write.
So, when a kfunc is not returning a pointer to a struct but to a plain
type, we can consider it is a valid allocated memory assuming that:
- one of the arguments is either called rdonly_buf_size or
rdwr_buf_size
- and this argument is a const from the caller point of view
We can then use this parameter as the size of the allocated memory.
The memory is either read-only or read-write based on the name
of the size parameter.
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Link: https://lore.kernel.org/r/20220906151303.2780789-7-benjamin.tissoires@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add KF_DESTRUCTIVE flag for destructive functions. Functions with this
flag set will require CAP_SYS_BOOT capabilities.
Signed-off-by: Artem Savkov <asavkov@redhat.com>
Link: https://lore.kernel.org/r/20220810065905.475418-2-asavkov@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This allows to declare a kfunc as sleepable and prevents its use in
a non sleepable program.
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Co-developed-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/r/20220805214821.1058337-2-haoluo@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Teach the verifier to detect a new KF_TRUSTED_ARGS kfunc flag, which
means each pointer argument must be trusted, which we define as a
pointer that is referenced (has non-zero ref_obj_id) and also needs to
have its offset unchanged, similar to how release functions expect their
argument. This allows a kfunc to receive pointer arguments unchanged
from the result of the acquire kfunc.
This is required to ensure that kfunc that operate on some object only
work on acquired pointers and not normal PTR_TO_BTF_ID with same type
which can be obtained by pointer walking. The restrictions applied to
release arguments also apply to trusted arguments. This implies that
strict type matching (not deducing type by recursively following members
at offset) and OBJ_RELEASE offset checks (ensuring they are zero) are
used for trusted pointer arguments.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220721134245.2450-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Instead of populating multiple sets to indicate some attribute and then
researching the same BTF ID in them, prepare a single unified BTF set
which indicates whether a kfunc is allowed to be called, and also its
attributes if any at the same time. Now, only one call is needed to
perform the lookup for both kfunc availability and its attributes.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220721134245.2450-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, BTF only supports upto 32bit enum value with BTF_KIND_ENUM.
But in kernel, some enum indeed has 64bit values, e.g.,
in uapi bpf.h, we have
enum {
BPF_F_INDEX_MASK = 0xffffffffULL,
BPF_F_CURRENT_CPU = BPF_F_INDEX_MASK,
BPF_F_CTXLEN_MASK = (0xfffffULL << 32),
};
In this case, BTF_KIND_ENUM will encode the value of BPF_F_CTXLEN_MASK
as 0, which certainly is incorrect.
This patch added a new btf kind, BTF_KIND_ENUM64, which permits
64bit value to cover the above use case. The BTF_KIND_ENUM64 has
the following three fields followed by the common type:
struct bpf_enum64 {
__u32 nume_off;
__u32 val_lo32;
__u32 val_hi32;
};
Currently, btf type section has an alignment of 4 as all element types
are u32. Representing the value with __u64 will introduce a pad
for bpf_enum64 and may also introduce misalignment for the 64bit value.
Hence, two members of val_hi32 and val_lo32 are chosen to avoid these issues.
The kflag is also introduced for BTF_KIND_ENUM and BTF_KIND_ENUM64
to indicate whether the value is signed or unsigned. The kflag intends
to provide consistent output of BTF C fortmat with the original
source code. For example, the original BTF_KIND_ENUM bit value is 0xffffffff.
The format C has two choices, printing out 0xffffffff or -1 and current libbpf
prints out as unsigned value. But if the signedness is preserved in btf,
the value can be printed the same as the original source code.
The kflag value 0 means unsigned values, which is consistent to the default
by libbpf and should also cover most cases as well.
The new BTF_KIND_ENUM64 is intended to support the enum value represented as
64bit value. But it can represent all BTF_KIND_ENUM values as well.
The compiler ([1]) and pahole will generate BTF_KIND_ENUM64 only if the value has
to be represented with 64 bits.
In addition, a static inline function btf_kind_core_compat() is introduced which
will be used later when libbpf relo_core.c changed. Here the kernel shares the
same relo_core.c with libbpf.
[1] https://reviews.llvm.org/D124641
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220607062600.3716578-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
We introduce a new style of kfunc helpers, namely *_kptr_get, where they
take pointer to the map value which points to a referenced kernel
pointer contained in the map. Since this is referenced, only
bpf_kptr_xchg from BPF side and xchg from kernel side is allowed to
change the current value, and each pointer that resides in that location
would be referenced, and RCU protected (this must be kept in mind while
adding kernel types embeddable as reference kptr in BPF maps).
This means that if do the load of the pointer value in an RCU read
section, and find a live pointer, then as long as we hold RCU read lock,
it won't be freed by a parallel xchg + release operation. This allows us
to implement a safe refcount increment scheme. Hence, enforce that first
argument of all such kfunc is a proper PTR_TO_MAP_VALUE pointing at the
right offset to referenced pointer.
For the rest of the arguments, they are subjected to typical kfunc
argument checks, hence allowing some flexibility in passing more intent
into how the reference should be taken.
