Commit Graph

520 Commits

Author SHA1 Message Date
Florent Revest 4f19cab761 bpf: Add a bpf_sock_from_file helper
While eBPF programs can check whether a file is a socket by file->f_op
== &socket_file_ops, they cannot convert the void private_data pointer
to a struct socket BTF pointer. In order to do this a new helper
wrapping sock_from_file is added.

This is useful to tracing programs but also other program types
inheriting this set of helpers such as iterators or LSM programs.

Signed-off-by: Florent Revest <revest@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: KP Singh <kpsingh@google.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20201204113609.1850150-2-revest@google.com
2020-12-04 22:32:40 +01:00
Andrii Nakryiko 290248a5b7 bpf: Allow to specify kernel module BTFs when attaching BPF programs
Add ability for user-space programs to specify non-vmlinux BTF when attaching
BTF-powered BPF programs: raw_tp, fentry/fexit/fmod_ret, LSM, etc. For this,
attach_prog_fd (now with the alias name attach_btf_obj_fd) should specify FD
of a module or vmlinux BTF object. For backwards compatibility reasons,
0 denotes vmlinux BTF. Only kernel BTF (vmlinux or module) can be specified.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201203204634.1325171-11-andrii@kernel.org
2020-12-03 17:38:21 -08:00
KP Singh 27672f0d28 bpf: Add a BPF helper for getting the IMA hash of an inode
Provide a wrapper function to get the IMA hash of an inode. This helper
is useful in fingerprinting files (e.g executables on execution) and
using these fingerprints in detections like an executable unlinking
itself.

Since the ima_inode_hash can sleep, it's only allowed for sleepable
LSM hooks.

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20201124151210.1081188-3-kpsingh@chromium.org
2020-11-26 00:04:04 +01:00
Dmitrii Banshchikov d055126180 bpf: Add bpf_ktime_get_coarse_ns helper
The helper uses CLOCK_MONOTONIC_COARSE source of time that is less
accurate but more performant.

We have a BPF CGROUP_SKB firewall that supports event logging through
bpf_perf_event_output(). Each event has a timestamp and currently we use
bpf_ktime_get_ns() for it. Use of bpf_ktime_get_coarse_ns() saves ~15-20
ns in time required for event logging.

bpf_ktime_get_ns():
EgressLogByRemoteEndpoint                              113.82ns    8.79M

bpf_ktime_get_coarse_ns():
EgressLogByRemoteEndpoint                               95.40ns   10.48M

Signed-off-by: Dmitrii Banshchikov <me@ubique.spb.ru>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20201117184549.257280-1-me@ubique.spb.ru
2020-11-18 23:25:32 +01:00
KP Singh 3f6719c7b6 bpf: Add bpf_bprm_opts_set helper
The helper allows modification of certain bits on the linux_binprm
struct starting with the secureexec bit which can be updated using the
BPF_F_BPRM_SECUREEXEC flag.

secureexec can be set by the LSM for privilege gaining executions to set
the AT_SECURE auxv for glibc.  When set, the dynamic linker disables the
use of certain environment variables (like LD_PRELOAD).

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20201117232929.2156341-1-kpsingh@chromium.org
2020-11-18 01:36:27 +01:00
Andrii Nakryiko 5329722057 bpf: Assign ID to vmlinux BTF and return extra info for BTF in GET_OBJ_INFO
Allocate ID for vmlinux BTF. This makes it visible when iterating over all BTF
objects in the system. To allow distinguishing vmlinux BTF (and later kernel
module BTF) from user-provided BTFs, expose extra kernel_btf flag, as well as
BTF name ("vmlinux" for vmlinux BTF, will equal to module's name for module
BTF).  We might want to later allow specifying BTF name for user-provided BTFs
as well, if that makes sense. But currently this is reserved only for
in-kernel BTFs.

Having in-kernel BTFs exposed IDs will allow to extend BPF APIs that require
in-kernel BTF type with ability to specify BTF types from kernel modules, not
just vmlinux BTF. This will be implemented in a follow up patch set for
fentry/fexit/fmod_ret/lsm/etc.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201110011932.3201430-3-andrii@kernel.org
2020-11-10 15:25:53 -08:00
KP Singh 3ca1032ab7 bpf: Implement get_current_task_btf and RET_PTR_TO_BTF_ID
The currently available bpf_get_current_task returns an unsigned integer
which can be used along with BPF_CORE_READ to read data from
the task_struct but still cannot be used as an input argument to a
helper that accepts an ARG_PTR_TO_BTF_ID of type task_struct.

In order to implement this helper a new return type, RET_PTR_TO_BTF_ID,
is added. This is similar to RET_PTR_TO_BTF_ID_OR_NULL but does not
require checking the nullness of returned pointer.

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20201106103747.2780972-6-kpsingh@chromium.org
2020-11-06 08:08:37 -08:00
KP Singh 4cf1bc1f10 bpf: Implement task local storage
Similar to bpf_local_storage for sockets and inodes add local storage
for task_struct.

The life-cycle of storage is managed with the life-cycle of the
task_struct.  i.e. the storage is destroyed along with the owning task
with a callback to the bpf_task_storage_free from the task_free LSM
hook.

The BPF LSM allocates an __rcu pointer to the bpf_local_storage in
the security blob which are now stackable and can co-exist with other
LSMs.

The userspace map operations can be done by using a pid fd as a key
passed to the lookup, update and delete operations.

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20201106103747.2780972-3-kpsingh@chromium.org
2020-11-06 08:08:37 -08:00
Toke Høiland-Jørgensen ba452c9e99 bpf: Fix bpf_redirect_neigh helper api to support supplying nexthop
Based on the discussion in [0], update the bpf_redirect_neigh() helper to
accept an optional parameter specifying the nexthop information. This makes
it possible to combine bpf_fib_lookup() and bpf_redirect_neigh() without
incurring a duplicate FIB lookup - since the FIB lookup helper will return
the nexthop information even if no neighbour is present, this can simply
be passed on to bpf_redirect_neigh() if bpf_fib_lookup() returns
BPF_FIB_LKUP_RET_NO_NEIGH. Thus fix & extend it before helper API is frozen.

  [0] https://lore.kernel.org/bpf/393e17fc-d187-3a8d-2f0d-a627c7c63fca@iogearbox.net/

Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: David Ahern <dsahern@kernel.org>
Link: https://lore.kernel.org/bpf/160322915615.32199.1187570224032024535.stgit@toke.dk
2020-10-22 01:28:54 +02:00
Daniel Borkmann 4a8f87e60f bpf: Allow for map-in-map with dynamic inner array map entries
Recent work in f4d0525921 ("bpf: Add map_meta_equal map ops") and 134fede4ee
("bpf: Relax max_entries check for most of the inner map types") added support
for dynamic inner max elements for most map-in-map types. Exceptions were maps
like array or prog array where the map_gen_lookup() callback uses the maps'
max_entries field as a constant when emitting instructions.

We recently implemented Maglev consistent hashing into Cilium's load balancer
which uses map-in-map with an outer map being hash and inner being array holding
the Maglev backend table for each service. This has been designed this way in
order to reduce overall memory consumption given the outer hash map allows to
avoid preallocating a large, flat memory area for all services. Also, the
number of service mappings is not always known a-priori.

The use case for dynamic inner array map entries is to further reduce memory
overhead, for example, some services might just have a small number of back
ends while others could have a large number. Right now the Maglev backend table
for small and large number of backends would need to have the same inner array
map entries which adds a lot of unneeded overhead.

Dynamic inner array map entries can be realized by avoiding the inlined code
generation for their lookup. The lookup will still be efficient since it will
be calling into array_map_lookup_elem() directly and thus avoiding retpoline.
The patch adds a BPF_F_INNER_MAP flag to map creation which therefore skips
inline code generation and relaxes array_map_meta_equal() check to ignore both
maps' max_entries. This also still allows to have faster lookups for map-in-map
when BPF_F_INNER_MAP is not specified and hence dynamic max_entries not needed.

Example code generation where inner map is dynamic sized array:

  # bpftool p d x i 125
  int handle__sys_enter(void * ctx):
  ; int handle__sys_enter(void *ctx)
     0: (b4) w1 = 0
  ; int key = 0;
     1: (63) *(u32 *)(r10 -4) = r1
     2: (bf) r2 = r10
  ;
     3: (07) r2 += -4
  ; inner_map = bpf_map_lookup_elem(&outer_arr_dyn, &key);
     4: (18) r1 = map[id:468]
     6: (07) r1 += 272
     7: (61) r0 = *(u32 *)(r2 +0)
     8: (35) if r0 >= 0x3 goto pc+5
     9: (67) r0 <<= 3
    10: (0f) r0 += r1
    11: (79) r0 = *(u64 *)(r0 +0)
    12: (15) if r0 == 0x0 goto pc+1
    13: (05) goto pc+1
    14: (b7) r0 = 0
    15: (b4) w6 = -1
  ; if (!inner_map)
    16: (15) if r0 == 0x0 goto pc+6
    17: (bf) r2 = r10
  ;
    18: (07) r2 += -4
  ; val = bpf_map_lookup_elem(inner_map, &key);
    19: (bf) r1 = r0                               | No inlining but instead
    20: (85) call array_map_lookup_elem#149280     | call to array_map_lookup_elem()
  ; return val ? *val : -1;                        | for inner array lookup.
    21: (15) if r0 == 0x0 goto pc+1
  ; return val ? *val : -1;
    22: (61) r6 = *(u32 *)(r0 +0)
  ; }
    23: (bc) w0 = w6
    24: (95) exit

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20201010234006.7075-4-daniel@iogearbox.net
2020-10-11 10:21:04 -07:00
Daniel Borkmann 9aa1206e8f bpf: Add redirect_peer helper
Add an efficient ingress to ingress netns switch that can be used out of tc BPF
programs in order to redirect traffic from host ns ingress into a container
veth device ingress without having to go via CPU backlog queue [0]. For local
containers this can also be utilized and path via CPU backlog queue only needs
to be taken once, not twice. On a high level this borrows from ipvlan which does
similar switch in __netif_receive_skb_core() and then iterates via another_round.
This helps to reduce latency for mentioned use cases.

Pod to remote pod with redirect(), TCP_RR [1]:

  # percpu_netperf 10.217.1.33
          RT_LATENCY:         122.450         (per CPU:         122.666         122.401         122.333         122.401 )
        MEAN_LATENCY:         121.210         (per CPU:         121.100         121.260         121.320         121.160 )
      STDDEV_LATENCY:         120.040         (per CPU:         119.420         119.910         125.460         115.370 )
         MIN_LATENCY:          46.500         (per CPU:          47.000          47.000          47.000          45.000 )
         P50_LATENCY:         118.500         (per CPU:         118.000         119.000         118.000         119.000 )
         P90_LATENCY:         127.500         (per CPU:         127.000         128.000         127.000         128.000 )
         P99_LATENCY:         130.750         (per CPU:         131.000         131.000         129.000         132.000 )

    TRANSACTION_RATE:       32666.400         (per CPU:        8152.200        8169.842        8174.439        8169.897 )

Pod to remote pod with redirect_peer(), TCP_RR:

  # percpu_netperf 10.217.1.33
          RT_LATENCY:          44.449         (per CPU:          43.767          43.127          45.279          45.622 )
        MEAN_LATENCY:          45.065         (per CPU:          44.030          45.530          45.190          45.510 )
      STDDEV_LATENCY:          84.823         (per CPU:          66.770          97.290          84.380          90.850 )
         MIN_LATENCY:          33.500         (per CPU:          33.000          33.000          34.000          34.000 )
         P50_LATENCY:          43.250         (per CPU:          43.000          43.000          43.000          44.000 )
         P90_LATENCY:          46.750         (per CPU:          46.000          47.000          47.000          47.000 )
         P99_LATENCY:          52.750         (per CPU:          51.000          54.000          53.000          53.000 )

    TRANSACTION_RATE:       90039.500         (per CPU:       22848.186       23187.089       22085.077       21919.130 )

  [0] https://linuxplumbersconf.org/event/7/contributions/674/attachments/568/1002/plumbers_2020_cilium_load_balancer.pdf
  [1] https://github.com/borkmann/netperf_scripts/blob/master/percpu_netperf

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201010234006.7075-3-daniel@iogearbox.net
2020-10-11 10:21:04 -07:00
Daniel Borkmann dd2ce6a537 bpf: Improve bpf_redirect_neigh helper description
Follow-up to address David's feedback that we should better describe internals
of the bpf_redirect_neigh() helper.

Suggested-by: David Ahern <dsahern@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: David Ahern <dsahern@gmail.com>
Link: https://lore.kernel.org/bpf/20201010234006.7075-2-daniel@iogearbox.net
2020-10-11 10:21:04 -07:00
Nikita V. Shirokov eca43ee6c4 bpf: Add tcp_notsent_lowat bpf setsockopt
Adding support for TCP_NOTSENT_LOWAT sockoption (https://lwn.net/Articles/560082/)
in tcp bpf programs.

Signed-off-by: Nikita V. Shirokov <tehnerd@tehnerd.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20201009070325.226855-1-tehnerd@tehnerd.com
2020-10-09 17:12:03 +02:00
Jakub Wilk 49f3d12b0f bpf: Fix typo in uapi/linux/bpf.h
Reported-by: Samanta Navarro <ferivoz@riseup.net>
Signed-off-by: Jakub Wilk <jwilk@jwilk.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20201007055717.7319-1-jwilk@jwilk.net
2020-10-07 10:59:37 -07:00
Hao Luo 63d9b80dcf bpf: Introducte bpf_this_cpu_ptr()
Add bpf_this_cpu_ptr() to help access percpu var on this cpu. This
helper always returns a valid pointer, therefore no need to check
returned value for NULL. Also note that all programs run with
preemption disabled, which means that the returned pointer is stable
during all the execution of the program.

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200929235049.2533242-6-haoluo@google.com
2020-10-02 15:00:49 -07:00
Hao Luo eaa6bcb71e bpf: Introduce bpf_per_cpu_ptr()
Add bpf_per_cpu_ptr() to help bpf programs access percpu vars.
bpf_per_cpu_ptr() has the same semantic as per_cpu_ptr() in the kernel
except that it may return NULL. This happens when the cpu parameter is
out of range. So the caller must check the returned value.

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200929235049.2533242-5-haoluo@google.com
2020-10-02 15:00:49 -07:00
Hao Luo 4976b718c3 bpf: Introduce pseudo_btf_id
Pseudo_btf_id is a type of ld_imm insn that associates a btf_id to a
ksym so that further dereferences on the ksym can use the BTF info
to validate accesses. Internally, when seeing a pseudo_btf_id ld insn,
the verifier reads the btf_id stored in the insn[0]'s imm field and
marks the dst_reg as PTR_TO_BTF_ID. The btf_id points to a VAR_KIND,
which is encoded in btf_vminux by pahole. If the VAR is not of a struct
type, the dst reg will be marked as PTR_TO_MEM instead of PTR_TO_BTF_ID
and the mem_size is resolved to the size of the VAR's type.

