Modify the schedutil cpufreq governor to boost the CPU
frequency if the SCHED_CPUFREQ_IOWAIT flag is passed to
it via cpufreq_update_util().
If that happens, the frequency is set to the maximum during
the first update after receiving the SCHED_CPUFREQ_IOWAIT flag
and then the boost is reduced by half during each following update.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Looks-good-to: Steve Muckle <smuckle@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Testing indicates that it is possible to improve performace
significantly without increasing energy consumption too much by
teaching cpufreq governors to bump up the CPU performance level if
the in_iowait flag is set for the task in enqueue_task_fair().
For this purpose, define a new cpufreq_update_util() flag
SCHED_CPUFREQ_IOWAIT and modify enqueue_task_fair() to pass that
flag to cpufreq_update_util() in the in_iowait case. That generally
requires cpufreq_update_util() to be called directly from there,
because update_load_avg() may not be invoked in that case.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Looks-good-to: Steve Muckle <smuckle@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
There's a bug in this commit:
97a7142f15 ("sched/fair: Make update_min_vruntime() more readable")
... when !rb_leftmost && curr we fail to advance min_vruntime.
So revert it.
Reported-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The schedstat_val() macro's behavior is kind of surprising: when
schedstat is runtime disabled, it returns zero. Rename it to
schedstat_val_or_zero().
There's also a need for a similar macro which doesn't have the 'if
(schedstat_enable())' check, to avoid doing the check twice. Create a
new 'schedstat_val()' macro for that.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/3bb1d2367d041fee333b0dde17171e709395b675.1466184592.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The schedstat_*() macros are inconsistent: most of them take a pointer
and a field which the macro combines, whereas schedstat_set() takes the
already combined ptr->field.
The already combined ptr->field argument is actually more intuitive and
easier to use, and there's no reason to require the user to split the
variable up, so convert the macros to use the combined argument.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/54953ca25bb579f3a5946432dee409b0e05222c6.1466184592.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
enqueue_sleeper() doesn't actually enqueue, it just handles some
statistics and tracepoints. Rename it to update_stats_enqueue_sleeper()
and call it from update_stats_enqueue().
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/fb20b7159dc4d028c406c0e8d5f8c439b741615b.1466184592.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The dl task will be replenished after dl task timer fire and start a
new period. It will be enqueued and to re-evaluate its dependency on
the tick in order to restart it. However, if the CPU is hot-unplugged,
irq_work_queue will splash since the target CPU is offline.
As a result we get:
WARNING: CPU: 2 PID: 0 at kernel/irq_work.c:69 irq_work_queue_on+0xad/0xe0
Call Trace:
dump_stack+0x99/0xd0
__warn+0xd1/0xf0
warn_slowpath_null+0x1d/0x20
irq_work_queue_on+0xad/0xe0
tick_nohz_full_kick_cpu+0x44/0x50
tick_nohz_dep_set_cpu+0x74/0xb0
enqueue_task_dl+0x226/0x480
activate_task+0x5c/0xa0
dl_task_timer+0x19b/0x2c0
? push_dl_task.part.31+0x190/0x190
This can be triggered by hot-unplugging the full dynticks CPU which dl
task is running on.
We enqueue the dl task on the offline CPU, because we need to do
replenish for start_dl_timer(). So, as Juri pointed out, we would
need to do is calling replenish_dl_entity() directly, instead of
enqueue_task_dl(). pi_se shouldn't be a problem as the task shouldn't
be boosted if it was throttled.
This patch fixes it by avoiding the whole enqueue+dequeue+enqueue story, by
first migrating (set_task_cpu()) and then doing 1 enqueue.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@unitn.it>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1472639264-3932-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
init_task's preempt_notifiers is initialized twice:
1) sched_init()
-> INIT_HLIST_HEAD(&init_task.preempt_notifiers)
2) sched_init()
-> init_idle(current,) <--- current task is init_task at this time
-> __sched_fork(,current)
-> INIT_HLIST_HEAD(&p->preempt_notifiers)
I think the first one is unnecessary, so remove it.