For instance, in case of struct nf_conn, it is not freed until RCU grace
period ends, but can still be reused for another tuple once refcount has
dropped to zero. Hence, a bpf_ct_kptr_get helper not only needs to call
refcount_inc_not_zero, but also do a tuple match after incrementing the
reference, and when it fails to match it, put the reference again and
return NULL.
This can be implemented easily if we allow passing additional parameters
to the bpf_ct_kptr_get kfunc, like a struct bpf_sock_tuple * and a
tuple__sz pair.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-9-memxor@gmail.com
A destructor kfunc can be defined as void func(type *), where type may
be void or any other pointer type as per convenience.
In this patch, we ensure that the type is sane and capture the function
pointer into off_desc of ptr_off_tab for the specific pointer offset,
with the invariant that the dtor pointer is always set when 'kptr_ref'
tag is applied to the pointer's pointee type, which is indicated by the
flag BPF_MAP_VALUE_OFF_F_REF.
Note that only BTF IDs whose destructor kfunc is registered, thus become
the allowed BTF IDs for embedding as referenced kptr. Hence it serves
the purpose of finding dtor kfunc BTF ID, as well acting as a check
against the whitelist of allowed BTF IDs for this purpose.
Finally, wire up the actual freeing of the referenced pointer if any at
all available offsets, so that no references are leaked after the BPF
map goes away and the BPF program previously moved the ownership a
referenced pointer into it.
The behavior is similar to BPF timers, where bpf_map_{update,delete}_elem
will free any existing referenced kptr. The same case is with LRU map's
bpf_lru_push_free/htab_lru_push_free functions, which are extended to
reset unreferenced and free referenced kptr.
Note that unlike BPF timers, kptr is not reset or freed when map uref
drops to zero.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-8-memxor@gmail.com
To support storing referenced PTR_TO_BTF_ID in maps, we require
associating a specific BTF ID with a 'destructor' kfunc. This is because
we need to release a live referenced pointer at a certain offset in map
value from the map destruction path, otherwise we end up leaking
resources.
Hence, introduce support for passing an array of btf_id, kfunc_btf_id
pairs that denote a BTF ID and its associated release function. Then,
add an accessor 'btf_find_dtor_kfunc' which can be used to look up the
destructor kfunc of a certain BTF ID. If found, we can use it to free
the object from the map free path.
The registration of these pairs also serve as a whitelist of structures
which are allowed as referenced PTR_TO_BTF_ID in a BPF map, because
without finding the destructor kfunc, we will bail and return an error.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-7-memxor@gmail.com
This commit introduces a new pointer type 'kptr' which can be embedded
in a map value to hold a PTR_TO_BTF_ID stored by a BPF program during
its invocation. When storing such a kptr, BPF program's PTR_TO_BTF_ID
register must have the same type as in the map value's BTF, and loading
a kptr marks the destination register as PTR_TO_BTF_ID with the correct
kernel BTF and BTF ID.
Such kptr are unreferenced, i.e. by the time another invocation of the
BPF program loads this pointer, the object which the pointer points to
may not longer exist. Since PTR_TO_BTF_ID loads (using BPF_LDX) are
patched to PROBE_MEM loads by the verifier, it would safe to allow user
to still access such invalid pointer, but passing such pointers into
BPF helpers and kfuncs should not be permitted. A future patch in this
series will close this gap.
The flexibility offered by allowing programs to dereference such invalid
pointers while being safe at runtime frees the verifier from doing
complex lifetime tracking. As long as the user may ensure that the
object remains valid, it can ensure data read by it from the kernel
object is valid.
The user indicates that a certain pointer must be treated as kptr
capable of accepting stores of PTR_TO_BTF_ID of a certain type, by using
a BTF type tag 'kptr' on the pointed to type of the pointer. Then, this
information is recorded in the object BTF which will be passed into the
kernel by way of map's BTF information. The name and kind from the map
value BTF is used to look up the in-kernel type, and the actual BTF and
BTF ID is recorded in the map struct in a new kptr_off_tab member. For
now, only storing pointers to structs is permitted.
An example of this specification is shown below:
#define __kptr __attribute__((btf_type_tag("kptr")))
struct map_value {
...
struct task_struct __kptr *task;
...
};
Then, in a BPF program, user may store PTR_TO_BTF_ID with the type
task_struct into the map, and then load it later.
Note that the destination register is marked PTR_TO_BTF_ID_OR_NULL, as
the verifier cannot know whether the value is NULL or not statically, it
must treat all potential loads at that map value offset as loading a
possibly NULL pointer.
Only BPF_LDX, BPF_STX, and BPF_ST (with insn->imm = 0 to denote NULL)
are allowed instructions that can access such a pointer. On BPF_LDX, the
destination register is updated to be a PTR_TO_BTF_ID, and on BPF_STX,
it is checked whether the source register type is a PTR_TO_BTF_ID with
same BTF type as specified in the map BTF. The access size must always
be BPF_DW.
For the map in map support, the kptr_off_tab for outer map is copied
from the inner map's kptr_off_tab. It was chosen to do a deep copy
instead of introducing a refcount to kptr_off_tab, because the copy only
needs to be done when paramterizing using inner_map_fd in the map in map
case, hence would be unnecessary for all other users.