>From the VAR btf_id, the verifier can also read the address of the
ksym's corresponding kernel var from kallsyms and use that to fill
dst_reg.

Therefore, the proper functionality of pseudo_btf_id depends on (1)
kallsyms and (2) the encoding of kernel global VARs in pahole, which
should be available since pahole v1.18.

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200929235049.2533242-2-haoluo@google.com
2020-10-02 14:59:25 -07:00
Song Liu 792caccc45 bpf: Introduce BPF_F_PRESERVE_ELEMS for perf event array
Currently, perf event in perf event array is removed from the array when
the map fd used to add the event is closed. This behavior makes it
difficult to the share perf events with perf event array.

Introduce perf event map that keeps the perf event open with a new flag
BPF_F_PRESERVE_ELEMS. With this flag set, perf events in the array are not
removed when the original map fd is closed. Instead, the perf event will
stay in the map until 1) it is explicitly removed from the array; or 2)
the array is freed.

Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200930224927.1936644-2-songliubraving@fb.com
2020-09-30 23:18:12 -07:00
Daniel Borkmann b4ab314149 bpf: Add redirect_neigh helper as redirect drop-in
Add a redirect_neigh() helper as redirect() drop-in replacement
for the xmit side. Main idea for the helper is to be very similar
in semantics to the latter just that the skb gets injected into
the neighboring subsystem in order to let the stack do the work
it knows best anyway to populate the L2 addresses of the packet
and then hand over to dev_queue_xmit() as redirect() does.

This solves two bigger items: i) skbs don't need to go up to the
stack on the host facing veth ingress side for traffic egressing
the container to achieve the same for populating L2 which also
has the huge advantage that ii) the skb->sk won't get orphaned in
ip_rcv_core() when entering the IP routing layer on the host stack.

Given that skb->sk neither gets orphaned when crossing the netns
as per 9c4c325252 ("skbuff: preserve sock reference when scrubbing
the skb.") the helper can then push the skbs directly to the phys
device where FQ scheduler can do its work and TCP stack gets proper
backpressure given we hold on to skb->sk as long as skb is still
residing in queues.

With the helper used in BPF data path to then push the skb to the
phys device, I observed a stable/consistent TCP_STREAM improvement
on veth devices for traffic going container -> host -> host ->
container from ~10Gbps to ~15Gbps for a single stream in my test
environment.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: David Ahern <dsahern@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Cc: David Ahern <dsahern@kernel.org>
Link: https://lore.kernel.org/bpf/f207de81629e1724899b73b8112e0013be782d35.1601477936.git.daniel@iogearbox.net
2020-09-30 11:50:35 -07:00
Daniel Borkmann b426ce83ba bpf: Add classid helper only based on skb->sk
Similarly to 5a52ae4e32 ("bpf: Allow to retrieve cgroup v1 classid
from v2 hooks"), add a helper to retrieve cgroup v1 classid solely
based on the skb->sk, so it can be used as key as part of BPF map
lookups out of tc from host ns, in particular given the skb->sk is
retained these days when crossing net ns thanks to 9c4c325252
("skbuff: preserve sock reference when scrubbing the skb."). This
is similar to bpf_skb_cgroup_id() which implements the same for v2.
Kubernetes ecosystem is still operating on v1 however, hence net_cls
needs to be used there until this can be dropped in with the v2
helper of bpf_skb_cgroup_id().

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/ed633cf27a1c620e901c5aa99ebdefb028dce600.1601477936.git.daniel@iogearbox.net
2020-09-30 11:50:34 -07:00
Toke Høiland-Jørgensen 4a1e7c0c63 bpf: Support attaching freplace programs to multiple attach points
This enables support for attaching freplace programs to multiple attach
points. It does this by amending the UAPI for bpf_link_Create with a target
btf ID that can be used to supply the new attachment point along with the
target program fd. The target must be compatible with the target that was
supplied at program load time.

The implementation reuses the checks that were factored out of
check_attach_btf_id() to ensure compatibility between the BTF types of the
old and new attachment. If these match, a new bpf_tracing_link will be
created for the new attach target, allowing multiple attachments to
co-exist simultaneously.

The code could theoretically support multiple-attach of other types of
tracing programs as well, but since I don't have a use case for any of
those, there is no API support for doing so.

Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/160138355169.48470.17165680973640685368.stgit@toke.dk
2020-09-29 13:09:24 -07:00
Alan Maguire eb411377ae bpf: Add bpf_seq_printf_btf helper
A helper is added to allow seq file writing of kernel data
structures using vmlinux BTF.  Its signature is

long bpf_seq_printf_btf(struct seq_file *m, struct btf_ptr *ptr,
                        u32 btf_ptr_size, u64 flags);

Flags and struct btf_ptr definitions/use are identical to the
bpf_snprintf_btf helper, and the helper returns 0 on success
or a negative error value.

Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Alan Maguire <alan.maguire@oracle.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/1601292670-1616-8-git-send-email-alan.maguire@oracle.com
2020-09-28 18:26:58 -07:00
Alan Maguire c4d0bfb450 bpf: Add bpf_snprintf_btf helper
A helper is added to support tracing kernel type information in BPF
using the BPF Type Format (BTF).  Its signature is

long bpf_snprintf_btf(char *str, u32 str_size, struct btf_ptr *ptr,
		      u32 btf_ptr_size, u64 flags);

struct btf_ptr * specifies

- a pointer to the data to be traced
- the BTF id of the type of data pointed to
- a flags field is provided for future use; these flags
  are not to be confused with the BTF_F_* flags
  below that control how the btf_ptr is displayed; the
  flags member of the struct btf_ptr may be used to
  disambiguate types in kernel versus module BTF, etc;
  the main distinction is the flags relate to the type
  and information needed in identifying it; not how it
  is displayed.

For example a BPF program with a struct sk_buff *skb
could do the following:

	static struct btf_ptr b = { };

	b.ptr = skb;
	b.type_id = __builtin_btf_type_id(struct sk_buff, 1);
	bpf_snprintf_btf(str, sizeof(str), &b, sizeof(b), 0, 0);

Default output looks like this:

(struct sk_buff){
 .transport_header = (__u16)65535,
 .mac_header = (__u16)65535,
 .end = (sk_buff_data_t)192,
 .head = (unsigned char *)0x000000007524fd8b,
 .data = (unsigned char *)0x000000007524fd8b,
 .truesize = (unsigned int)768,
 .users = (refcount_t){
  .refs = (atomic_t){
   .counter = (int)1,
  },
 },
}

Flags modifying display are as follows:

- BTF_F_COMPACT:	no formatting around type information
- BTF_F_NONAME:		no struct/union member names/types
- BTF_F_PTR_RAW:	show raw (unobfuscated) pointer values;
			equivalent to %px.
- BTF_F_ZERO:		show zero-valued struct/union members;
			they are not displayed by default

Signed-off-by: Alan Maguire <alan.maguire@oracle.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/1601292670-1616-4-git-send-email-alan.maguire@oracle.com
2020-09-28 18:26:58 -07:00
Song Liu 1b4d60ec16 bpf: Enable BPF_PROG_TEST_RUN for raw_tracepoint
Add .test_run for raw_tracepoint. Also, introduce a new feature that runs
the target program on a specific CPU. This is achieved by a new flag in
bpf_attr.test, BPF_F_TEST_RUN_ON_CPU. When this flag is set, the program
is triggered on cpu with id bpf_attr.test.cpu. This feature is needed for
BPF programs that handle perf_event and other percpu resources, as the
program can access these resource locally.

Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200925205432.1777-2-songliubraving@fb.com
2020-09-28 21:52:36 +02:00
Martin KaFai Lau 27e5203bd9 bpf: Change bpf_sk_assign to accept ARG_PTR_TO_BTF_ID_SOCK_COMMON
This patch changes the bpf_sk_assign() to take
ARG_PTR_TO_BTF_ID_SOCK_COMMON such that they will work with the pointer
returned by the bpf_skc_to_*() helpers also.

The bpf_sk_lookup_assign() is taking ARG_PTR_TO_SOCKET_"OR_NULL".  Meaning
it specifically takes a literal NULL.  ARG_PTR_TO_BTF_ID_SOCK_COMMON
does not allow a literal NULL, so another ARG type is required
for this purpose and another follow-up patch can be used if
there is such need.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200925000415.3857374-1-kafai@fb.com
2020-09-25 13:58:02 -07:00
Martin KaFai Lau c0df236e13 bpf: Change bpf_tcp_*_syncookie to accept ARG_PTR_TO_BTF_ID_SOCK_COMMON
This patch changes the bpf_tcp_*_syncookie() to take
ARG_PTR_TO_BTF_ID_SOCK_COMMON such that they will work with the pointer
returned by the bpf_skc_to_*() helpers also.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Lorenz Bauer <lmb@cloudflare.com>
Link: https://lore.kernel.org/bpf/20200925000409.3856725-1-kafai@fb.com
2020-09-25 13:58:01 -07:00
Martin KaFai Lau 592a349864 bpf: Change bpf_sk_storage_*() to accept ARG_PTR_TO_BTF_ID_SOCK_COMMON
This patch changes the bpf_sk_storage_*() to take
ARG_PTR_TO_BTF_ID_SOCK_COMMON such that they will work with the pointer
returned by the bpf_skc_to_*() helpers also.

A micro benchmark has been done on a "cgroup_skb/egress" bpf program
which does a bpf_sk_storage_get().  It was driven by netperf doing
a 4096 connected UDP_STREAM test with 64bytes packet.
The stats from "kernel.bpf_stats_enabled" shows no meaningful difference.

The sk_storage_get_btf_proto, sk_storage_delete_btf_proto,
btf_sk_storage_get_proto, and btf_sk_storage_delete_proto are
no longer needed, so they are removed.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Lorenz Bauer <lmb@cloudflare.com>
Link: https://lore.kernel.org/bpf/20200925000402.3856307-1-kafai@fb.com
2020-09-25 13:58:01 -07:00
Martin KaFai Lau a5fa25adf0 bpf: Change bpf_sk_release and bpf_sk_*cgroup_id to accept ARG_PTR_TO_BTF_ID_SOCK_COMMON
The previous patch allows the networking bpf prog to use the
bpf_skc_to_*() helpers to get a PTR_TO_BTF_ID socket pointer,
e.g. "struct tcp_sock *".  It allows the bpf prog to read all the
fields of the tcp_sock.

This patch changes the bpf_sk_release() and bpf_sk_*cgroup_id()
to take ARG_PTR_TO_BTF_ID_SOCK_COMMON such that they will
work with the pointer returned by the bpf_skc_to_*() helpers
also.  For example, the following will work:

	sk = bpf_skc_lookup_tcp(skb, tuple, tuplen, BPF_F_CURRENT_NETNS, 0);
	if (!sk)
		return;
	tp = bpf_skc_to_tcp_sock(sk);
	if (!tp) {
		bpf_sk_release(sk);
		return;
	}
	lsndtime = tp->lsndtime;
	/* Pass tp to bpf_sk_release() will also work */
	bpf_sk_release(tp);

Since PTR_TO_BTF_ID could be NULL, the helper taking
ARG_PTR_TO_BTF_ID_SOCK_COMMON has to check for NULL at runtime.

A btf_id of "struct sock" may not always mean a fullsock.  Regardless
the helper's running context may get a non-fullsock or not,
considering fullsock check/handling is pretty cheap, it is better to
keep the same verifier expectation on helper that takes ARG_PTR_TO_BTF_ID*
will be able to handle the minisock situation.  In the bpf_sk_*cgroup_id()
case,  it will try to get a fullsock by using sk_to_full_sk() as its
skb variant bpf_sk"b"_*cgroup_id() has already been doing.

bpf_sk_release can already handle minisock, so nothing special has to
be done.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200925000356.3856047-1-kafai@fb.com
2020-09-25 13:58:01 -07:00
YiFei Zhu ef15314aa5 bpf: Add BPF_PROG_BIND_MAP syscall
This syscall binds a map to a program. Returns success if the map is
already bound to the program.

Signed-off-by: YiFei Zhu <zhuyifei@google.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Cc: YiFei Zhu <zhuyifei1999@gmail.com>
Link: https://lore.kernel.org/bpf/20200915234543.3220146-3-sdf@google.com
2020-09-15 18:28:27 -07:00
Song Liu 1aef5b4391 bpf: Fix comment for helper bpf_current_task_under_cgroup()
This should be "current" not "skb".

Fixes: c6b5fb8690 ("bpf: add documentation for eBPF helpers (42-50)")
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/bpf/20200910203314.70018-1-songliubraving@fb.com
2020-09-10 20:04:51 -07:00
Quentin Monnet 938c3efd9e bpf: Fix formatting in documentation for BPF helpers
Fix a formatting error in the description of bpf_load_hdr_opt() (rst2man
complains about a wrong indentation, but what is missing is actually a
blank line before the bullet list).

Fix and harmonise the formatting for other helpers.

Signed-off-by: Quentin Monnet <quentin@isovalent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200904161454.31135-3-quentin@isovalent.com
2020-09-07 16:31:18 +02:00
David S. Miller 150f29f5e6 Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:

====================
pull-request: bpf-next 2020-09-01

The following pull-request contains BPF updates for your *net-next* tree.

There are two small conflicts when pulling, resolve as follows:

1) Merge conflict in tools/lib/bpf/libbpf.c between 88a8212028 ("libbpf: Factor
   out common ELF operations and improve logging") in bpf-next and 1e891e513e
   ("libbpf: Fix map index used in error message") in net-next. Resolve by taking
   the hunk in bpf-next:

        [...]
        scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
        data = elf_sec_data(obj, scn);
        if (!scn || !data) {
                pr_warn("elf: failed to get %s map definitions for %s\n",
                        MAPS_ELF_SEC, obj->path);
                return -EINVAL;
        }
        [...]

2) Merge conflict in drivers/net/ethernet/mellanox/mlx5/core/en/xsk/rx.c between
   9647c57b11 ("xsk: i40e: ice: ixgbe: mlx5: Test for dma_need_sync earlier for
   better performance") in bpf-next and e20f0dbf20 ("net/mlx5e: RX, Add a prefetch
   command for small L1_CACHE_BYTES") in net-next. Resolve the two locations by retaining
   net_prefetch() and taking xsk_buff_dma_sync_for_cpu() from bpf-next. Should look like:

        [...]
        xdp_set_data_meta_invalid(xdp);
        xsk_buff_dma_sync_for_cpu(xdp, rq->xsk_pool);
        net_prefetch(xdp->data);
        [...]

We've added 133 non-merge commits during the last 14 day(s) which contain
a total of 246 files changed, 13832 insertions(+), 3105 deletions(-).