Signed-off-by: seokhoon.yoon <iamyooon@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1471339568-5790-1-git-send-email-iamyooon@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since commit:
2159197d66 ("sched/core: Enable increased load resolution on 64-bit kernels")
we now have two different fixed point units for load.
load_above_capacity has to have 10 bits fixed point unit like PELT,
whereas NICE_0_LOAD has 20 bit fixed point unit on 64-bit kernels.
Fix this by scaling down NICE_0_LOAD when multiplying
load_above_capacity with it.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/1470824847-5316-1-git-send-email-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This change goes from heapify() ops done by swapping with parent/child
so that the item to fix moves along, to heapify() ops done by just
pulling the parent/child chain by 1 pos, then storing the item to fix
just at the end. On a non-trivial heapify(), this performs roughly half
stores wrt swaps.
This has been measured to achieve up to 10% of speed-up for cpudl_set()
calls, with a randomly generated workload of 1K,10K,100K random heap
insertions and deletions (75% cpudl_set() calls with is_valid=1 and
25% with is_valid=0), and randomly generated cpu IDs, with up to 256
CPUs, as measured on an Intel Core2 Duo.
Signed-off-by: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Luca Abeni <luca.abeni@unitn.it>
Reviewed-by: Juri Lelli <juri.lelli@arm.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-dl@retis.sssup.it
Link: http://lkml.kernel.org/r/1471184828-12644-3-git-send-email-tommaso.cucinotta@sssup.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
1. heapify up factored out in new dedicated function heapify_up()
(avoids repetition of same code)
2. call to cpudl_change_key() replaced with heapify_up() when
cpudl_set actually inserts a new node in the heap
3. cpudl_change_key() replaced with heapify() that heapifies up
or down as needed.
Signed-off-by: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Luca Abeni <luca.abeni@unitn.it>
Reviewed-by: Juri Lelli <juri.lelli@arm.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-dl@retis.sssup.it
Link: http://lkml.kernel.org/r/1471184828-12644-2-git-send-email-tommaso.cucinotta@sssup.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The update_min_vruntime() control flow can be simplified.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: minchan.kim@lge.com
Link: http://lkml.kernel.org/r/1436088829-25768-1-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The origin of the issue I've seen is related to
a missing memory barrier between check for task->state and
the check for task->on_rq.
The task being woken up is already awake from a schedule()
and is doing the following:
do {
schedule()
set_current_state(TASK_(UN)INTERRUPTIBLE);
} while (!cond);
The waker, actually gets stuck doing the following in
try_to_wake_up():
while (p->on_cpu)
cpu_relax();
Analysis:
The instance I've seen involves the following race:
CPU1 CPU2
while () {
if (cond)
break;
do {
schedule();
set_current_state(TASK_UN..)
} while (!cond);
wakeup_routine()
spin_lock_irqsave(wait_lock)
raw_spin_lock_irqsave(wait_lock) wake_up_process()
} try_to_wake_up()
set_current_state(TASK_RUNNING); ..
list_del(&waiter.list);
CPU2 wakes up CPU1, but before it can get the wait_lock and set
current state to TASK_RUNNING the following occurs:
CPU3
wakeup_routine()
raw_spin_lock_irqsave(wait_lock)
if (!list_empty)
wake_up_process()
try_to_wake_up()
raw_spin_lock_irqsave(p->pi_lock)
..
if (p->on_rq && ttwu_wakeup())
..
while (p->on_cpu)
cpu_relax()
..
CPU3 tries to wake up the task on CPU1 again since it finds
it on the wait_queue, CPU1 is spinning on wait_lock, but immediately
after CPU2, CPU3 got it.
CPU3 checks the state of p on CPU1, it is TASK_UNINTERRUPTIBLE and
the task is spinning on the wait_lock. Interestingly since p->on_rq
is checked under pi_lock, I've noticed that try_to_wake_up() finds
p->on_rq to be 0. This was the most confusing bit of the analysis,
but p->on_rq is changed under runqueue lock, rq_lock, the p->on_rq
check is not reliable without this fix IMHO. The race is visible
(based on the analysis) only when ttwu_queue() does a remote wakeup
via ttwu_queue_remote. In which case the p->on_rq change is not
done uder the pi_lock.