It is not permitted to use MAP_FREEZE command and mmap for BPF map
having kptrs, similar to the bpf_timer case. A kptr also requires that
BPF program has both read and write access to the map (hence both
BPF_F_RDONLY_PROG and BPF_F_WRONLY_PROG are disallowed).
Note that check_map_access must be called from both
check_helper_mem_access and for the BPF instructions, hence the kptr
check must distinguish between ACCESS_DIRECT and ACCESS_HELPER, and
reject ACCESS_HELPER cases. We rename stack_access_src to bpf_access_src
and reuse it for this purpose.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-2-memxor@gmail.com
Adopt libbpf's bpf_core_types_are_compat() for kernel duty by adding
explicit recursion limit of 2 which is enough to handle 2 levels of
function prototypes.
Signed-off-by: Matteo Croce <mcroce@microsoft.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220204005519.60361-2-mcroce@linux.microsoft.com
BPF verifier supports direct memory access for BPF_PROG_TYPE_TRACING type
of bpf programs, e.g., a->b. If "a" is a pointer
pointing to kernel memory, bpf verifier will allow user to write
code in C like a->b and the verifier will translate it to a kernel
load properly. If "a" is a pointer to user memory, it is expected
that bpf developer should be bpf_probe_read_user() helper to
get the value a->b. Without utilizing BTF __user tagging information,
current verifier will assume that a->b is a kernel memory access
and this may generate incorrect result.
Now BTF contains __user information, it can check whether the
pointer points to a user memory or not. If it is, the verifier
can reject the program and force users to use bpf_probe_read_user()
helper explicitly.
In the future, we can easily extend btf_add_space for other
address space tagging, for example, rcu/percpu etc.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220127154606.654961-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Completely remove the old code for check_kfunc_call to help it work
with modules, and also the callback itself.
The previous commit adds infrastructure to register all sets and put
them in vmlinux or module BTF, and concatenates all related sets
organized by the hook and the type. Once populated, these sets remain
immutable for the lifetime of the struct btf.
Also, since we don't need the 'owner' module anywhere when doing
check_kfunc_call, drop the 'btf_modp' module parameter from
find_kfunc_desc_btf.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220114163953.1455836-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch prepares the kernel to support putting all kinds of kfunc BTF
ID sets in the struct btf itself. The various kernel subsystems will
make register_btf_kfunc_id_set call in the initcalls (for built-in code
and modules).
The 'hook' is one of the many program types, e.g. XDP and TC/SCHED_CLS,
STRUCT_OPS, and 'types' are check (allowed or not), acquire, release,
and ret_null (with PTR_TO_BTF_ID_OR_NULL return type).
A maximum of BTF_KFUNC_SET_MAX_CNT (32) kfunc BTF IDs are permitted in a
set of certain hook and type for vmlinux sets, since they are allocated
on demand, and otherwise set as NULL. Module sets can only be registered
once per hook and type, hence they are directly assigned.
A new btf_kfunc_id_set_contains function is exposed for use in verifier,
this new method is faster than the existing list searching method, and
is also automatic. It also lets other code not care whether the set is
unallocated or not.
Note that module code can only do single register_btf_kfunc_id_set call
per hook. This is why sorting is only done for in-kernel vmlinux sets,
because there might be multiple sets for the same hook and type that
must be concatenated, hence sorting them is required to ensure bsearch
in btf_id_set_contains continues to work correctly.
Next commit will update the kernel users to make use of this
infrastructure.
Finally, add __maybe_unused annotation for BTF ID macros for the
!CONFIG_DEBUG_INFO_BTF case, so that they don't produce warnings during
build time.
The previous patch is also needed to provide synchronization against
initialization for module BTF's kfunc_set_tab introduced here, as
described below:
The kfunc_set_tab pointer in struct btf is write-once (if we consider
the registration phase (comprised of multiple register_btf_kfunc_id_set
calls) as a single operation). In this sense, once it has been fully
prepared, it isn't modified, only used for lookup (from the verifier
context).
For btf_vmlinux, it is initialized fully during the do_initcalls phase,
which happens fairly early in the boot process, before any processes are
present. This also eliminates the possibility of bpf_check being called
at that point, thus relieving us of ensuring any synchronization between
the registration and lookup function (btf_kfunc_id_set_contains).
However, the case for module BTF is a bit tricky. The BTF is parsed,
prepared, and published from the MODULE_STATE_COMING notifier callback.
After this, the module initcalls are invoked, where our registration
function will be called to populate the kfunc_set_tab for module BTF.
At this point, BTF may be available to userspace while its corresponding
module is still intializing. A BTF fd can then be passed to verifier
using bpf syscall (e.g. for kfunc call insn).
Hence, there is a race window where verifier may concurrently try to
lookup the kfunc_set_tab. To prevent this race, we must ensure the
operations are serialized, or waiting for the __init functions to
complete.
In the earlier registration API, this race was alleviated as verifier
bpf_check_mod_kfunc_call didn't find the kfunc BTF ID until it was added
by the registration function (called usually at the end of module __init
function after all module resources have been initialized). If the
verifier made the check_kfunc_call before kfunc BTF ID was added to the
list, it would fail verification (saying call isn't allowed). The
access to list was protected using a mutex.