The main changes are:

1) Initial support for sleepable BPF programs along with bpf_copy_from_user() helper
   for tracing to reliably access user memory, from Alexei Starovoitov.

2) Add BPF infra for writing and parsing TCP header options, from Martin KaFai Lau.

3) bpf_d_path() helper for returning full path for given 'struct path', from Jiri Olsa.

4) AF_XDP support for shared umems between devices and queues, from Magnus Karlsson.

5) Initial prep work for full BPF-to-BPF call support in libbpf, from Andrii Nakryiko.

6) Generalize bpf_sk_storage map & add local storage for inodes, from KP Singh.

7) Implement sockmap/hash updates from BPF context, from Lorenz Bauer.

8) BPF xor verification for scalar types & add BPF link iterator, from Yonghong Song.

9) Use target's prog type for BPF_PROG_TYPE_EXT prog verification, from Udip Pant.

10) Rework BPF tracing samples to use libbpf loader, from Daniel T. Lee.

11) Fix xdpsock sample to really cycle through all buffers, from Weqaar Janjua.

12) Improve type safety for tun/veth XDP frame handling, from Maciej Żenczykowski.

13) Various smaller cleanups and improvements all over the place.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-01 13:22:59 -07:00
Alexei Starovoitov 07be4c4a3e bpf: Add bpf_copy_from_user() helper.
Sleepable BPF programs can now use copy_from_user() to access user memory.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: KP Singh <kpsingh@google.com>
Link: https://lore.kernel.org/bpf/20200827220114.69225-4-alexei.starovoitov@gmail.com
2020-08-28 21:20:33 +02:00
Alexei Starovoitov 1e6c62a882 bpf: Introduce sleepable BPF programs
Introduce sleepable BPF programs that can request such property for themselves
via BPF_F_SLEEPABLE flag at program load time. In such case they will be able
to use helpers like bpf_copy_from_user() that might sleep. At present only
fentry/fexit/fmod_ret and lsm programs can request to be sleepable and only
when they are attached to kernel functions that are known to allow sleeping.

The non-sleepable programs are relying on implicit rcu_read_lock() and
migrate_disable() to protect life time of programs, maps that they use and
per-cpu kernel structures used to pass info between bpf programs and the
kernel. The sleepable programs cannot be enclosed into rcu_read_lock().
migrate_disable() maps to preempt_disable() in non-RT kernels, so the progs
should not be enclosed in migrate_disable() as well. Therefore
rcu_read_lock_trace is used to protect the life time of sleepable progs.

There are many networking and tracing program types. In many cases the
'struct bpf_prog *' pointer itself is rcu protected within some other kernel
data structure and the kernel code is using rcu_dereference() to load that
program pointer and call BPF_PROG_RUN() on it. All these cases are not touched.
Instead sleepable bpf programs are allowed with bpf trampoline only. The
program pointers are hard-coded into generated assembly of bpf trampoline and
synchronize_rcu_tasks_trace() is used to protect the life time of the program.
The same trampoline can hold both sleepable and non-sleepable progs.

When rcu_read_lock_trace is held it means that some sleepable bpf program is
running from bpf trampoline. Those programs can use bpf arrays and preallocated
hash/lru maps. These map types are waiting on programs to complete via
synchronize_rcu_tasks_trace();

Updates to trampoline now has to do synchronize_rcu_tasks_trace() and
synchronize_rcu_tasks() to wait for sleepable progs to finish and for
trampoline assembly to finish.

This is the first step of introducing sleepable progs. Eventually dynamically
allocated hash maps can be allowed and networking program types can become
sleepable too.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: KP Singh <kpsingh@google.com>
Link: https://lore.kernel.org/bpf/20200827220114.69225-3-alexei.starovoitov@gmail.com
2020-08-28 21:20:33 +02:00
Yonghong Song b0c9eb3781 bpf: Make bpf_link_info.iter similar to bpf_iter_link_info
bpf_link_info.iter is used by link_query to return bpf_iter_link_info
to user space. Fields may be different, e.g., map_fd vs. map_id, so
we cannot reuse the exact structure. But make them similar, e.g.,

  struct bpf_link_info {
     /* common fields */
     union {
	struct { ... } raw_tracepoint;
	struct { ... } tracing;
	...
	struct {
	    /* common fields for iter */
	    union {
		struct {
		    __u32 map_id;
		} map;
		/* other structs for other targets */
	    };
	};
    };
 };

so the structure is extensible the same way as bpf_iter_link_info.

Fixes: 6b0a249a30 ("bpf: Implement link_query for bpf iterators")
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200828051922.758950-1-yhs@fb.com
2020-08-28 14:33:24 +02:00
Jiri Olsa 6e22ab9da7 bpf: Add d_path helper
Adding d_path helper function that returns full path for
given 'struct path' object, which needs to be the kernel
BTF 'path' object. The path is returned in buffer provided
'buf' of size 'sz' and is zero terminated.

  bpf_d_path(&file->f_path, buf, size);

The helper calls directly d_path function, so there's only
limited set of function it can be called from. Adding just
very modest set for the start.

Updating also bpf.h tools uapi header and adding 'path' to
bpf_helpers_doc.py script.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: KP Singh <kpsingh@google.com>
Link: https://lore.kernel.org/bpf/20200825192124.710397-11-jolsa@kernel.org
2020-08-25 15:41:15 -07:00
KP Singh 30897832d8 bpf: Allow local storage to be used from LSM programs
Adds support for both bpf_{sk, inode}_storage_{get, delete} to be used
in LSM programs. These helpers are not used for tracing programs
(currently) as their usage is tied to the life-cycle of the object and
should only be used where the owning object won't be freed (when the
owning object is passed as an argument to the LSM hook). Thus, they
are safer to use in LSM hooks than tracing. Usage of local storage in
tracing programs will probably follow a per function based whitelist
approach.

Since the UAPI helper signature for bpf_sk_storage expect a bpf_sock,
it, leads to a compilation warning for LSM programs, it's also updated
to accept a void * pointer instead.

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200825182919.1118197-7-kpsingh@chromium.org
2020-08-25 15:00:04 -07:00
KP Singh 8ea636848a bpf: Implement bpf_local_storage for inodes
Similar to bpf_local_storage for sockets, add local storage for inodes.
The life-cycle of storage is managed with the life-cycle of the inode.
i.e. the storage is destroyed along with the owning inode.

The BPF LSM allocates an __rcu pointer to the bpf_local_storage in the
security blob which are now stackable and can co-exist with other LSMs.

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200825182919.1118197-6-kpsingh@chromium.org
2020-08-25 15:00:04 -07:00
KP Singh f836a56e84 bpf: Generalize bpf_sk_storage
Refactor the functionality in bpf_sk_storage.c so that concept of
storage linked to kernel objects can be extended to other objects like
inode, task_struct etc.

Each new local storage will still be a separate map and provide its own
set of helpers. This allows for future object specific extensions and
still share a lot of the underlying implementation.

This includes the changes suggested by Martin in:

  https://lore.kernel.org/bpf/20200725013047.4006241-1-kafai@fb.com/

adding new map operations to support bpf_local_storage maps:

* storages for different kernel objects to optionally have different
  memory charging strategy (map_local_storage_charge,
  map_local_storage_uncharge)
* Functionality to extract the storage pointer from a pointer to the
  owning object (map_owner_storage_ptr)

Co-developed-by: Martin KaFai Lau <kafai@fb.com>

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200825182919.1118197-4-kpsingh@chromium.org
2020-08-25 15:00:04 -07:00
Martin KaFai Lau 267cf9fa43 tcp: bpf: Optionally store mac header in TCP_SAVE_SYN
This patch is adapted from Eric's patch in an earlier discussion [1].

The TCP_SAVE_SYN currently only stores the network header and
tcp header.  This patch allows it to optionally store
the mac header also if the setsockopt's optval is 2.

It requires one more bit for the "save_syn" bit field in tcp_sock.
This patch achieves this by moving the syn_smc bit next to the is_mptcp.
The syn_smc is currently used with the TCP experimental option.  Since
syn_smc is only used when CONFIG_SMC is enabled, this patch also puts
the "IS_ENABLED(CONFIG_SMC)" around it like the is_mptcp did
with "IS_ENABLED(CONFIG_MPTCP)".

The mac_hdrlen is also stored in the "struct saved_syn"
to allow a quick offset from the bpf prog if it chooses to start
getting from the network header or the tcp header.

[1]: https://lore.kernel.org/netdev/CANn89iLJNWh6bkH7DNhy_kmcAexuUCccqERqe7z2QsvPhGrYPQ@mail.gmail.com/

Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/bpf/20200820190123.2886935-1-kafai@fb.com
2020-08-24 14:35:00 -07:00
Martin KaFai Lau 0813a84156 bpf: tcp: Allow bpf prog to write and parse TCP header option
[ Note: The TCP changes here is mainly to implement the bpf
  pieces into the bpf_skops_*() functions introduced
  in the earlier patches. ]

The earlier effort in BPF-TCP-CC allows the TCP Congestion Control
algorithm to be written in BPF.  It opens up opportunities to allow
a faster turnaround time in testing/releasing new congestion control
ideas to production environment.

The same flexibility can be extended to writing TCP header option.
It is not uncommon that people want to test new TCP header option
to improve the TCP performance.  Another use case is for data-center
that has a more controlled environment and has more flexibility in
putting header options for internal only use.

For example, we want to test the idea in putting maximum delay
ACK in TCP header option which is similar to a draft RFC proposal [1].

This patch introduces the necessary BPF API and use them in the
TCP stack to allow BPF_PROG_TYPE_SOCK_OPS program to parse
and write TCP header options.  It currently supports most of
the TCP packet except RST.

Supported TCP header option:
───────────────────────────
This patch allows the bpf-prog to write any option kind.
Different bpf-progs can write its own option by calling the new helper
bpf_store_hdr_opt().  The helper will ensure there is no duplicated
option in the header.

By allowing bpf-prog to write any option kind, this gives a lot of
flexibility to the bpf-prog.  Different bpf-prog can write its
own option kind.  It could also allow the bpf-prog to support a
recently standardized option on an older kernel.

Sockops Callback Flags:
──────────────────────
The bpf program will only be called to parse/write tcp header option
if the following newly added callback flags are enabled
in tp->bpf_sock_ops_cb_flags:
BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG
BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG
BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG

A few words on the PARSE CB flags.  When the above PARSE CB flags are
turned on, the bpf-prog will be called on packets received
at a sk that has at least reached the ESTABLISHED state.
The parsing of the SYN-SYNACK-ACK will be discussed in the
"3 Way HandShake" section.

The default is off for all of the above new CB flags, i.e. the bpf prog
will not be called to parse or write bpf hdr option.  There are
details comment on these new cb flags in the UAPI bpf.h.

sock_ops->skb_data and bpf_load_hdr_opt()
─────────────────────────────────────────
sock_ops->skb_data and sock_ops->skb_data_end covers the whole
TCP header and its options.  They are read only.

The new bpf_load_hdr_opt() helps to read a particular option "kind"
from the skb_data.

Please refer to the comment in UAPI bpf.h.  It has details
on what skb_data contains under different sock_ops->op.

3 Way HandShake
───────────────
The bpf-prog can learn if it is sending SYN or SYNACK by reading the
sock_ops->skb_tcp_flags.

* Passive side

When writing SYNACK (i.e. sock_ops->op == BPF_SOCK_OPS_WRITE_HDR_OPT_CB),
the received SYN skb will be available to the bpf prog.  The bpf prog can
use the SYN skb (which may carry the header option sent from the remote bpf
prog) to decide what bpf header option should be written to the outgoing
SYNACK skb.  The SYN packet can be obtained by getsockopt(TCP_BPF_SYN*).
More on this later.  Also, the bpf prog can learn if it is in syncookie
mode (by checking sock_ops->args[0] == BPF_WRITE_HDR_TCP_SYNACK_COOKIE).

The bpf prog can store the received SYN pkt by using the existing
bpf_setsockopt(TCP_SAVE_SYN).  The example in a later patch does it.
[ Note that the fullsock here is a listen sk, bpf_sk_storage
  is not very useful here since the listen sk will be shared
  by many concurrent connection requests.

  Extending bpf_sk_storage support to request_sock will add weight
  to the minisock and it is not necessary better than storing the
  whole ~100 bytes SYN pkt. ]

When the connection is established, the bpf prog will be called
in the existing PASSIVE_ESTABLISHED_CB callback.  At that time,
the bpf prog can get the header option from the saved syn and
then apply the needed operation to the newly established socket.
The later patch will use the max delay ack specified in the SYN
header and set the RTO of this newly established connection
as an example.

The received ACK (that concludes the 3WHS) will also be available to
the bpf prog during PASSIVE_ESTABLISHED_CB through the sock_ops->skb_data.
It could be useful in syncookie scenario.  More on this later.

There is an existing getsockopt "TCP_SAVED_SYN" to return the whole
saved syn pkt which includes the IP[46] header and the TCP header.
A few "TCP_BPF_SYN*" getsockopt has been added to allow specifying where to
start getting from, e.g. starting from TCP header, or from IP[46] header.

The new getsockopt(TCP_BPF_SYN*) will also know where it can get
the SYN's packet from:
  - (a) the just received syn (available when the bpf prog is writing SYNACK)
        and it is the only way to get SYN during syncookie mode.
  or
  - (b) the saved syn (available in PASSIVE_ESTABLISHED_CB and also other
        existing CB).

The bpf prog does not need to know where the SYN pkt is coming from.
The getsockopt(TCP_BPF_SYN*) will hide this details.

Similarly, a flags "BPF_LOAD_HDR_OPT_TCP_SYN" is also added to
bpf_load_hdr_opt() to read a particular header option from the SYN packet.

* Fastopen

Fastopen should work the same as the regular non fastopen case.
This is a test in a later patch.

* Syncookie

For syncookie, the later example patch asks the active
side's bpf prog to resend the header options in ACK.  The server
can use bpf_load_hdr_opt() to look at the options in this
received ACK during PASSIVE_ESTABLISHED_CB.

* Active side

The bpf prog will get a chance to write the bpf header option
in the SYN packet during WRITE_HDR_OPT_CB.  The received SYNACK
pkt will also be available to the bpf prog during the existing
ACTIVE_ESTABLISHED_CB callback through the sock_ops->skb_data
and bpf_load_hdr_opt().

* Turn off header CB flags after 3WHS

If the bpf prog does not need to write/parse header options
beyond the 3WHS, the bpf prog can clear the bpf_sock_ops_cb_flags
to avoid being called for header options.
Or the bpf-prog can select to leave the UNKNOWN_HDR_OPT_CB_FLAG on
so that the kernel will only call it when there is option that
the kernel cannot handle.