The result is that after a while the entire system locks up on
the raw_spin_irqlock_save(wait_lock) and the holder spins infintely
Reproduction of the issue:
The issue can be reproduced after a long run on my system with 80
threads and having to tweak available memory to very low and running
memory stress-ng mmapfork test. It usually takes a long time to
reproduce. I am trying to work on a test case that can reproduce
the issue faster, but thats work in progress. I am still testing the
changes on my still in a loop and the tests seem OK thus far.
Big thanks to Benjamin and Nick for helping debug this as well.
Ben helped catch the missing barrier, Nick caught every missing
bit in my theory.
Signed-off-by: Balbir Singh <bsingharora@gmail.com>
[ Updated comment to clarify matching barriers. Many
architectures do not have a full barrier in switch_to()
so that cannot be relied upon. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nicholas Piggin <nicholas.piggin@gmail.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/e02cce7b-d9ca-1ad0-7a61-ea97c7582b37@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
PELT does not consider SMT when scaling its utilization values via
arch_scale_cpu_capacity(). The value in rq->cpu_capacity_orig does
take SMT into consideration though and therefore may be smaller than
the utilization reported by PELT.
On an Intel i7-3630QM for example rq->cpu_capacity_orig is 589 but
util_avg scales up to 1024. This means that a 50% utilized CPU will show
up in schedutil as ~86% busy.
Fix this by using the same CPU scaling value in schedutil as that which
is used by PELT.
Signed-off-by: Steve Muckle <smuckle@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Now that the x86 switch_to() uses the standard C calling convention,
the STACK_FRAME_NON_STANDARD() annotation is no longer needed.
Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1471106302-10159-8-git-send-email-brgerst@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Both timers and hrtimers are maintained on the outgoing CPU until
CPU_DEAD time, at which point they are migrated to a surviving CPU. If a
mod_timer() executes between CPU_DYING and CPU_DEAD time, x86 systems
will splat in native_smp_send_reschedule() when attempting to wake up
the just-now-offlined CPU, as shown below from a NO_HZ_FULL kernel:
[ 7976.741556] WARNING: CPU: 0 PID: 661 at /home/paulmck/public_git/linux-rcu/arch/x86/kernel/smp.c:125 native_smp_send_reschedule+0x39/0x40
[ 7976.741595] Modules linked in:
[ 7976.741595] CPU: 0 PID: 661 Comm: rcu_torture_rea Not tainted 4.7.0-rc2+ #1
[ 7976.741595] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
[ 7976.741595] 0000000000000000 ffff88000002fcc8 ffffffff8138ab2e 0000000000000000
[ 7976.741595] 0000000000000000 ffff88000002fd08 ffffffff8105cabc 0000007d1fd0ee18
[ 7976.741595] 0000000000000001 ffff88001fd16d40 ffff88001fd0ee00 ffff88001fd0ee00
[ 7976.741595] Call Trace:
[ 7976.741595] [<ffffffff8138ab2e>] dump_stack+0x67/0x99
[ 7976.741595] [<ffffffff8105cabc>] __warn+0xcc/0xf0
[ 7976.741595] [<ffffffff8105cb98>] warn_slowpath_null+0x18/0x20
[ 7976.741595] [<ffffffff8103cba9>] native_smp_send_reschedule+0x39/0x40
[ 7976.741595] [<ffffffff81089bc2>] wake_up_nohz_cpu+0x82/0x190
[ 7976.741595] [<ffffffff810d275a>] internal_add_timer+0x7a/0x80
[ 7976.741595] [<ffffffff810d3ee7>] mod_timer+0x187/0x2b0
[ 7976.741595] [<ffffffff810c89dd>] rcu_torture_reader+0x33d/0x380
[ 7976.741595] [<ffffffff810c66f0>] ? sched_torture_read_unlock+0x30/0x30
[ 7976.741595] [<ffffffff810c86a0>] ? rcu_bh_torture_read_lock+0x80/0x80
[ 7976.741595] [<ffffffff8108068f>] kthread+0xdf/0x100
[ 7976.741595] [<ffffffff819dd83f>] ret_from_fork+0x1f/0x40
[ 7976.741595] [<ffffffff810805b0>] ? kthread_create_on_node+0x200/0x200
However, in this case, the wakeup is redundant, because the timer
migration will reprogram timer hardware as needed. Note that the fact
that preemption is disabled does not avoid the splat, as the offline
operation has already passed both the synchronize_sched() and the
stop_machine() that would be blocked by disabled preemption.