Now, it would still fail verification, but for a different reason
(returning ENXIO due to the failed btf_try_get_module call in
add_kfunc_call), because if the __init call is in progress the module
will be in the middle of MODULE_STATE_COMING -> MODULE_STATE_LIVE
transition, and the BTF_MODULE_LIVE flag for btf_module instance will
not be set, so the btf_try_get_module call will fail.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220114163953.1455836-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Andrii Nakryiko says:
====================
bpf-next 2021-12-10 v2
We've added 115 non-merge commits during the last 26 day(s) which contain
a total of 182 files changed, 5747 insertions(+), 2564 deletions(-).
The main changes are:
1) Various samples fixes, from Alexander Lobakin.
2) BPF CO-RE support in kernel and light skeleton, from Alexei Starovoitov.
3) A batch of new unified APIs for libbpf, logging improvements, version
querying, etc. Also a batch of old deprecations for old APIs and various
bug fixes, in preparation for libbpf 1.0, from Andrii Nakryiko.
4) BPF documentation reorganization and improvements, from Christoph Hellwig
and Dave Tucker.
5) Support for declarative initialization of BPF_MAP_TYPE_PROG_ARRAY in
libbpf, from Hengqi Chen.
6) Verifier log fixes, from Hou Tao.
7) Runtime-bounded loops support with bpf_loop() helper, from Joanne Koong.
8) Extend branch record capturing to all platforms that support it,
from Kajol Jain.
9) Light skeleton codegen improvements, from Kumar Kartikeya Dwivedi.
10) bpftool doc-generating script improvements, from Quentin Monnet.
11) Two libbpf v0.6 bug fixes, from Shuyi Cheng and Vincent Minet.
12) Deprecation warning fix for perf/bpf_counter, from Song Liu.
13) MAX_TAIL_CALL_CNT unification and MIPS build fix for libbpf,
from Tiezhu Yang.
14) BTF_KING_TYPE_TAG follow-up fixes, from Yonghong Song.
15) Selftests fixes and improvements, from Ilya Leoshkevich, Jean-Philippe
Brucker, Jiri Olsa, Maxim Mikityanskiy, Tirthendu Sarkar, Yucong Sun,
and others.
* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (115 commits)
libbpf: Add "bool skipped" to struct bpf_map
libbpf: Fix typo in btf__dedup@LIBBPF_0.0.2 definition
bpftool: Switch bpf_object__load_xattr() to bpf_object__load()
selftests/bpf: Remove the only use of deprecated bpf_object__load_xattr()
selftests/bpf: Add test for libbpf's custom log_buf behavior
selftests/bpf: Replace all uses of bpf_load_btf() with bpf_btf_load()
libbpf: Deprecate bpf_object__load_xattr()
libbpf: Add per-program log buffer setter and getter
libbpf: Preserve kernel error code and remove kprobe prog type guessing
libbpf: Improve logging around BPF program loading
libbpf: Allow passing user log setting through bpf_object_open_opts
libbpf: Allow passing preallocated log_buf when loading BTF into kernel
libbpf: Add OPTS-based bpf_btf_load() API
libbpf: Fix bpf_prog_load() log_buf logic for log_level 0
samples/bpf: Remove unneeded variable
bpf: Remove redundant assignment to pointer t
selftests/bpf: Fix a compilation warning
perf/bpf_counter: Use bpf_map_create instead of bpf_create_map
samples: bpf: Fix 'unknown warning group' build warning on Clang
samples: bpf: Fix xdp_sample_user.o linking with Clang
...
====================
Link: https://lore.kernel.org/r/20211210234746.2100561-1-andrii@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Vinicius Costa Gomes reported [0] that build fails when
CONFIG_DEBUG_INFO_BTF is enabled and CONFIG_BPF_SYSCALL is disabled.
This leads to btf.c not being compiled, and then no symbol being present
in vmlinux for the declarations in btf.h. Since BTF is not useful
without enabling BPF subsystem, disallow this combination.
However, theoretically disabling both now could still fail, as the
symbol for kfunc_btf_id_list variables is not available. This isn't a
problem as the compiler usually optimizes the whole register/unregister
call, but at lower optimization levels it can fail the build in linking
stage.
Fix that by adding dummy variables so that modules taking address of
them still work, but the whole thing is a noop.
[0]: https://lore.kernel.org/bpf/20211110205418.332403-1-vinicius.gomes@intel.com
Fixes: 14f267d95f ("bpf: btf: Introduce helpers for dynamic BTF set registration")
Reported-by: Vinicius Costa Gomes <vinicius.gomes@intel.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20211122144742.477787-2-memxor@gmail.com
Make relo_core.c to be compiled for the kernel and for user space libbpf.
Note the patch is reducing BPF_CORE_SPEC_MAX_LEN from 64 to 32.
This is the maximum number of nested structs and arrays.
For example:
struct sample {
int a;
struct {
int b[10];
};
};
struct sample *s = ...;
int *y = &s->b[5];
This field access is encoded as "0:1:0:5" and spec len is 4.