[1]: draft-wang-tcpm-low-latency-opt-00
     https://tools.ietf.org/html/draft-wang-tcpm-low-latency-opt-00

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200820190104.2885895-1-kafai@fb.com
2020-08-24 14:35:00 -07:00
Martin KaFai Lau 331fca4315 bpf: tcp: Add bpf_skops_hdr_opt_len() and bpf_skops_write_hdr_opt()
The bpf prog needs to parse the SYN header to learn what options have
been sent by the peer's bpf-prog before writing its options into SYNACK.
This patch adds a "syn_skb" arg to tcp_make_synack() and send_synack().
This syn_skb will eventually be made available (as read-only) to the
bpf prog.  This will be the only SYN packet available to the bpf
prog during syncookie.  For other regular cases, the bpf prog can
also use the saved_syn.

When writing options, the bpf prog will first be called to tell the
kernel its required number of bytes.  It is done by the new
bpf_skops_hdr_opt_len().  The bpf prog will only be called when the new
BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG is set in tp->bpf_sock_ops_cb_flags.
When the bpf prog returns, the kernel will know how many bytes are needed
and then update the "*remaining" arg accordingly.  4 byte alignment will
be included in the "*remaining" before this function returns.  The 4 byte
aligned number of bytes will also be stored into the opts->bpf_opt_len.
"bpf_opt_len" is a newly added member to the struct tcp_out_options.

Then the new bpf_skops_write_hdr_opt() will call the bpf prog to write the
header options.  The bpf prog is only called if it has reserved spaces
before (opts->bpf_opt_len > 0).

The bpf prog is the last one getting a chance to reserve header space
and writing the header option.

These two functions are half implemented to highlight the changes in
TCP stack.  The actual codes preparing the bpf running context and
invoking the bpf prog will be added in the later patch with other
necessary bpf pieces.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/bpf/20200820190052.2885316-1-kafai@fb.com
2020-08-24 14:35:00 -07:00
Martin KaFai Lau 00d211a4ea bpf: tcp: Add bpf_skops_parse_hdr()
The patch adds a function bpf_skops_parse_hdr().
It will call the bpf prog to parse the TCP header received at
a tcp_sock that has at least reached the ESTABLISHED state.

For the packets received during the 3WHS (SYN, SYNACK and ACK),
the received skb will be available to the bpf prog during the callback
in bpf_skops_established() introduced in the previous patch and
in the bpf_skops_write_hdr_opt() that will be added in the
next patch.

Calling bpf prog to parse header is controlled by two new flags in
tp->bpf_sock_ops_cb_flags:
BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG and
BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG.

When BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG is set,
the bpf prog will only be called when there is unknown
option in the TCP header.

When BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG is set,
the bpf prog will be called on all received TCP header.

This function is half implemented to highlight the changes in
TCP stack.  The actual codes preparing the bpf running context and
invoking the bpf prog will be added in the later patch with other
necessary bpf pieces.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/bpf/20200820190046.2885054-1-kafai@fb.com
2020-08-24 14:35:00 -07:00
Martin KaFai Lau ca584ba070 tcp: bpf: Add TCP_BPF_RTO_MIN for bpf_setsockopt
This patch adds bpf_setsockopt(TCP_BPF_RTO_MIN) to allow bpf prog
to set the min rto of a connection.  It could be used together
with the earlier patch which has added bpf_setsockopt(TCP_BPF_DELACK_MAX).

A later selftest patch will communicate the max delay ack in a
bpf tcp header option and then the receiving side can use
bpf_setsockopt(TCP_BPF_RTO_MIN) to set a shorter rto.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200820190027.2884170-1-kafai@fb.com
2020-08-24 14:35:00 -07:00
Martin KaFai Lau 2b8ee4f05d tcp: bpf: Add TCP_BPF_DELACK_MAX setsockopt
This change is mostly from an internal patch and adapts it from sysctl
config to the bpf_setsockopt setup.

The bpf_prog can set the max delay ack by using
bpf_setsockopt(TCP_BPF_DELACK_MAX).  This max delay ack can be communicated
to its peer through bpf header option.  The receiving peer can then use
this max delay ack and set a potentially lower rto by using
bpf_setsockopt(TCP_BPF_RTO_MIN) which will be introduced
in the next patch.

Another later selftest patch will also use it like the above to show
how to write and parse bpf tcp header option.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200820190021.2884000-1-kafai@fb.com
2020-08-24 14:34:59 -07:00
Yonghong Song 6b0a249a30 bpf: Implement link_query for bpf iterators
This patch implemented bpf_link callback functions
show_fdinfo and fill_link_info to support link_query
interface.

The general interface for show_fdinfo and fill_link_info
will print/fill the target_name. Each targets can
register show_fdinfo and fill_link_info callbacks
to print/fill more target specific information.

For example, the below is a fdinfo result for a bpf
task iterator.
  $ cat /proc/1749/fdinfo/7
  pos:    0
  flags:  02000000
  mnt_id: 14
  link_type:      iter
  link_id:        11
  prog_tag:       990e1f8152f7e54f
  prog_id:        59
  target_name:    task

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200821184418.574122-1-yhs@fb.com
2020-08-21 14:01:39 -07:00
Tobias Klauser b16fc097bc bpf: Fix two typos in uapi/linux/bpf.h
Also remove trailing whitespaces in bpf_skb_get_tunnel_key example code.

Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200821133642.18870-1-tklauser@distanz.ch
2020-08-21 12:26:17 -07:00
Yonghong Song 5e7b30205c bpf: Change uapi for bpf iterator map elements
Commit a5cbe05a66 ("bpf: Implement bpf iterator for
map elements") added bpf iterator support for
map elements. The map element bpf iterator requires
info to identify a particular map. In the above
commit, the attr->link_create.target_fd is used
to carry map_fd and an enum bpf_iter_link_info
is added to uapi to specify the target_fd actually
representing a map_fd:
    enum bpf_iter_link_info {
	BPF_ITER_LINK_UNSPEC = 0,
	BPF_ITER_LINK_MAP_FD = 1,

	MAX_BPF_ITER_LINK_INFO,
    };

This is an extensible approach as we can grow
enumerator for pid, cgroup_id, etc. and we can
unionize target_fd for pid, cgroup_id, etc.
But in the future, there are chances that
more complex customization may happen, e.g.,
for tasks, it could be filtered based on
both cgroup_id and user_id.

This patch changed the uapi to have fields
	__aligned_u64	iter_info;
	__u32		iter_info_len;
for additional iter_info for link_create.
The iter_info is defined as
	union bpf_iter_link_info {
		struct {
			__u32   map_fd;
		} map;
	};

So future extension for additional customization
will be easier. The bpf_iter_link_info will be
passed to target callback to validate and generic
bpf_iter framework does not need to deal it any
more.

Note that map_fd = 0 will be considered invalid
and -EBADF will be returned to user space.

Fixes: a5cbe05a66 ("bpf: Implement bpf iterator for map elements")
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200805055056.1457463-1-yhs@fb.com
2020-08-06 16:39:14 -07:00
Andrii Nakryiko 73b11c2ab0 bpf: Add support for forced LINK_DETACH command
Add LINK_DETACH command to force-detach bpf_link without destroying it. It has
the same behavior as auto-detaching of bpf_link due to cgroup dying for
bpf_cgroup_link or net_device being destroyed for bpf_xdp_link. In such case,
bpf_link is still a valid kernel object, but is defuncts and doesn't hold BPF
program attached to corresponding BPF hook. This functionality allows users
with enough access rights to manually force-detach attached bpf_link without
killing respective owner process.

This patch implements LINK_DETACH for cgroup, xdp, and netns links, mostly
re-using existing link release handling code.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200731182830.286260-2-andriin@fb.com
2020-08-01 20:38:28 -07:00
Andrii Nakryiko e1613b5714 bpf: Fix bpf_ringbuf_output() signature to return long
Due to bpf tree fix merge, bpf_ringbuf_output() signature ended up with int as
a return type, while all other helpers got converted to returning long. So fix
it in bpf-next now.

Fixes: b0659d8a95 ("bpf: Fix definition of bpf_ringbuf_output() helper in UAPI comments")
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200727224715.652037-1-andriin@fb.com
2020-07-28 12:20:44 +02:00
Andrii Nakryiko c1931c9784 bpf: Implement BPF XDP link-specific introspection APIs
Implement XDP link-specific show_fdinfo and link_info to emit ifindex.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200722064603.3350758-7-andriin@fb.com
2020-07-25 20:37:02 -07:00
Andrii Nakryiko aa8d3a716b bpf, xdp: Add bpf_link-based XDP attachment API
Add bpf_link-based API (bpf_xdp_link) to attach BPF XDP program through
BPF_LINK_CREATE command.

bpf_xdp_link is mutually exclusive with direct BPF program attachment,
previous BPF program should be detached prior to attempting to create a new
bpf_xdp_link attachment (for a given XDP mode). Once BPF link is attached, it
can't be replaced by other BPF program attachment or link attachment. It will
be detached only when the last BPF link FD is closed.

bpf_xdp_link will be auto-detached when net_device is shutdown, similarly to
how other BPF links behave (cgroup, flow_dissector). At that point bpf_link
will become defunct, but won't be destroyed until last FD is closed.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200722064603.3350758-5-andriin@fb.com
2020-07-25 20:37:02 -07:00
Yonghong Song a5cbe05a66 bpf: Implement bpf iterator for map elements
The bpf iterator for map elements are implemented.
The bpf program will receive four parameters:
  bpf_iter_meta *meta: the meta data
  bpf_map *map:        the bpf_map whose elements are traversed
  void *key:           the key of one element
  void *value:         the value of the same element

Here, meta and map pointers are always valid, and
key has register type PTR_TO_RDONLY_BUF_OR_NULL and
value has register type PTR_TO_RDWR_BUF_OR_NULL.
The kernel will track the access range of key and value
during verification time. Later, these values will be compared
against the values in the actual map to ensure all accesses
are within range.

A new field iter_seq_info is added to bpf_map_ops which
is used to add map type specific information, i.e., seq_ops,
init/fini seq_file func and seq_file private data size.
Subsequent patches will have actual implementation
for bpf_map_ops->iter_seq_info.

In user space, BPF_ITER_LINK_MAP_FD needs to be
specified in prog attr->link_create.flags, which indicates
that attr->link_create.target_fd is a map_fd.
The reason for such an explicit flag is for possible
future cases where one bpf iterator may allow more than
one possible customization, e.g., pid and cgroup id for
task_file.

Current kernel internal implementation only allows
the target to register at most one required bpf_iter_link_info.
To support the above case, optional bpf_iter_link_info's
are needed, the target can be extended to register such link
infos, and user provided link_info needs to match one of
target supported ones.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200723184112.590360-1-yhs@fb.com
2020-07-25 20:16:32 -07:00
Jakub Sitnicki e9ddbb7707 bpf: Introduce SK_LOOKUP program type with a dedicated attach point
Add a new program type BPF_PROG_TYPE_SK_LOOKUP with a dedicated attach type
BPF_SK_LOOKUP. The new program kind is to be invoked by the transport layer
when looking up a listening socket for a new connection request for
connection oriented protocols, or when looking up an unconnected socket for
a packet for connection-less protocols.

When called, SK_LOOKUP BPF program can select a socket that will receive
the packet. This serves as a mechanism to overcome the limits of what
bind() API allows to express. Two use-cases driving this work are:

 (1) steer packets destined to an IP range, on fixed port to a socket

     192.0.2.0/24, port 80 -> NGINX socket

 (2) steer packets destined to an IP address, on any port to a socket

     198.51.100.1, any port -> L7 proxy socket

In its run-time context program receives information about the packet that
triggered the socket lookup. Namely IP version, L4 protocol identifier, and
address 4-tuple. Context can be further extended to include ingress
interface identifier.

To select a socket BPF program fetches it from a map holding socket
references, like SOCKMAP or SOCKHASH, and calls bpf_sk_assign(ctx, sk, ...)
helper to record the selection. Transport layer then uses the selected
socket as a result of socket lookup.

In its basic form, SK_LOOKUP acts as a filter and hence must return either
SK_PASS or SK_DROP. If the program returns with SK_PASS, transport should
look for a socket to receive the packet, or use the one selected by the
program if available, while SK_DROP informs the transport layer that the
lookup should fail.

This patch only enables the user to attach an SK_LOOKUP program to a
network namespace. Subsequent patches hook it up to run on local delivery
path in ipv4 and ipv6 stacks.

Suggested-by: Marek Majkowski <marek@cloudflare.com>
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200717103536.397595-3-jakub@cloudflare.com
2020-07-17 20:18:16 -07:00
Randy Dunlap bfdfa51702 bpf: Drop duplicated words in uapi helper comments
Drop doubled words "will" and "attach".

Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/6b9f71ae-4f8e-0259-2c5d-187ddaefe6eb@infradead.org
2020-07-16 21:00:09 +02:00
Lorenzo Bianconi 9216477449 bpf: cpumap: Add the possibility to attach an eBPF program to cpumap
Introduce the capability to attach an eBPF program to cpumap entries.
The idea behind this feature is to add the possibility to define on
which CPU run the eBPF program if the underlying hw does not support
RSS. Current supported verdicts are XDP_DROP and XDP_PASS.

This patch has been tested on Marvell ESPRESSObin using xdp_redirect_cpu
sample available in the kernel tree to identify possible performance
regressions. Results show there are no observable differences in
packet-per-second:

$./xdp_redirect_cpu --progname xdp_cpu_map0 --dev eth0 --cpu 1
rx: 354.8 Kpps
rx: 356.0 Kpps
rx: 356.8 Kpps
rx: 356.3 Kpps
rx: 356.6 Kpps
rx: 356.6 Kpps
rx: 356.7 Kpps
rx: 355.8 Kpps
rx: 356.8 Kpps
rx: 356.8 Kpps

Co-developed-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Link: https://lore.kernel.org/bpf/5c9febdf903d810b3415732e5cd98491d7d9067a.1594734381.git.lorenzo@kernel.org
2020-07-16 17:00:32 +02:00
Lorenzo Bianconi 644bfe51fa cpumap: Formalize map value as a named struct
As it has been already done for devmap, introduce 'struct bpf_cpumap_val'
to formalize the expected values that can be passed in for a CPUMAP.
Update cpumap code to use the struct.

Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Link: https://lore.kernel.org/bpf/754f950674665dae6139c061d28c1d982aaf4170.1594734381.git.lorenzo@kernel.org
2020-07-16 17:00:32 +02:00
David S. Miller 07dd1b7e68 Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Alexei Starovoitov says:

====================
pull-request: bpf-next 2020-07-13

The following pull-request contains BPF updates for your *net-next* tree.

We've added 36 non-merge commits during the last 7 day(s) which contain
a total of 62 files changed, 2242 insertions(+), 468 deletions(-).