This commit therefore modifies wake_up_nohz_cpu() to avoid attempting
to wake up offline CPUs. It also adds a comment stating that the
caller must tolerate lost wakeups when the target CPU is going offline,
and suggesting the CPU_DEAD notifier as a recovery mechanism.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Commit:
d670ec1317 ("posix-cpu-timers: Cure SMP wobbles")
started accounting thread group tasks pending runtime in thread_group_cputime().
Another commit:
6e998916df ("sched/cputime: Fix clock_nanosleep()/clock_gettime() inconsistency")
updated scheduler runtime statistics (call update_curr()) when reading task pending
runtime. Those changes cause bad performance of SYS_times() and
SYS_clock_gettimes(CLOCK_PROCESS_CPUTIME_ID) syscalls, especially on
larger systems with many CPUs.
While we would like to have cpuclock monotonicity kept i.e. have
problems fixed by above commits stay fixed, we also would like to have
good performance.
However when we notice that change from commit d670ec1317 is not
longer needed to solve problem addressed by that commit, because of
change from the second commit 6e998916df, we can get room for
optimization. Since we update task while reading it's pending runtime
in task_sched_runtime(), clock_gettime(CLOCK_PROCESS_CPUTIME_ID) will
see updated values and on testcase from d670ec1317 process cpuclock
will not be smaller than thread cpuclock.
I tested the patch on testcases from commits d670ec1317,
6e998916df and some other cpuclock/cputimers testcases and
did not found cpuclock monotonicity problems or other malfunction.
This patch has the drawback that we will not provide thread group cputime
up-to-date to the last moment. For example when arming cputime timer,
we will arm it with possibly a bit outdated values and that timer will
trigger earlier compared to behaviour without the patch. However that
was the behaviour before d670ec1317 commit (kernel v3.1) so it's
unlikely to affect applications.
Patch improves related syscall performance, as measured by Giovanni's
benchmarks described in commit:
6075620b05 ("sched/cputime: Mitigate performance regression in times()/clock_gettime()")
The benchmark results are:
SYS_clock_gettime():
threads 4.7-rc7 3.18-rc3 4.7-rc7 + prefetch 4.7-rc7 + patch
(pre-6e998916dfe3)
2 3.48 2.23 ( 35.68%) 3.06 ( 11.83%) 1.08 ( 68.81%)
5 3.33 2.83 ( 14.84%) 3.25 ( 2.40%) 0.71 ( 78.55%)
8 3.37 2.84 ( 15.80%) 3.26 ( 3.30%) 0.56 ( 83.49%)
12 3.32 3.09 ( 6.69%) 3.37 ( -1.60%) 0.42 ( 87.28%)
21 4.01 3.14 ( 21.70%) 3.90 ( 2.74%) 0.35 ( 91.35%)
30 3.63 3.28 ( 9.75%) 3.36 ( 7.41%) 0.28 ( 92.23%)
48 3.71 3.02 ( 18.69%) 3.11 ( 16.27%) 0.39 ( 89.39%)
79 3.75 2.88 ( 23.23%) 3.16 ( 15.74%) 0.46 ( 87.76%)
110 3.81 2.95 ( 22.62%) 3.25 ( 14.80%) 0.56 ( 85.41%)
128 3.88 3.05 ( 21.28%) 3.31 ( 14.76%) 0.62 ( 84.10%)
SYS_times():
threads 4.7-rc7 3.18-rc3 4.7-rc7 + prefetch 4.7-rc7 + patch
(pre-6e998916dfe3)
2 3.65 2.27 ( 37.94%) 3.25 ( 11.03%) 1.62 ( 55.71%)
5 3.45 2.78 ( 19.34%) 3.17 ( 7.92%) 2.33 ( 32.28%)
8 3.52 2.79 ( 20.66%) 3.22 ( 8.69%) 2.06 ( 41.44%)
12 3.29 3.02 ( 8.33%) 3.36 ( -2.04%) 2.00 ( 39.18%)
21 4.07 3.10 ( 23.86%) 3.92 ( 3.78%) 2.07 ( 49.18%)
30 3.87 3.33 ( 13.80%) 3.40 ( 12.17%) 1.89 ( 51.12%)
48 3.79 2.96 ( 21.94%) 3.16 ( 16.61%) 1.69 ( 55.46%)
79 3.88 2.88 ( 25.82%) 3.28 ( 15.42%) 1.60 ( 58.81%)
110 3.90 2.98 ( 23.73%) 3.38 ( 13.35%) 1.73 ( 55.61%)