The follow up patch might bump it back to 64.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211201181040.23337-4-alexei.starovoitov@gmail.com
Rename btf_member_bit_offset() and btf_member_bitfield_size() to
avoid conflicts with similarly named helpers in libbpf's btf.h.
Rename the kernel helpers, since libbpf helpers are part of uapi.
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211201181040.23337-3-alexei.starovoitov@gmail.com
This adds selftests that tests the success and failure path for modules
kfuncs (in presence of invalid kfunc calls) for both libbpf and
gen_loader. It also adds a prog_test kfunc_btf_id_list so that we can
add module BTF ID set from bpf_testmod.
This also introduces a couple of test cases to verifier selftests for
validating whether we get an error or not depending on if invalid kfunc
call remains after elimination of unreachable instructions.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211002011757.311265-10-memxor@gmail.com
This commit moves BTF ID lookup into the newly added registration
helper, in a way that the bbr, cubic, and dctcp implementation set up
their sets in the bpf_tcp_ca kfunc_btf_set list, while the ones not
dependent on modules are looked up from the wrapper function.
This lifts the restriction for them to be compiled as built in objects,
and can be loaded as modules if required. Also modify Makefile.modfinal
to call resolve_btfids for each module.
Note that since kernel kfunc_ids never overlap with module kfunc_ids, we
only match the owner for module btf id sets.
See following commits for background on use of:
CONFIG_X86 ifdef:
569c484f99 (bpf: Limit static tcp-cc functions in the .BTF_ids list to x86)
CONFIG_DYNAMIC_FTRACE ifdef:
7aae231ac9 (bpf: tcp: Limit calling some tcp cc functions to CONFIG_DYNAMIC_FTRACE)
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211002011757.311265-6-memxor@gmail.com
This adds helpers for registering btf_id_set from modules and the
bpf_check_mod_kfunc_call callback that can be used to look them up.
With in kernel sets, the way this is supposed to work is, in kernel
callback looks up within the in-kernel kfunc whitelist, and then defers
to the dynamic BTF set lookup if it doesn't find the BTF id. If there is
no in-kernel BTF id set, this callback can be used directly.
Also fix includes for btf.h and bpfptr.h so that they can included in
isolation. This is in preparation for their usage in tcp_bbr, tcp_cubic
and tcp_dctcp modules in the next patch.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211002011757.311265-4-memxor@gmail.com
Restrict bpf timers to array, hash (both preallocated and kmalloced), and
lru map types. The per-cpu maps with timers don't make sense, since 'struct
bpf_timer' is a part of map value. bpf timers in per-cpu maps would mean that
the number of timers depends on number of possible cpus and timers would not be
accessible from all cpus. lpm map support can be added in the future.
The timers in inner maps are supported.
The bpf_map_update/delete_elem() helpers and sys_bpf commands cancel and free
bpf_timer in a given map element.
Similar to 'struct bpf_spin_lock' BTF is required and it is used to validate
that map element indeed contains 'struct bpf_timer'.
Make check_and_init_map_value() init both bpf_spin_lock and bpf_timer when
map element data is reused in preallocated htab and lru maps.
Teach copy_map_value() to support both bpf_spin_lock and bpf_timer in a single
map element. There could be one of each, but not more than one. Due to 'one
bpf_timer in one element' restriction do not support timers in global data,
since global data is a map of single element, but from bpf program side it's
seen as many global variables and restriction of single global timer would be
odd. The sys_bpf map_freeze and sys_mmap syscalls are not allowed on maps with
timers, since user space could have corrupted mmap element and crashed the
kernel. The maps with timers cannot be readonly. Due to these restrictions
search for bpf_timer in datasec BTF in case it was placed in the global data to
report clear error.
The previous patch allowed 'struct bpf_timer' as a first field in a map
element only. Relax this restriction.
Refactor lru map to s/bpf_lru_push_free/htab_lru_push_free/ to cancel and free
the timer when lru map deletes an element as a part of it eviction algorithm.
Make sure that bpf program cannot access 'struct bpf_timer' via direct load/store.
The timer operation are done through helpers only.
This is similar to 'struct bpf_spin_lock'.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-5-alexei.starovoitov@gmail.com
Similar to prog_load make btf_load command to be availble to
bpf_prog_type_syscall program.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210514003623.28033-7-alexei.starovoitov@gmail.com
This patch adds support to BPF verifier to allow bpf program calling
kernel function directly.
The use case included in this set is to allow bpf-tcp-cc to directly
call some tcp-cc helper functions (e.g. "tcp_cong_avoid_ai()"). Those
functions have already been used by some kernel tcp-cc implementations.
This set will also allow the bpf-tcp-cc program to directly call the
kernel tcp-cc implementation, For example, a bpf_dctcp may only want to
implement its own dctcp_cwnd_event() and reuse other dctcp_*() directly
from the kernel tcp_dctcp.c instead of reimplementing (or
copy-and-pasting) them.
The tcp-cc kernel functions mentioned above will be white listed
for the struct_ops bpf-tcp-cc programs to use in a later patch.
The white listed functions are not bounded to a fixed ABI contract.
Those functions have already been used by the existing kernel tcp-cc.