The main changes are:

1) Avoid trace_printk warning banner by switching bpf_trace_printk to use
   its own tracing event, from Alan.

2) Better libbpf support on older kernels, from Andrii.

3) Additional AF_XDP stats, from Ciara.

4) build time resolution of BTF IDs, from Jiri.

5) BPF_CGROUP_INET_SOCK_RELEASE hook, from Stanislav.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 18:04:05 -07:00
David S. Miller 71930d6102 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
All conflicts seemed rather trivial, with some guidance from
Saeed Mameed on the tc_ct.c one.

Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-11 00:46:00 -07:00
Stanislav Fomichev f5836749c9 bpf: Add BPF_CGROUP_INET_SOCK_RELEASE hook
Sometimes it's handy to know when the socket gets freed. In
particular, we'd like to try to use a smarter allocation of
ports for bpf_bind and explore the possibility of limiting
the number of SOCK_DGRAM sockets the process can have.

Implement BPF_CGROUP_INET_SOCK_RELEASE hook that triggers on
inet socket release. It triggers only for userspace sockets
(not in-kernel ones) and therefore has the same semantics as
the existing BPF_CGROUP_INET_SOCK_CREATE.

Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200706230128.4073544-2-sdf@google.com
2020-07-08 01:03:31 +02:00
Song Liu fa28dcb82a bpf: Introduce helper bpf_get_task_stack()
Introduce helper bpf_get_task_stack(), which dumps stack trace of given
task. This is different to bpf_get_stack(), which gets stack track of
current task. One potential use case of bpf_get_task_stack() is to call
it from bpf_iter__task and dump all /proc/<pid>/stack to a seq_file.

bpf_get_task_stack() uses stack_trace_save_tsk() instead of
get_perf_callchain() for kernel stack. The benefit of this choice is that
stack_trace_save_tsk() doesn't require changes in arch/. The downside of
using stack_trace_save_tsk() is that stack_trace_save_tsk() dumps the
stack trace to unsigned long array. For 32-bit systems, we need to
translate it to u64 array.

Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200630062846.664389-3-songliubraving@fb.com
2020-07-01 08:23:19 -07:00
Yonghong Song 0d4fad3e57 bpf: Add bpf_skc_to_udp6_sock() helper
The helper is used in tracing programs to cast a socket
pointer to a udp6_sock pointer.
The return value could be NULL if the casting is illegal.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Cc: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/bpf/20200623230815.3988481-1-yhs@fb.com
2020-06-24 18:37:59 -07:00
Yonghong Song 478cfbdf5f bpf: Add bpf_skc_to_{tcp, tcp_timewait, tcp_request}_sock() helpers
Three more helpers are added to cast a sock_common pointer to
an tcp_sock, tcp_timewait_sock or a tcp_request_sock for
tracing programs.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200623230811.3988277-1-yhs@fb.com
2020-06-24 18:37:59 -07:00
Yonghong Song af7ec13833 bpf: Add bpf_skc_to_tcp6_sock() helper
The helper is used in tracing programs to cast a socket
pointer to a tcp6_sock pointer.
The return value could be NULL if the casting is illegal.

A new helper return type RET_PTR_TO_BTF_ID_OR_NULL is added
so the verifier is able to deduce proper return types for the helper.

Different from the previous BTF_ID based helpers,
the bpf_skc_to_tcp6_sock() argument can be several possible
btf_ids. More specifically, all possible socket data structures
with sock_common appearing in the first in the memory layout.
This patch only added socket types related to tcp and udp.

All possible argument btf_id and return value btf_id
for helper bpf_skc_to_tcp6_sock() are pre-calculcated and
cached. In the future, it is even possible to precompute
these btf_id's at kernel build time.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200623230809.3988195-1-yhs@fb.com
2020-06-24 18:37:59 -07:00
Dmitry Yakunin f9bcf96837 bpf: Add SO_KEEPALIVE and related options to bpf_setsockopt
This patch adds support of SO_KEEPALIVE flag and TCP related options
to bpf_setsockopt() routine. This is helpful if we want to enable or tune
TCP keepalive for applications which don't do it in the userspace code.

v3:
  - update kernel-doc in uapi (Nikita Vetoshkin <nekto0n@yandex-team.ru>)

v4:
  - update kernel-doc in tools too (Alexei Starovoitov)
  - add test to selftests (Alexei Starovoitov)

Signed-off-by: Dmitry Yakunin <zeil@yandex-team.ru>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200620153052.9439-3-zeil@yandex-team.ru
2020-06-24 11:21:03 -07:00
Quentin Monnet bcc7f554cf bpf: Fix formatting in documentation for BPF helpers
When producing the bpf-helpers.7 man page from the documentation from
the BPF user space header file, rst2man complains:

    <stdin>:2636: (ERROR/3) Unexpected indentation.
    <stdin>:2640: (WARNING/2) Block quote ends without a blank line; unexpected unindent.

Let's fix formatting for the relevant chunk (item list in
bpf_ringbuf_query()'s description), and for a couple other functions.

Signed-off-by: Quentin Monnet <quentin@isovalent.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200623153935.6215-1-quentin@isovalent.com
2020-06-23 17:57:02 -07:00
Alexei Starovoitov 4e608675e7 Merge up to bpf_probe_read_kernel_str() fix into bpf-next 2020-06-23 15:33:41 -07:00
Andrii Nakryiko bdb7b79b4c bpf: Switch most helper return values from 32-bit int to 64-bit long
Switch most of BPF helper definitions from returning int to long. These
definitions are coming from comments in BPF UAPI header and are used to
generate bpf_helper_defs.h (under libbpf) to be later included and used from
BPF programs.

In actual in-kernel implementation, all the helpers are defined as returning
u64, but due to some historical reasons, most of them are actually defined as
returning int in UAPI (usually, to return 0 on success, and negative value on
error).

This actually causes Clang to quite often generate sub-optimal code, because
compiler believes that return value is 32-bit, and in a lot of cases has to be
up-converted (usually with a pair of 32-bit bit shifts) to 64-bit values,
before they can be used further in BPF code.

Besides just "polluting" the code, these 32-bit shifts quite often cause
problems for cases in which return value matters. This is especially the case
for the family of bpf_probe_read_str() functions. There are few other similar
helpers (e.g., bpf_read_branch_records()), in which return value is used by
BPF program logic to record variable-length data and process it. For such
cases, BPF program logic carefully manages offsets within some array or map to
read variable-length data. For such uses, it's crucial for BPF verifier to
track possible range of register values to prove that all the accesses happen
within given memory bounds. Those extraneous zero-extending bit shifts,
inserted by Clang (and quite often interleaved with other code, which makes
the issues even more challenging and sometimes requires employing extra
per-variable compiler barriers), throws off verifier logic and makes it mark
registers as having unknown variable offset. We'll study this pattern a bit
later below.

Another common pattern is to check return of BPF helper for non-zero state to
detect error conditions and attempt alternative actions in such case. Even in
this simple and straightforward case, this 32-bit vs BPF's native 64-bit mode
quite often leads to sub-optimal and unnecessary extra code. We'll look at
this pattern as well.

Clang's BPF target supports two modes of code generation: ALU32, in which it
is capable of using lower 32-bit parts of registers, and no-ALU32, in which
only full 64-bit registers are being used. ALU32 mode somewhat mitigates the
above described problems, but not in all cases.

This patch switches all the cases in which BPF helpers return 0 or negative
error from returning int to returning long. It is shown below that such change
in definition leads to equivalent or better code. No-ALU32 mode benefits more,
but ALU32 mode doesn't degrade or still gets improved code generation.

Another class of cases switched from int to long are bpf_probe_read_str()-like
helpers, which encode successful case as non-negative values, while still
returning negative value for errors.

In all of such cases, correctness is preserved due to two's complement
encoding of negative values and the fact that all helpers return values with
32-bit absolute value. Two's complement ensures that for negative values
higher 32 bits are all ones and when truncated, leave valid negative 32-bit
value with the same value. Non-negative values have upper 32 bits set to zero
and similarly preserve value when high 32 bits are truncated. This means that
just casting to int/u32 is correct and efficient (and in ALU32 mode doesn't
require any extra shifts).

To minimize the chances of regressions, two code patterns were investigated,
as mentioned above. For both patterns, BPF assembly was analyzed in
ALU32/NO-ALU32 compiler modes, both with current 32-bit int return type and
new 64-bit long return type.

Case 1. Variable-length data reading and concatenation. This is quite
ubiquitous pattern in tracing/monitoring applications, reading data like
process's environment variables, file path, etc. In such case, many pieces of
string-like variable-length data are read into a single big buffer, and at the
end of the process, only a part of array containing actual data is sent to
user-space for further processing. This case is tested in test_varlen.c
selftest (in the next patch). Code flow is roughly as follows:

  void *payload = &sample->payload;
  u64 len;

  len = bpf_probe_read_kernel_str(payload, MAX_SZ1, &source_data1);
  if (len <= MAX_SZ1) {
      payload += len;
      sample->len1 = len;
  }
  len = bpf_probe_read_kernel_str(payload, MAX_SZ2, &source_data2);
  if (len <= MAX_SZ2) {
      payload += len;
      sample->len2 = len;
  }
  /* and so on */
  sample->total_len = payload - &sample->payload;
  /* send over, e.g., perf buffer */

There could be two variations with slightly different code generated: when len
is 64-bit integer and when it is 32-bit integer. Both variations were analysed.
BPF assembly instructions between two successive invocations of
bpf_probe_read_kernel_str() were used to check code regressions. Results are
below, followed by short analysis. Left side is using helpers with int return
type, the right one is after the switch to long.

ALU32 + INT                                ALU32 + LONG
===========                                ============

64-BIT (13 insns):                         64-BIT (10 insns):
------------------------------------       ------------------------------------
  17:   call 115                             17:   call 115
  18:   if w0 > 256 goto +9 <LBB0_4>         18:   if r0 > 256 goto +6 <LBB0_4>
  19:   w1 = w0                              19:   r1 = 0 ll
  20:   r1 <<= 32                            21:   *(u64 *)(r1 + 0) = r0
  21:   r1 s>>= 32                           22:   r6 = 0 ll
  22:   r2 = 0 ll                            24:   r6 += r0
  24:   *(u64 *)(r2 + 0) = r1              00000000000000c8 <LBB0_4>:
  25:   r6 = 0 ll                            25:   r1 = r6
  27:   r6 += r1                             26:   w2 = 256
00000000000000e0 <LBB0_4>:                   27:   r3 = 0 ll
  28:   r1 = r6                              29:   call 115
  29:   w2 = 256
  30:   r3 = 0 ll
  32:   call 115

32-BIT (11 insns):                         32-BIT (12 insns):
------------------------------------       ------------------------------------
  17:   call 115                             17:   call 115
  18:   if w0 > 256 goto +7 <LBB1_4>         18:   if w0 > 256 goto +8 <LBB1_4>
  19:   r1 = 0 ll                            19:   r1 = 0 ll
  21:   *(u32 *)(r1 + 0) = r0                21:   *(u32 *)(r1 + 0) = r0
  22:   w1 = w0                              22:   r0 <<= 32
  23:   r6 = 0 ll                            23:   r0 >>= 32
  25:   r6 += r1                             24:   r6 = 0 ll
00000000000000d0 <LBB1_4>:                   26:   r6 += r0
  26:   r1 = r6                            00000000000000d8 <LBB1_4>:
  27:   w2 = 256                             27:   r1 = r6
  28:   r3 = 0 ll                            28:   w2 = 256
  30:   call 115                             29:   r3 = 0 ll
                                             31:   call 115

In ALU32 mode, the variant using 64-bit length variable clearly wins and
avoids unnecessary zero-extension bit shifts. In practice, this is even more
important and good, because BPF code won't need to do extra checks to "prove"
that payload/len are within good bounds.

32-bit len is one instruction longer. Clang decided to do 64-to-32 casting
with two bit shifts, instead of equivalent `w1 = w0` assignment. The former
uses extra register. The latter might potentially lose some range information,
but not for 32-bit value. So in this case, verifier infers that r0 is [0, 256]
after check at 18:, and shifting 32 bits left/right keeps that range intact.
We should probably look into Clang's logic and see why it chooses bitshifts
over sub-register assignments for this.

NO-ALU32 + INT                             NO-ALU32 + LONG
==============                             ===============

64-BIT (14 insns):                         64-BIT (10 insns):
------------------------------------       ------------------------------------
  17:   call 115                             17:   call 115
  18:   r0 <<= 32                            18:   if r0 > 256 goto +6 <LBB0_4>
  19:   r1 = r0                              19:   r1 = 0 ll
  20:   r1 >>= 32                            21:   *(u64 *)(r1 + 0) = r0
  21:   if r1 > 256 goto +7 <LBB0_4>         22:   r6 = 0 ll
  22:   r0 s>>= 32                           24:   r6 += r0
  23:   r1 = 0 ll                          00000000000000c8 <LBB0_4>:
  25:   *(u64 *)(r1 + 0) = r0                25:   r1 = r6
  26:   r6 = 0 ll                            26:   r2 = 256
  28:   r6 += r0                             27:   r3 = 0 ll
00000000000000e8 <LBB0_4>:                   29:   call 115
  29:   r1 = r6
  30:   r2 = 256
  31:   r3 = 0 ll
  33:   call 115

32-BIT (13 insns):                         32-BIT (13 insns):
------------------------------------       ------------------------------------
  17:   call 115                             17:   call 115
  18:   r1 = r0                              18:   r1 = r0
  19:   r1 <<= 32                            19:   r1 <<= 32
  20:   r1 >>= 32                            20:   r1 >>= 32
  21:   if r1 > 256 goto +6 <LBB1_4>         21:   if r1 > 256 goto +6 <LBB1_4>
  22:   r2 = 0 ll                            22:   r2 = 0 ll
  24:   *(u32 *)(r2 + 0) = r0                24:   *(u32 *)(r2 + 0) = r0
  25:   r6 = 0 ll                            25:   r6 = 0 ll
  27:   r6 += r1                             27:   r6 += r1
00000000000000e0 <LBB1_4>:                 00000000000000e0 <LBB1_4>:
  28:   r1 = r6                              28:   r1 = r6
  29:   r2 = 256                             29:   r2 = 256
  30:   r3 = 0 ll                            30:   r3 = 0 ll
  32:   call 115                             32:   call 115

In NO-ALU32 mode, for the case of 64-bit len variable, Clang generates much
superior code, as expected, eliminating unnecessary bit shifts. For 32-bit
len, code is identical.

So overall, only ALU-32 32-bit len case is more-or-less equivalent and the
difference stems from internal Clang decision, rather than compiler lacking
enough information about types.

Case 2. Let's look at the simpler case of checking return result of BPF helper
for errors. The code is very simple:

  long bla;
  if (bpf_probe_read_kenerl(&bla, sizeof(bla), 0))
      return 1;
  else
      return 0;

ALU32 + CHECK (9 insns)                    ALU32 + CHECK (9 insns)
====================================       ====================================
  0:    r1 = r10                             0:    r1 = r10
  1:    r1 += -8                             1:    r1 += -8
  2:    w2 = 8                               2:    w2 = 8
  3:    r3 = 0                               3:    r3 = 0
  4:    call 113                             4:    call 113
  5:    w1 = w0                              5:    r1 = r0
  6:    w0 = 1                               6:    w0 = 1
  7:    if w1 != 0 goto +1 <LBB2_2>          7:    if r1 != 0 goto +1 <LBB2_2>
  8:    w0 = 0                               8:    w0 = 0
0000000000000048 <LBB2_2>:                 0000000000000048 <LBB2_2>:
  9:    exit                                 9:    exit

Almost identical code, the only difference is the use of full register
assignment (r1 = r0) vs half-registers (w1 = w0) in instruction #5. On 32-bit
architectures, new BPF assembly might be slightly less optimal, in theory. But
one can argue that's not a big issue, given that use of full registers is
still prevalent (e.g., for parameter passing).

NO-ALU32 + CHECK (11 insns)                NO-ALU32 + CHECK (9 insns)
====================================       ====================================
  0:    r1 = r10                             0:    r1 = r10
  1:    r1 += -8                             1:    r1 += -8
  2:    r2 = 8                               2:    r2 = 8
  3:    r3 = 0                               3:    r3 = 0
  4:    call 113                             4:    call 113
  5:    r1 = r0                              5:    r1 = r0
  6:    r1 <<= 32                            6:    r0 = 1
  7:    r1 >>= 32                            7:    if r1 != 0 goto +1 <LBB2_2>
  8:    r0 = 1                               8:    r0 = 0
  9:    if r1 != 0 goto +1 <LBB2_2>        0000000000000048 <LBB2_2>:
 10:    r0 = 0                               9:    exit
0000000000000058 <LBB2_2>:
 11:    exit

NO-ALU32 is a clear improvement, getting rid of unnecessary zero-extension bit
shifts.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200623032224.4020118-1-andriin@fb.com
2020-06-24 00:04:36 +02:00
Andrii Nakryiko b0659d8a95 bpf: Fix definition of bpf_ringbuf_output() helper in UAPI comments
Fix definition of bpf_ringbuf_output() in UAPI header comments, which is used
to generate libbpf's bpf_helper_defs.h header. Return value is a number (error
code), not a pointer.

Fixes: 457f44363a ("bpf: Implement BPF ring buffer and verifier support for it")
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200615214926.3638836-1-andriin@fb.com
2020-06-16 02:17:01 +02:00
Jesper Dangaard Brouer 281920b7e0 bpf: Devmap adjust uapi for attach bpf program
V2:
- Defer changing BPF-syscall to start at file-descriptor 1
- Use {} to zero initialise struct.

The recent commit fbee97feed ("bpf: Add support to attach bpf program to a
devmap entry"), introduced ability to attach (and run) a separate XDP
bpf_prog for each devmap entry. A bpf_prog is added via a file-descriptor.
As zero were a valid FD, not using the feature requires using value minus-1.
The UAPI is extended via tail-extending struct bpf_devmap_val and using
map->value_size to determine the feature set.

This will break older userspace applications not using the bpf_prog feature.
Consider an old userspace app that is compiled against newer kernel
uapi/bpf.h, it will not know that it need to initialise the member
bpf_prog.fd to minus-1. Thus, users will be forced to update source code to
get program running on newer kernels.

This patch remove the minus-1 checks, and have zero mean feature isn't used.

Followup patches either for kernel or libbpf should handle and avoid
returning file-descriptor zero in the first place.

Fixes: fbee97feed ("bpf: Add support to attach bpf program to a devmap entry")
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/159170950687.2102545.7235914718298050113.stgit@firesoul
2020-06-09 11:36:18 -07:00
Daniel Borkmann 7cdec54f97 bpf: Add csum_level helper for fixing up csum levels
Add a bpf_csum_level() helper which BPF programs can use in combination
with bpf_skb_adjust_room() when they pass in BPF_F_ADJ_ROOM_NO_CSUM_RESET
flag to the latter to avoid falling back to CHECKSUM_NONE.

The bpf_csum_level() allows to adjust CHECKSUM_UNNECESSARY skb->csum_levels
via BPF_CSUM_LEVEL_{INC,DEC} which calls __skb_{incr,decr}_checksum_unnecessary()
on the skb. The helper also allows a BPF_CSUM_LEVEL_RESET which sets the skb's
csum to CHECKSUM_NONE as well as a BPF_CSUM_LEVEL_QUERY to just return the
current level. Without this helper, there is no way to otherwise adjust the
skb->csum_level. I did not add an extra dummy flags as there is plenty of free
bitspace in level argument itself iff ever needed in future.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Alan Maguire <alan.maguire@oracle.com>
Acked-by: Lorenz Bauer <lmb@cloudflare.com>
Link: https://lore.kernel.org/bpf/279ae3717cb3d03c0ffeb511493c93c450a01e1a.1591108731.git.daniel@iogearbox.net
2020-06-02 11:50:23 -07:00
Daniel Borkmann 836e66c218 bpf: Fix up bpf_skb_adjust_room helper's skb csum setting
Lorenz recently reported:

  In our TC classifier cls_redirect [0], we use the following sequence of
  helper calls to decapsulate a GUE (basically IP + UDP + custom header)
  encapsulated packet:

    bpf_skb_adjust_room(skb, -encap_len, BPF_ADJ_ROOM_MAC, BPF_F_ADJ_ROOM_FIXED_GSO)
    bpf_redirect(skb->ifindex, BPF_F_INGRESS)

  It seems like some checksums of the inner headers are not validated in
  this case. For example, a TCP SYN packet with invalid TCP checksum is
  still accepted by the network stack and elicits a SYN ACK. [...]

  That is, we receive the following packet from the driver:

    | ETH | IP | UDP | GUE | IP | TCP |
    skb->ip_summed == CHECKSUM_UNNECESSARY

  ip_summed is CHECKSUM_UNNECESSARY because our NICs do rx checksum offloading.
  On this packet we run skb_adjust_room_mac(-encap_len), and get the following:

    | ETH | IP | TCP |
    skb->ip_summed == CHECKSUM_UNNECESSARY

  Note that ip_summed is still CHECKSUM_UNNECESSARY. After bpf_redirect()'ing
  into the ingress, we end up in tcp_v4_rcv(). There, skb_checksum_init() is
  turned into a no-op due to CHECKSUM_UNNECESSARY.

The bpf_skb_adjust_room() helper is not aware of protocol specifics. Internally,
it handles the CHECKSUM_COMPLETE case via skb_postpull_rcsum(), but that does
not cover CHECKSUM_UNNECESSARY. In this case skb->csum_level of the original
skb prior to bpf_skb_adjust_room() call was 0, that is, covering UDP. Right now
there is no way to adjust the skb->csum_level. NICs that have checksum offload
disabled (CHECKSUM_NONE) or that support CHECKSUM_COMPLETE are not affected.

Use a safe default for CHECKSUM_UNNECESSARY by resetting to CHECKSUM_NONE and
add a flag to the helper called BPF_F_ADJ_ROOM_NO_CSUM_RESET that allows users
from opting out. Opting out is useful for the case where we don't remove/add
full protocol headers, or for the case where a user wants to adjust the csum
level manually e.g. through bpf_csum_level() helper that is added in subsequent
patch.

The bpf_skb_proto_{4_to_6,6_to_4}() for NAT64/46 translation from the BPF
bpf_skb_change_proto() helper uses bpf_skb_net_hdr_{push,pop}() pair internally
as well but doesn't change layers, only transitions between v4 to v6 and vice
versa, therefore no adoption is required there.

  [0] https://lore.kernel.org/bpf/20200424185556.7358-1-lmb@cloudflare.com/

Fixes: 2be7e212d5 ("bpf: add bpf_skb_adjust_room helper")
Reported-by: Lorenz Bauer <lmb@cloudflare.com>
Reported-by: Alan Maguire <alan.maguire@oracle.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Alan Maguire <alan.maguire@oracle.com>
Link: https://lore.kernel.org/bpf/CACAyw9-uU_52esMd1JjuA80fRPHJv5vsSg8GnfW3t_qDU4aVKQ@mail.gmail.com/
Link: https://lore.kernel.org/bpf/11a90472e7cce83e76ddbfce81fdfce7bfc68808.1591108731.git.daniel@iogearbox.net
2020-06-02 11:50:23 -07:00
Jakub Sitnicki 7f045a49fe bpf: Add link-based BPF program attachment to network namespace
Extend bpf() syscall subcommands that operate on bpf_link, that is
LINK_CREATE, LINK_UPDATE, OBJ_GET_INFO, to accept attach types tied to
network namespaces (only flow dissector at the moment).

Link-based and prog-based attachment can be used interchangeably, but only
one can exist at a time. Attempts to attach a link when a prog is already
attached directly, and the other way around, will be met with -EEXIST.
Attempts to detach a program when link exists result in -EINVAL.

Attachment of multiple links of same attach type to one netns is not
supported with the intention to lift the restriction when a use-case
presents itself. Because of that link create returns -E2BIG when trying to
create another netns link, when one already exists.

Link-based attachments to netns don't keep a netns alive by holding a ref
to it. Instead links get auto-detached from netns when the latter is being
destroyed, using a pernet pre_exit callback.

When auto-detached, link lives in defunct state as long there are open FDs
for it. -ENOLINK is returned if a user tries to update a defunct link.

Because bpf_link to netns doesn't hold a ref to struct net, special care is
taken when releasing, updating, or filling link info. The netns might be
getting torn down when any of these link operations are in progress. That
is why auto-detach and update/release/fill_info are synchronized by the
same mutex. Also, link ops have to always check if auto-detach has not
happened yet and if netns is still alive (refcnt > 0).

Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200531082846.2117903-5-jakub@cloudflare.com
2020-06-01 15:21:03 -07:00
David Ahern 64b59025c1 xdp: Add xdp_txq_info to xdp_buff
Add xdp_txq_info as the Tx counterpart to xdp_rxq_info. At the
moment only the device is added. Other fields (queue_index)
can be added as use cases arise.

>From a UAPI perspective, add egress_ifindex to xdp context for
bpf programs to see the Tx device.

Update the verifier to only allow accesses to egress_ifindex by
XDP programs with BPF_XDP_DEVMAP expected attach type.

Signed-off-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200529220716.75383-4-dsahern@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-06-01 14:48:32 -07:00
David Ahern fbee97feed bpf: Add support to attach bpf program to a devmap entry
Add BPF_XDP_DEVMAP attach type for use with programs associated with a
DEVMAP entry.

Allow DEVMAPs to associate a program with a device entry by adding
a bpf_prog.fd to 'struct bpf_devmap_val'. Values read show the program
id, so the fd and id are a union. bpf programs can get access to the
struct via vmlinux.h.

The program associated with the fd must have type XDP with expected
attach type BPF_XDP_DEVMAP. When a program is associated with a device
index, the program is run on an XDP_REDIRECT and before the buffer is
added to the per-cpu queue. At this point rxq data is still valid; the
next patch adds tx device information allowing the prorgam to see both
ingress and egress device indices.

XDP generic is skb based and XDP programs do not work with skb's. Block
the use case by walking maps used by a program that is to be attached
via xdpgeneric and fail if any of them are DEVMAP / DEVMAP_HASH with

Block attach of BPF_XDP_DEVMAP programs to devices.

Signed-off-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200529220716.75383-3-dsahern@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-06-01 14:48:32 -07:00
Amritha Nambiar c3c16f2ea6 bpf: Add rx_queue_mapping to bpf_sock
Add "rx_queue_mapping" to bpf_sock. This gives read access for the
existing field (sk_rx_queue_mapping) of struct sock from bpf_sock.
Semantics for the bpf_sock rx_queue_mapping access are similar to
sk_rx_queue_get(), i.e the value NO_QUEUE_MAPPING is not allowed
and -1 is returned in that case. This is useful for transmit queue
selection based on the received queue index which is cached in the
socket in the receive path.

v3: Addressed review comments to add usecase in patch description,
    and fixed default value for rx_queue_mapping.
v2: fixed build error for CONFIG_XPS wrapping, reported by
    kbuild test robot <lkp@intel.com>

Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-06-01 14:38:23 -07:00
Andrii Nakryiko 457f44363a bpf: Implement BPF ring buffer and verifier support for it
This commit adds a new MPSC ring buffer implementation into BPF ecosystem,
which allows multiple CPUs to submit data to a single shared ring buffer. On
the consumption side, only single consumer is assumed.

Motivation
----------
There are two distinctive motivators for this work, which are not satisfied by
existing perf buffer, which prompted creation of a new ring buffer
implementation.
  - more efficient memory utilization by sharing ring buffer across CPUs;
  - preserving ordering of events that happen sequentially in time, even
  across multiple CPUs (e.g., fork/exec/exit events for a task).

These two problems are independent, but perf buffer fails to satisfy both.
Both are a result of a choice to have per-CPU perf ring buffer.  Both can be
also solved by having an MPSC implementation of ring buffer. The ordering
problem could technically be solved for perf buffer with some in-kernel
counting, but given the first one requires an MPSC buffer, the same solution
would solve the second problem automatically.

Semantics and APIs
------------------
Single ring buffer is presented to BPF programs as an instance of BPF map of
type BPF_MAP_TYPE_RINGBUF. Two other alternatives considered, but ultimately
rejected.

One way would be to, similar to BPF_MAP_TYPE_PERF_EVENT_ARRAY, make
BPF_MAP_TYPE_RINGBUF could represent an array of ring buffers, but not enforce
"same CPU only" rule. This would be more familiar interface compatible with
existing perf buffer use in BPF, but would fail if application needed more
advanced logic to lookup ring buffer by arbitrary key. HASH_OF_MAPS addresses
this with current approach. Additionally, given the performance of BPF
ringbuf, many use cases would just opt into a simple single ring buffer shared
among all CPUs, for which current approach would be an overkill.

Another approach could introduce a new concept, alongside BPF map, to
represent generic "container" object, which doesn't necessarily have key/value
interface with lookup/update/delete operations. This approach would add a lot
of extra infrastructure that has to be built for observability and verifier
support. It would also add another concept that BPF developers would have to
familiarize themselves with, new syntax in libbpf, etc. But then would really
provide no additional benefits over the approach of using a map.
BPF_MAP_TYPE_RINGBUF doesn't support lookup/update/delete operations, but so
doesn't few other map types (e.g., queue and stack; array doesn't support
delete, etc).