If any of them has changed, both in-tree and out-of-tree kernel tcp-cc
implementations have to be changed. The same goes for the struct_ops
bpf-tcp-cc programs which have to be adjusted accordingly.
This patch is to make the required changes in the bpf verifier.
First change is in btf.c, it adds a case in "btf_check_func_arg_match()".
When the passed in "btf->kernel_btf == true", it means matching the
verifier regs' states with a kernel function. This will handle the
PTR_TO_BTF_ID reg. It also maps PTR_TO_SOCK_COMMON, PTR_TO_SOCKET,
and PTR_TO_TCP_SOCK to its kernel's btf_id.
In the later libbpf patch, the insn calling a kernel function will
look like:
insn->code == (BPF_JMP | BPF_CALL)
insn->src_reg == BPF_PSEUDO_KFUNC_CALL /* <- new in this patch */
insn->imm == func_btf_id /* btf_id of the running kernel */
[ For the future calling function-in-kernel-module support, an array
of module btf_fds can be passed at the load time and insn->off
can be used to index into this array. ]
At the early stage of verifier, the verifier will collect all kernel
function calls into "struct bpf_kfunc_desc". Those
descriptors are stored in "prog->aux->kfunc_tab" and will
be available to the JIT. Since this "add" operation is similar
to the current "add_subprog()" and looking for the same insn->code,
they are done together in the new "add_subprog_and_kfunc()".
In the "do_check()" stage, the new "check_kfunc_call()" is added
to verify the kernel function call instruction:
1. Ensure the kernel function can be used by a particular BPF_PROG_TYPE.
A new bpf_verifier_ops "check_kfunc_call" is added to do that.
The bpf-tcp-cc struct_ops program will implement this function in
a later patch.
2. Call "btf_check_kfunc_args_match()" to ensure the regs can be
used as the args of a kernel function.
3. Mark the regs' type, subreg_def, and zext_dst.
At the later do_misc_fixups() stage, the new fixup_kfunc_call()
will replace the insn->imm with the function address (relative
to __bpf_call_base). If needed, the jit can find the btf_func_model
by calling the new bpf_jit_find_kfunc_model(prog, insn).
With the imm set to the function address, "bpftool prog dump xlated"
will be able to display the kernel function calls the same way as
it displays other bpf helper calls.
gpl_compatible program is required to call kernel function.
This feature currently requires JIT.
The verifier selftests are adjusted because of the changes in
the verbose log in add_subprog_and_kfunc().
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210325015142.1544736-1-kafai@fb.com
This patch moved the subprog specific logic from
btf_check_func_arg_match() to the new btf_check_subprog_arg_match().
The core logic is left in btf_check_func_arg_match() which
will be reused later to check the kernel function call.
The "if (!btf_type_is_ptr(t))" is checked first to improve the
indentation which will be useful for a later patch.
Some of the "btf_kind_str[]" usages is replaced with the shortcut
"btf_type_str(t)".
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210325015136.1544504-1-kafai@fb.com
The selftest failed to compile with clang-built bpf-next.
Adding LLVM=1 to your vmlinux and selftest build will use clang.
The error message is:
progs/test_sk_storage_tracing.c:38:18: error: use of undeclared identifier 'BPF_TCP_CLOSE'
if (newstate == BPF_TCP_CLOSE)
^
1 error generated.
make: *** [Makefile:423: /bpf-next/tools/testing/selftests/bpf/test_sk_storage_tracing.o] Error 1
The reason for the failure is that BPF_TCP_CLOSE, a value of
an anonymous enum defined in uapi bpf.h, is not defined in
vmlinux.h. gcc does not have this problem. Since vmlinux.h
is derived from BTF which is derived from vmlinux DWARF,
that means gcc-produced vmlinux DWARF has BPF_TCP_CLOSE
while llvm-produced vmlinux DWARF does not have.
BPF_TCP_CLOSE is referenced in net/ipv4/tcp.c as
BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
The following test mimics the above BUILD_BUG_ON, preprocessed
with clang compiler, and shows gcc DWARF contains BPF_TCP_CLOSE while
llvm DWARF does not.
$ cat t.c
enum {
BPF_TCP_ESTABLISHED = 1,
BPF_TCP_CLOSE = 7,
};
enum {
TCP_ESTABLISHED = 1,
TCP_CLOSE = 7,
};
int test() {
do {
extern void __compiletime_assert_767(void) ;
if ((int)BPF_TCP_CLOSE != (int)TCP_CLOSE) __compiletime_assert_767();
} while (0);
return 0;
}
$ clang t.c -O2 -c -g && llvm-dwarfdump t.o | grep BPF_TCP_CLOSE
$ gcc t.c -O2 -c -g && llvm-dwarfdump t.o | grep BPF_TCP_CLOSE
DW_AT_name ("BPF_TCP_CLOSE")
Further checking clang code find clang actually tried to
evaluate condition at compile time. If it is definitely
true/false, it will perform optimization and the whole if condition
will be removed before generating IR/debuginfo.
This patch explicited add an expression after the
above mentioned BUILD_BUG_ON in net/ipv4/tcp.c like
(void)BPF_TCP_ESTABLISHED
to enable generation of debuginfo for the anonymous
enum which also includes BPF_TCP_CLOSE.