The approach chosen has an advantage of re-using existing BPF map
infrastructure (introspection APIs in kernel, libbpf support, etc), being
familiar concept (no need to teach users a new type of object in BPF program),
and utilizing existing tooling (bpftool). For common scenario of using
a single ring buffer for all CPUs, it's as simple and straightforward, as
would be with a dedicated "container" object. On the other hand, by being
a map, it can be combined with ARRAY_OF_MAPS and HASH_OF_MAPS map-in-maps to
implement a wide variety of topologies, from one ring buffer for each CPU
(e.g., as a replacement for perf buffer use cases), to a complicated
application hashing/sharding of ring buffers (e.g., having a small pool of
ring buffers with hashed task's tgid being a look up key to preserve order,
but reduce contention).

Key and value sizes are enforced to be zero. max_entries is used to specify
the size of ring buffer and has to be a power of 2 value.

There are a bunch of similarities between perf buffer
(BPF_MAP_TYPE_PERF_EVENT_ARRAY) and new BPF ring buffer semantics:
  - variable-length records;
  - if there is no more space left in ring buffer, reservation fails, no
    blocking;
  - memory-mappable data area for user-space applications for ease of
    consumption and high performance;
  - epoll notifications for new incoming data;
  - but still the ability to do busy polling for new data to achieve the
    lowest latency, if necessary.

BPF ringbuf provides two sets of APIs to BPF programs:
  - bpf_ringbuf_output() allows to *copy* data from one place to a ring
    buffer, similarly to bpf_perf_event_output();
  - bpf_ringbuf_reserve()/bpf_ringbuf_commit()/bpf_ringbuf_discard() APIs
    split the whole process into two steps. First, a fixed amount of space is
    reserved. If successful, a pointer to a data inside ring buffer data area
    is returned, which BPF programs can use similarly to a data inside
    array/hash maps. Once ready, this piece of memory is either committed or
    discarded. Discard is similar to commit, but makes consumer ignore the
    record.

bpf_ringbuf_output() has disadvantage of incurring extra memory copy, because
record has to be prepared in some other place first. But it allows to submit
records of the length that's not known to verifier beforehand. It also closely
matches bpf_perf_event_output(), so will simplify migration significantly.

bpf_ringbuf_reserve() avoids the extra copy of memory by providing a memory
pointer directly to ring buffer memory. In a lot of cases records are larger
than BPF stack space allows, so many programs have use extra per-CPU array as
a temporary heap for preparing sample. bpf_ringbuf_reserve() avoid this needs
completely. But in exchange, it only allows a known constant size of memory to
be reserved, such that verifier can verify that BPF program can't access
memory outside its reserved record space. bpf_ringbuf_output(), while slightly
slower due to extra memory copy, covers some use cases that are not suitable
for bpf_ringbuf_reserve().

The difference between commit and discard is very small. Discard just marks
a record as discarded, and such records are supposed to be ignored by consumer
code. Discard is useful for some advanced use-cases, such as ensuring
all-or-nothing multi-record submission, or emulating temporary malloc()/free()
within single BPF program invocation.

Each reserved record is tracked by verifier through existing
reference-tracking logic, similar to socket ref-tracking. It is thus
impossible to reserve a record, but forget to submit (or discard) it.

bpf_ringbuf_query() helper allows to query various properties of ring buffer.
Currently 4 are supported:
  - BPF_RB_AVAIL_DATA returns amount of unconsumed data in ring buffer;
  - BPF_RB_RING_SIZE returns the size of ring buffer;
  - BPF_RB_CONS_POS/BPF_RB_PROD_POS returns current logical possition of
    consumer/producer, respectively.
Returned values are momentarily snapshots of ring buffer state and could be
off by the time helper returns, so this should be used only for
debugging/reporting reasons or for implementing various heuristics, that take
into account highly-changeable nature of some of those characteristics.

One such heuristic might involve more fine-grained control over poll/epoll
notifications about new data availability in ring buffer. Together with
BPF_RB_NO_WAKEUP/BPF_RB_FORCE_WAKEUP flags for output/commit/discard helpers,
it allows BPF program a high degree of control and, e.g., more efficient
batched notifications. Default self-balancing strategy, though, should be
adequate for most applications and will work reliable and efficiently already.

Design and implementation
-------------------------
This reserve/commit schema allows a natural way for multiple producers, either
on different CPUs or even on the same CPU/in the same BPF program, to reserve
independent records and work with them without blocking other producers. This
means that if BPF program was interruped by another BPF program sharing the
same ring buffer, they will both get a record reserved (provided there is
enough space left) and can work with it and submit it independently. This
applies to NMI context as well, except that due to using a spinlock during
reservation, in NMI context, bpf_ringbuf_reserve() might fail to get a lock,
in which case reservation will fail even if ring buffer is not full.

The ring buffer itself internally is implemented as a power-of-2 sized
circular buffer, with two logical and ever-increasing counters (which might
wrap around on 32-bit architectures, that's not a problem):
  - consumer counter shows up to which logical position consumer consumed the
    data;
  - producer counter denotes amount of data reserved by all producers.

Each time a record is reserved, producer that "owns" the record will
successfully advance producer counter. At that point, data is still not yet
ready to be consumed, though. Each record has 8 byte header, which contains
the length of reserved record, as well as two extra bits: busy bit to denote
that record is still being worked on, and discard bit, which might be set at
commit time if record is discarded. In the latter case, consumer is supposed
to skip the record and move on to the next one. Record header also encodes
record's relative offset from the beginning of ring buffer data area (in
pages). This allows bpf_ringbuf_commit()/bpf_ringbuf_discard() to accept only
the pointer to the record itself, without requiring also the pointer to ring
buffer itself. Ring buffer memory location will be restored from record
metadata header. This significantly simplifies verifier, as well as improving
API usability.

Producer counter increments are serialized under spinlock, so there is
a strict ordering between reservations. Commits, on the other hand, are
completely lockless and independent. All records become available to consumer
in the order of reservations, but only after all previous records where
already committed. It is thus possible for slow producers to temporarily hold
off submitted records, that were reserved later.

Reservation/commit/consumer protocol is verified by litmus tests in
Documentation/litmus-test/bpf-rb.

One interesting implementation bit, that significantly simplifies (and thus
speeds up as well) implementation of both producers and consumers is how data
area is mapped twice contiguously back-to-back in the virtual memory. This
allows to not take any special measures for samples that have to wrap around
at the end of the circular buffer data area, because the next page after the
last data page would be first data page again, and thus the sample will still
appear completely contiguous in virtual memory. See comment and a simple ASCII
diagram showing this visually in bpf_ringbuf_area_alloc().

Another feature that distinguishes BPF ringbuf from perf ring buffer is
a self-pacing notifications of new data being availability.
bpf_ringbuf_commit() implementation will send a notification of new record
being available after commit only if consumer has already caught up right up
to the record being committed. If not, consumer still has to catch up and thus
will see new data anyways without needing an extra poll notification.
Benchmarks (see tools/testing/selftests/bpf/benchs/bench_ringbuf.c) show that
this allows to achieve a very high throughput without having to resort to
tricks like "notify only every Nth sample", which are necessary with perf
buffer. For extreme cases, when BPF program wants more manual control of
notifications, commit/discard/output helpers accept BPF_RB_NO_WAKEUP and
BPF_RB_FORCE_WAKEUP flags, which give full control over notifications of data
availability, but require extra caution and diligence in using this API.

Comparison to alternatives
--------------------------
Before considering implementing BPF ring buffer from scratch existing
alternatives in kernel were evaluated, but didn't seem to meet the needs. They
largely fell into few categores:
  - per-CPU buffers (perf, ftrace, etc), which don't satisfy two motivations
    outlined above (ordering and memory consumption);
  - linked list-based implementations; while some were multi-producer designs,
    consuming these from user-space would be very complicated and most
    probably not performant; memory-mapping contiguous piece of memory is
    simpler and more performant for user-space consumers;
  - io_uring is SPSC, but also requires fixed-sized elements. Naively turning
    SPSC queue into MPSC w/ lock would have subpar performance compared to
    locked reserve + lockless commit, as with BPF ring buffer. Fixed sized
    elements would be too limiting for BPF programs, given existing BPF
    programs heavily rely on variable-sized perf buffer already;
  - specialized implementations (like a new printk ring buffer, [0]) with lots
    of printk-specific limitations and implications, that didn't seem to fit
    well for intended use with BPF programs.

  [0] https://lwn.net/Articles/779550/

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-2-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-06-01 14:38:22 -07:00
John Fastabend 13d70f5a5e bpf, sk_msg: Add get socket storage helpers
Add helpers to use local socket storage.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/159033907577.12355.14740125020572756560.stgit@john-Precision-5820-Tower
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-06-01 14:38:20 -07:00
Daniel Borkmann 1b66d25361 bpf: Add get{peer, sock}name attach types for sock_addr
As stated in 983695fa67 ("bpf: fix unconnected udp hooks"), the objective
for the existing cgroup connect/sendmsg/recvmsg/bind BPF hooks is to be
transparent to applications. In Cilium we make use of these hooks [0] in
order to enable E-W load balancing for existing Kubernetes service types
for all Cilium managed nodes in the cluster. Those backends can be local
or remote. The main advantage of this approach is that it operates as close
as possible to the socket, and therefore allows to avoid packet-based NAT
given in connect/sendmsg/recvmsg hooks we only need to xlate sock addresses.

This also allows to expose NodePort services on loopback addresses in the
host namespace, for example. As another advantage, this also efficiently
blocks bind requests for applications in the host namespace for exposed
ports. However, one missing item is that we also need to perform reverse
xlation for inet{,6}_getname() hooks such that we can return the service
IP/port tuple back to the application instead of the remote peer address.

The vast majority of applications does not bother about getpeername(), but
in a few occasions we've seen breakage when validating the peer's address
since it returns unexpectedly the backend tuple instead of the service one.
Therefore, this trivial patch allows to customise and adds a getpeername()
as well as getsockname() BPF cgroup hook for both IPv4 and IPv6 in order
to address this situation.

Simple example:

  # ./cilium/cilium service list
  ID   Frontend     Service Type   Backend
  1    1.2.3.4:80   ClusterIP      1 => 10.0.0.10:80

Before; curl's verbose output example, no getpeername() reverse xlation:

  # curl --verbose 1.2.3.4
  * Rebuilt URL to: 1.2.3.4/
  *   Trying 1.2.3.4...
  * TCP_NODELAY set
  * Connected to 1.2.3.4 (10.0.0.10) port 80 (#0)
  > GET / HTTP/1.1
  > Host: 1.2.3.4
  > User-Agent: curl/7.58.0
  > Accept: */*
  [...]

After; with getpeername() reverse xlation:

  # curl --verbose 1.2.3.4
  * Rebuilt URL to: 1.2.3.4/
  *   Trying 1.2.3.4...
  * TCP_NODELAY set
  * Connected to 1.2.3.4 (1.2.3.4) port 80 (#0)
  > GET / HTTP/1.1
  >  Host: 1.2.3.4
  > User-Agent: curl/7.58.0
  > Accept: */*
  [...]

Originally, I had both under a BPF_CGROUP_INET{4,6}_GETNAME type and exposed
peer to the context similar as in inet{,6}_getname() fashion, but API-wise
this is suboptimal as it always enforces programs having to test for ctx->peer
which can easily be missed, hence BPF_CGROUP_INET{4,6}_GET{PEER,SOCK}NAME split.
Similarly, the checked return code is on tnum_range(1, 1), but if a use case
comes up in future, it can easily be changed to return an error code instead.
Helper and ctx member access is the same as with connect/sendmsg/etc hooks.

  [0] https://github.com/cilium/cilium/blob/master/bpf/bpf_sock.c

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Andrey Ignatov <rdna@fb.com>
Link: https://lore.kernel.org/bpf/61a479d759b2482ae3efb45546490bacd796a220.1589841594.git.daniel@iogearbox.net
2020-05-19 11:32:04 -07:00
Jesper Dangaard Brouer c8741e2bfe xdp: Allow bpf_xdp_adjust_tail() to grow packet size
Finally, after all drivers have a frame size, allow BPF-helper
bpf_xdp_adjust_tail() to grow or extend packet size at frame tail.

Remember that helper/macro xdp_data_hard_end have reserved some
tailroom.  Thus, this helper makes sure that the BPF-prog don't have
access to this tailroom area.

V2: Remove one chicken check and use WARN_ONCE for other

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/158945348530.97035.12577148209134239291.stgit@firesoul
2020-05-14 21:21:56 -07:00
David S. Miller d00f26b623 Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Alexei Starovoitov says:

====================
pull-request: bpf-next 2020-05-14

The following pull-request contains BPF updates for your *net-next* tree.

The main changes are:

1) Merged tag 'perf-for-bpf-2020-05-06' from tip tree that includes CAP_PERFMON.

2) support for narrow loads in bpf_sock_addr progs and additional
   helpers in cg-skb progs, from Andrey.

3) bpf benchmark runner, from Andrii.

4) arm and riscv JIT optimizations, from Luke.

5) bpf iterator infrastructure, from Yonghong.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-14 20:31:21 -07:00
Andrey Ignatov f307fa2cb4 bpf: Introduce bpf_sk_{, ancestor_}cgroup_id helpers
With having ability to lookup sockets in cgroup skb programs it becomes
useful to access cgroup id of retrieved sockets so that policies can be
implemented based on origin cgroup of such socket.

For example, a container running in a cgroup can have cgroup skb ingress
program that can lookup peer socket that is sending packets to a process
inside the container and decide whether those packets should be allowed
or denied based on cgroup id of the peer.

More specifically such ingress program can implement intra-host policy
"allow incoming packets only from this same container and not from any
other container on same host" w/o relying on source IP addresses since
quite often it can be the case that containers share same IP address on
the host.

Introduce two new helpers for this use-case: bpf_sk_cgroup_id() and
bpf_sk_ancestor_cgroup_id().

These helpers are similar to existing bpf_skb_{,ancestor_}cgroup_id
helpers with the only difference that sk is used to get cgroup id
instead of skb, and share code with them.

See documentation in UAPI for more details.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/f5884981249ce911f63e9b57ecd5d7d19154ff39.1589486450.git.rdna@fb.com
2020-05-14 18:41:07 -07:00
Andrey Ignatov 7aebfa1b38 bpf: Support narrow loads from bpf_sock_addr.user_port
bpf_sock_addr.user_port supports only 4-byte load and it leads to ugly
code in BPF programs, like:

	volatile __u32 user_port = ctx->user_port;
	__u16 port = bpf_ntohs(user_port);

Since otherwise clang may optimize the load to be 2-byte and it's
rejected by verifier.

Add support for 1- and 2-byte loads same way as it's supported for other
fields in bpf_sock_addr like user_ip4, msg_src_ip4, etc.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/c1e983f4c17573032601d0b2b1f9d1274f24bc16.1589420814.git.rdna@fb.com
2020-05-14 18:30:57 -07:00
Quentin Monnet ab8d78093d bpf: Minor fixes to BPF helpers documentation
Minor improvements to the documentation for BPF helpers:

* Fix formatting for the description of "bpf_socket" for
  bpf_getsockopt() and bpf_setsockopt(), thus suppressing two warnings
  from rst2man about "Unexpected indentation".
* Fix formatting for return values for bpf_sk_assign() and seq_file
  helpers.
* Fix and harmonise formatting, in particular for function/struct names.
* Remove blank lines before "Return:" sections.
* Replace tabs found in the middle of text lines.
* Fix typos.
* Add a note to the footer (in Python script) about "bpftool feature
  probe", including for listing features available to unprivileged
  users, and add a reference to bpftool man page.

Thanks to Florian for reporting two typos (duplicated words).

Signed-off-by: Quentin Monnet <quentin@isovalent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200511161536.29853-4-quentin@isovalent.com
2020-05-11 21:20:53 +02:00
Yonghong Song 492e639f0c bpf: Add bpf_seq_printf and bpf_seq_write helpers
Two helpers bpf_seq_printf and bpf_seq_write, are added for
writing data to the seq_file buffer.

bpf_seq_printf supports common format string flag/width/type
fields so at least I can get identical results for
netlink and ipv6_route targets.

For bpf_seq_printf and bpf_seq_write, return value -EOVERFLOW
specifically indicates a write failure due to overflow, which
means the object will be repeated in the next bpf invocation
if object collection stays the same. Note that if the object
collection is changed, depending how collection traversal is
done, even if the object still in the collection, it may not
be visited.

For bpf_seq_printf, format %s, %p{i,I}{4,6} needs to
read kernel memory. Reading kernel memory may fail in
the following two cases:
  - invalid kernel address, or
  - valid kernel address but requiring a major fault
If reading kernel memory failed, the %s string will be
an empty string and %p{i,I}{4,6} will be all 0.
Not returning error to bpf program is consistent with
what bpf_trace_printk() does for now.

bpf_seq_printf may return -EBUSY meaning that internal percpu
buffer for memory copy of strings or other pointees is
not available. Bpf program can return 1 to indicate it
wants the same object to be repeated. Right now, this should not
happen on no-RT kernels since migrate_disable(), which guards
bpf prog call, calls preempt_disable().

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175914.2476661-1-yhs@fb.com
2020-05-09 17:05:26 -07:00
Yonghong Song ac51d99bf8 bpf: Create anonymous bpf iterator
A new bpf command BPF_ITER_CREATE is added.

The anonymous bpf iterator is seq_file based.
The seq_file private data are referenced by targets.
The bpf_iter infrastructure allocated additional space
at seq_file->private before the space used by targets
to store some meta data, e.g.,
  prog:       prog to run
  session_id: an unique id for each opened seq_file
  seq_num:    how many times bpf programs are queried in this session
  done_stop:  an internal state to decide whether bpf program
              should be called in seq_ops->stop() or not

The seq_num will start from 0 for valid objects.
The bpf program may see the same seq_num more than once if
 - seq_file buffer overflow happens and the same object
   is retried by bpf_seq_read(), or
 - the bpf program explicitly requests a retry of the
   same object

Since module is not supported for bpf_iter, all target
registeration happens at __init time, so there is no
need to change bpf_iter_unreg_target() as it is used
mostly in error path of the init function at which time
no bpf iterators have been created yet.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175905.2475770-1-yhs@fb.com
2020-05-09 17:05:26 -07:00
Yonghong Song de4e05cac4 bpf: Support bpf tracing/iter programs for BPF_LINK_CREATE
Given a bpf program, the step to create an anonymous bpf iterator is:
  - create a bpf_iter_link, which combines bpf program and the target.
    In the future, there could be more information recorded in the link.
    A link_fd will be returned to the user space.
  - create an anonymous bpf iterator with the given link_fd.

The bpf_iter_link can be pinned to bpffs mount file system to
create a file based bpf iterator as well.

The benefit to use of bpf_iter_link:
  - using bpf link simplifies design and implementation as bpf link
    is used for other tracing bpf programs.
  - for file based bpf iterator, bpf_iter_link provides a standard
    way to replace underlying bpf programs.
  - for both anonymous and free based iterators, bpf link query
    capability can be leveraged.

The patch added support of tracing/iter programs for BPF_LINK_CREATE.
A new link type BPF_LINK_TYPE_ITER is added to facilitate link
querying. Currently, only prog_id is needed, so there is no
additional in-kernel show_fdinfo() and fill_link_info() hook
is needed for BPF_LINK_TYPE_ITER link.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175901.2475084-1-yhs@fb.com
2020-05-09 17:05:26 -07:00
Yonghong Song 15d83c4d7c bpf: Allow loading of a bpf_iter program
A bpf_iter program is a tracing program with attach type
BPF_TRACE_ITER. The load attribute
  attach_btf_id
is used by the verifier against a particular kernel function,
which represents a target, e.g., __bpf_iter__bpf_map
for target bpf_map which is implemented later.

The program return value must be 0 or 1 for now.
  0 : successful, except potential seq_file buffer overflow
      which is handled by seq_file reader.
  1 : request to restart the same object

In the future, other return values may be used for filtering or
teminating the iterator.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175900.2474947-1-yhs@fb.com
2020-05-09 17:05:26 -07:00
Stanislav Fomichev 8086fbaf49 bpf: Allow any port in bpf_bind helper
We want to have a tighter control on what ports we bind to in
the BPF_CGROUP_INET{4,6}_CONNECT hooks even if it means
connect() becomes slightly more expensive. The expensive part
comes from the fact that we now need to call inet_csk_get_port()
that verifies that the port is not used and allocates an entry
in the hash table for it.

Since we can't rely on "snum || !bind_address_no_port" to prevent
us from calling POST_BIND hook anymore, let's add another bind flag
to indicate that the call site is BPF program.

v5:
* fix wrong AF_INET (should be AF_INET6) in the bpf program for v6

v3:
* More bpf_bind documentation refinements (Martin KaFai Lau)
* Add UDP tests as well (Martin KaFai Lau)
* Don't start the thread, just do socket+bind+listen (Martin KaFai Lau)

v2:
* Update documentation (Andrey Ignatov)
* Pass BIND_FORCE_ADDRESS_NO_PORT conditionally (Andrey Ignatov)

Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrey Ignatov <rdna@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200508174611.228805-5-sdf@google.com
2020-05-09 00:48:20 +02:00
David S. Miller 3793faad7b Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Conflicts were all overlapping changes.

Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-06 22:10:13 -07:00
Gustavo A. R. Silva 1e6e9d0f48 uapi: revert flexible-array conversions
These structures can get embedded in other structures in user-space
and cause all sorts of warnings and problems. So, we better don't take
any chances and keep the zero-length arrays in place for now.

Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-05-04 11:30:15 -05:00
Stanislav Fomichev beecf11bc2 bpf: Bpf_{g,s}etsockopt for struct bpf_sock_addr
Currently, bpf_getsockopt and bpf_setsockopt helpers operate on the
'struct bpf_sock_ops' context in BPF_PROG_TYPE_SOCK_OPS program.
Let's generalize them and make them available for 'struct bpf_sock_addr'.
That way, in the future, we can allow those helpers in more places.

As an example, let's expose those 'struct bpf_sock_addr' based helpers to
BPF_CGROUP_INET{4,6}_CONNECT hooks. That way we can override CC before the
connection is made.

v3:
* Expose custom helpers for bpf_sock_addr context instead of doing
  generic bpf_sock argument (as suggested by Daniel). Even with
  try_socket_lock that doesn't sleep we have a problem where context sk
  is already locked and socket lock is non-nestable.

v2:
* s/BPF_PROG_TYPE_CGROUP_SOCKOPT/BPF_PROG_TYPE_SOCK_OPS/

Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200430233152.199403-1-sdf@google.com
2020-05-01 12:44:28 -07:00
Song Liu d46edd671a bpf: Sharing bpf runtime stats with BPF_ENABLE_STATS
Currently, sysctl kernel.bpf_stats_enabled controls BPF runtime stats.
Typical userspace tools use kernel.bpf_stats_enabled as follows:

  1. Enable kernel.bpf_stats_enabled;
  2. Check program run_time_ns;
  3. Sleep for the monitoring period;
  4. Check program run_time_ns again, calculate the difference;
  5. Disable kernel.bpf_stats_enabled.

The problem with this approach is that only one userspace tool can toggle
this sysctl. If multiple tools toggle the sysctl at the same time, the
measurement may be inaccurate.

To fix this problem while keep backward compatibility, introduce a new
bpf command BPF_ENABLE_STATS. On success, this command enables stats and
returns a valid fd. BPF_ENABLE_STATS takes argument "type". Currently,
only one type, BPF_STATS_RUN_TIME, is supported. We can extend the
command to support other types of stats in the future.

With BPF_ENABLE_STATS, user space tool would have the following flow:

  1. Get a fd with BPF_ENABLE_STATS, and make sure it is valid;
  2. Check program run_time_ns;
  3. Sleep for the monitoring period;
  4. Check program run_time_ns again, calculate the difference;
  5. Close the fd.

Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200430071506.1408910-2-songliubraving@fb.com
2020-05-01 10:36:32 -07:00
Andrii Nakryiko f2e10bff16 bpf: Add support for BPF_OBJ_GET_INFO_BY_FD for bpf_link
Add ability to fetch bpf_link details through BPF_OBJ_GET_INFO_BY_FD command.
Also enhance show_fdinfo to potentially include bpf_link type-specific
information (similarly to obj_info).

Also introduce enum bpf_link_type stored in bpf_link itself and expose it in
UAPI. bpf_link_tracing also now will store and return bpf_attach_type.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200429001614.1544-5-andriin@fb.com
2020-04-28 17:27:08 -07:00
Andrii Nakryiko 2d602c8cf4 bpf: Support GET_FD_BY_ID and GET_NEXT_ID for bpf_link
Add support to look up bpf_link by ID and iterate over all existing bpf_links
in the system. GET_FD_BY_ID code handles not-yet-ready bpf_link by checking
that its ID hasn't been set to non-zero value yet. Setting bpf_link's ID is
done as the very last step in finalizing bpf_link, together with installing
FD. This approach allows users of bpf_link in kernel code to not worry about
races between user-space and kernel code that hasn't finished attaching and
initializing bpf_link.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200429001614.1544-4-andriin@fb.com
2020-04-28 17:27:08 -07:00
Andrii Nakryiko a3b80e1078 bpf: Allocate ID for bpf_link
Generate ID for each bpf_link using IDR, similarly to bpf_map and bpf_prog.
bpf_link creation, initialization, attachment, and exposing to user-space
through FD and ID is a complicated multi-step process, abstract it away
through bpf_link_primer and bpf_link_prime(), bpf_link_settle(), and
bpf_link_cleanup() internal API. They guarantee that until bpf_link is
properly attached, user-space won't be able to access partially-initialized
bpf_link either from FD or ID. All this allows to simplify bpf_link attachment
and error handling code.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200429001614.1544-3-andriin@fb.com
2020-04-28 17:27:08 -07:00
Maciej Żenczykowski 71d1921477 bpf: add bpf_ktime_get_boot_ns()
On a device like a cellphone which is constantly suspending
and resuming CLOCK_MONOTONIC is not particularly useful for
keeping track of or reacting to external network events.
Instead you want to use CLOCK_BOOTTIME.

Hence add bpf_ktime_get_boot_ns() as a mirror of bpf_ktime_get_ns()
based around CLOCK_BOOTTIME instead of CLOCK_MONOTONIC.

Signed-off-by: Maciej Żenczykowski <maze@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-04-26 09:43:05 -07:00
Jakub Wilk a33d314794 bpf: Fix reStructuredText markup
The patch fixes:
$ scripts/bpf_helpers_doc.py > bpf-helpers.rst
$ rst2man bpf-helpers.rst > bpf-helpers.7
bpf-helpers.rst:1105: (WARNING/2) Inline strong start-string without end-string.

Signed-off-by: Jakub Wilk <jwilk@jwilk.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Quentin Monnet <quentin@isovalent.com>
Link: https://lore.kernel.org/bpf/20200422082324.2030-1-jwilk@jwilk.net
2020-04-24 17:01:26 -07:00
Andrii Nakryiko 0c991ebc8c bpf: Implement bpf_prog replacement for an active bpf_cgroup_link
Add new operation (LINK_UPDATE), which allows to replace active bpf_prog from
under given bpf_link. Currently this is only supported for bpf_cgroup_link,
but will be extended to other kinds of bpf_links in follow-up patches.

For bpf_cgroup_link, implemented functionality matches existing semantics for
direct bpf_prog attachment (including BPF_F_REPLACE flag). User can either
unconditionally set new bpf_prog regardless of which bpf_prog is currently
active under given bpf_link, or, optionally, can specify expected active
bpf_prog. If active bpf_prog doesn't match expected one, no changes are
performed, old bpf_link stays intact and attached, operation returns
a failure.

cgroup_bpf_replace() operation is resolving race between auto-detachment and
bpf_prog update in the same fashion as it's done for bpf_link detachment,
except in this case update has no way of succeeding because of target cgroup
marked as dying. So in this case error is returned.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200330030001.2312810-3-andriin@fb.com
2020-03-30 17:36:33 -07:00
Andrii Nakryiko af6eea5743 bpf: Implement bpf_link-based cgroup BPF program attachment
Implement new sub-command to attach cgroup BPF programs and return FD-based
bpf_link back on success. bpf_link, once attached to cgroup, cannot be
replaced, except by owner having its FD. Cgroup bpf_link supports only
BPF_F_ALLOW_MULTI semantics. Both link-based and prog-based BPF_F_ALLOW_MULTI
attachments can be freely intermixed.

To prevent bpf_cgroup_link from keeping cgroup alive past the point when no
BPF program can be executed, implement auto-detachment of link. When
cgroup_bpf_release() is called, all attached bpf_links are forced to release
cgroup refcounts, but they leave bpf_link otherwise active and allocated, as
well as still owning underlying bpf_prog. This is because user-space might
still have FDs open and active, so bpf_link as a user-referenced object can't
be freed yet. Once last active FD is closed, bpf_link will be freed and
underlying bpf_prog refcount will be dropped. But cgroup refcount won't be
touched, because cgroup is released already.

The inherent race between bpf_cgroup_link release (from closing last FD) and
cgroup_bpf_release() is resolved by both operations taking cgroup_mutex. So
the only additional check required is when bpf_cgroup_link attempts to detach
itself from cgroup. At that time we need to check whether there is still
cgroup associated with that link. And if not, exit with success, because
bpf_cgroup_link was already successfully detached.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Link: https://lore.kernel.org/bpf/20200330030001.2312810-2-andriin@fb.com
2020-03-30 17:35:59 -07:00