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210317174132.589276-1-yhs@fb.com
Add support for directly accessing kernel module variables from BPF programs
using special ldimm64 instructions. This functionality builds upon vmlinux
ksym support, but extends ldimm64 with src_reg=BPF_PSEUDO_BTF_ID to allow
specifying kernel module BTF's FD in insn[1].imm field.
During BPF program load time, verifier will resolve FD to BTF object and will
take reference on BTF object itself and, for module BTFs, corresponding module
as well, to make sure it won't be unloaded from under running BPF program. The
mechanism used is similar to how bpf_prog keeps track of used bpf_maps.
One interesting change is also in how per-CPU variable is determined. The
logic is to find .data..percpu data section in provided BTF, but both vmlinux
and module each have their own .data..percpu entries in BTF. So for module's
case, the search for DATASEC record needs to look at only module's added BTF
types. This is implemented with custom search function.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/bpf/20210112075520.4103414-6-andrii@kernel.org
Add ability for user-space programs to specify non-vmlinux BTF when attaching
BTF-powered BPF programs: raw_tp, fentry/fexit/fmod_ret, LSM, etc. For this,
attach_prog_fd (now with the alias name attach_btf_obj_fd) should specify FD
of a module or vmlinux BTF object. For backwards compatibility reasons,
0 denotes vmlinux BTF. Only kernel BTF (vmlinux or module) can be specified.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201203204634.1325171-11-andrii@kernel.org
Remove a permeating assumption thoughout BPF verifier of vmlinux BTF. Instead,
wherever BTF type IDs are involved, also track the instance of struct btf that
goes along with the type ID. This allows to gradually add support for kernel
module BTFs and using/tracking module types across BPF helper calls and
registers.
This patch also renames btf_id() function to btf_obj_id() to minimize naming
clash with using btf_id to denote BTF *type* ID, rather than BTF *object*'s ID.
Also, altough btf_vmlinux can't get destructed and thus doesn't need
refcounting, module BTFs need that, so apply BTF refcounting universally when
BPF program is using BTF-powered attachment (tp_btf, fentry/fexit, etc). This
makes for simpler clean up code.
Now that BTF type ID is not enough to uniquely identify a BTF type, extend BPF
trampoline key to include BTF object ID. To differentiate that from target
program BPF ID, set 31st bit of type ID. BTF type IDs (at least currently) are
not allowed to take full 32 bits, so there is no danger of confusing that bit
with a valid BTF type ID.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201203204634.1325171-10-andrii@kernel.org
Add bpf_per_cpu_ptr() to help bpf programs access percpu vars.
bpf_per_cpu_ptr() has the same semantic as per_cpu_ptr() in the kernel
except that it may return NULL. This happens when the cpu parameter is
out of range. So the caller must check the returned value.
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200929235049.2533242-5-haoluo@google.com
Pseudo_btf_id is a type of ld_imm insn that associates a btf_id to a
ksym so that further dereferences on the ksym can use the BTF info
to validate accesses. Internally, when seeing a pseudo_btf_id ld insn,
the verifier reads the btf_id stored in the insn[0]'s imm field and
marks the dst_reg as PTR_TO_BTF_ID. The btf_id points to a VAR_KIND,
which is encoded in btf_vminux by pahole. If the VAR is not of a struct
type, the dst reg will be marked as PTR_TO_MEM instead of PTR_TO_BTF_ID
and the mem_size is resolved to the size of the VAR's type.
>From the VAR btf_id, the verifier can also read the address of the
ksym's corresponding kernel var from kallsyms and use that to fill
dst_reg.
Therefore, the proper functionality of pseudo_btf_id depends on (1)
kallsyms and (2) the encoding of kernel global VARs in pahole, which
should be available since pahole v1.18.
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200929235049.2533242-2-haoluo@google.com
A helper is added to allow seq file writing of kernel data
structures using vmlinux BTF. Its signature is
long bpf_seq_printf_btf(struct seq_file *m, struct btf_ptr *ptr,
u32 btf_ptr_size, u64 flags);
Flags and struct btf_ptr definitions/use are identical to the
bpf_snprintf_btf helper, and the helper returns 0 on success
or a negative error value.
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Alan Maguire <alan.maguire@oracle.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/1601292670-1616-8-git-send-email-alan.maguire@oracle.com
A helper is added to support tracing kernel type information in BPF
using the BPF Type Format (BTF). Its signature is
long bpf_snprintf_btf(char *str, u32 str_size, struct btf_ptr *ptr,
u32 btf_ptr_size, u64 flags);
struct btf_ptr * specifies
- a pointer to the data to be traced
- the BTF id of the type of data pointed to
- a flags field is provided for future use; these flags
are not to be confused with the BTF_F_* flags
below that control how the btf_ptr is displayed; the
flags member of the struct btf_ptr may be used to
disambiguate types in kernel versus module BTF, etc;
the main distinction is the flags relate to the type
and information needed in identifying it; not how it
is displayed.
For example a BPF program with a struct sk_buff *skb
could do the following:
static struct btf_ptr b = { };
b.ptr = skb;
b.type_id = __builtin_btf_type_id(struct sk_buff, 1);
bpf_snprintf_btf(str, sizeof(str), &b, sizeof(b), 0, 0);
Default output looks like this:
(struct sk_buff){
.transport_header = (__u16)65535,
.mac_header = (__u16)65535,
.end = (sk_buff_data_t)192,
.head = (unsigned char *)0x000000007524fd8b,
.data = (unsigned char *)0x000000007524fd8b,
.truesize = (unsigned int)768,
.users = (refcount_t){
.refs = (atomic_t){
.counter = (int)1,
},
},
}
Flags modifying display are as follows:
- BTF_F_COMPACT: no formatting around type information
- BTF_F_NONAME: no struct/union member names/types
- BTF_F_PTR_RAW: show raw (unobfuscated) pointer values;
equivalent to %px.
- BTF_F_ZERO: show zero-valued struct/union members;
they are not displayed by default
Signed-off-by: Alan Maguire <alan.maguire@oracle.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/1601292670-1616-4-git-send-email-alan.maguire@oracle.com
generalize the "seq_show" seq file support in btf.c to support
a generic show callback of which we support two instances; the
current seq file show, and a show with snprintf() behaviour which
instead writes the type data to a supplied string.
Both classes of show function call btf_type_show() with different
targets; the seq file or the string to be written. In the string
case we need to track additional data - length left in string to write
and length to return that we would have written (a la snprintf).
By default show will display type information, field members and
their types and values etc, and the information is indented
based upon structure depth. Zeroed fields are omitted.
Show however supports flags which modify its behaviour:
BTF_SHOW_COMPACT - suppress newline/indent.
BTF_SHOW_NONAME - suppress show of type and member names.
BTF_SHOW_PTR_RAW - do not obfuscate pointer values.
BTF_SHOW_UNSAFE - do not copy data to safe buffer before display.
BTF_SHOW_ZERO - show zeroed values (by default they are not shown).
Signed-off-by: Alan Maguire <alan.maguire@oracle.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/1601292670-1616-3-git-send-email-alan.maguire@oracle.com
Moving btf_resolve_size into __btf_resolve_size and
keeping btf_resolve_size public with just first 3
arguments, because the rest of the arguments are not
used by outside callers.
Following changes are adding more arguments, which
are not useful to outside callers. They will be added
to the __btf_resolve_size function.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200825192124.710397-4-jolsa@kernel.org
To ensure btf_ctx_access() is safe the verifier checks that the BTF
arg type is an int, enum, or pointer. When the function does the
BTF arg lookup it uses the calculation 'arg = off / 8' using the
fact that registers are 8B. This requires that the first arg is
in the first reg, the second in the second, and so on. However,
for __int128 the arg will consume two registers by default LLVM
implementation. So this will cause the arg layout assumed by the
'arg = off / 8' calculation to be incorrect.
Because __int128 is uncommon this patch applies the easiest fix and
will force int types to be sizeof(u64) or smaller so that they will
fit in a single register.
v2: remove unneeded parens per Andrii's feedback
Fixes: 9e15db6613 ("bpf: Implement accurate raw_tp context access via BTF")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/159303723962.11287.13309537171132420717.stgit@john-Precision-5820-Tower
Introduce dynamic program extensions. The users can load additional BPF
functions and replace global functions in previously loaded BPF programs while
these programs are executing.
Global functions are verified individually by the verifier based on their types only.
Hence the global function in the new program which types match older function can
safely replace that corresponding function.
This new function/program is called 'an extension' of old program. At load time
the verifier uses (attach_prog_fd, attach_btf_id) pair to identify the function
to be replaced. The BPF program type is derived from the target program into
extension program. Technically bpf_verifier_ops is copied from target program.
The BPF_PROG_TYPE_EXT program type is a placeholder. It has empty verifier_ops.
The extension program can call the same bpf helper functions as target program.
Single BPF_PROG_TYPE_EXT type is used to extend XDP, SKB and all other program
types. The verifier allows only one level of replacement. Meaning that the
extension program cannot recursively extend an extension. That also means that
the maximum stack size is increasing from 512 to 1024 bytes and maximum
function nesting level from 8 to 16. The programs don't always consume that
much. The stack usage is determined by the number of on-stack variables used by
the program. The verifier could have enforced 512 limit for combined original
plus extension program, but it makes for difficult user experience. The main
use case for extensions is to provide generic mechanism to plug external
programs into policy program or function call chaining.
BPF trampoline is used to track both fentry/fexit and program extensions
because both are using the same nop slot at the beginning of every BPF
function. Attaching fentry/fexit to a function that was replaced is not
allowed. The opposite is true as well. Replacing a function that currently
being analyzed with fentry/fexit is not allowed. The executable page allocated
by BPF trampoline is not used by program extensions. This inefficiency will be
optimized in future patches.
Function by function verification of global function supports scalars and
pointer to context only. Hence program extensions are supported for such class
of global functions only. In the future the verifier will be extended with
support to pointers to structures, arrays with sizes, etc.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200121005348.2769920-2-ast@kernel.org