128 4.00 3.10 ( 22.40%) 3.38 ( 15.45%) 1.66 ( 58.52%)
Reported-and-tested-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Galbraith <mgalbraith@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/20160817093043.GA25206@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, SD_WAKE_AFFINE always takes priority over wakeup balancing if
SD_BALANCE_WAKE is set on the sched_domains. For asymmetric
configurations SD_WAKE_AFFINE is only desirable if the waking task's
compute demand (utilization) is suitable for the waking CPU and the
previous CPU, and all CPUs within their respective
SD_SHARE_PKG_RESOURCES domains (sd_llc). If not, let wakeup balancing
take over (find_idlest_{group, cpu}()).
This patch makes affine wake-ups conditional on whether both the waker
CPU and the previous CPU has sufficient capacity for the waking task,
or not, assuming that the CPU capacities within an SD_SHARE_PKG_RESOURCES
domain (sd_llc) are homogeneous.
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: freedom.tan@mediatek.com
Cc: keita.kobayashi.ym@renesas.com
Cc: mgalbraith@suse.de
Cc: sgurrappadi@nvidia.com
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1469453670-2660-10-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To be able to compare the capacity of the target CPU with the highest
available CPU capacity, store the maximum per-CPU capacity in the root
domain.
The max per-CPU capacity should be 1024 for all systems except SMT,
where the capacity is currently based on smt_gain and the number of
hardware threads and is <1024. If SMT can be brought to work with a
per-thread capacity of 1024, this patch can be dropped and replaced by a
hard-coded max capacity of 1024 (=SCHED_CAPACITY_SCALE).
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: freedom.tan@mediatek.com
Cc: keita.kobayashi.ym@renesas.com
Cc: mgalbraith@suse.de
Cc: sgurrappadi@nvidia.com
Cc: vincent.guittot@linaro.org
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/26c69258-9947-f830-a53e-0c54e7750646@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A domain with the SD_ASYM_CPUCAPACITY flag set indicate that
sched_groups at this level and below do not include CPUs of all
capacities available (e.g. group containing little-only or big-only CPUs
in big.LITTLE systems). It is therefore necessary to put in more effort
in finding an appropriate CPU at task wake-up by enabling balancing at
wake-up (SD_BALANCE_WAKE) on all lower (child) levels.
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: freedom.tan@mediatek.com
Cc: keita.kobayashi.ym@renesas.com
Cc: mgalbraith@suse.de
Cc: sgurrappadi@nvidia.com
Cc: vincent.guittot@linaro.org
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1469453670-2660-8-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a topology flag to the sched_domain hierarchy indicating the lowest
domain level where the full range of CPU capacities is represented by
the domain members for asymmetric capacity topologies (e.g. ARM
big.LITTLE).
The flag is intended to indicate that extra care should be taken when
placing tasks on CPUs and this level spans all the different types of
CPUs found in the system (no need to look further up the domain
hierarchy). This information is currently only available through
iterating through the capacities of all the CPUs at parent levels in the
sched_domain hierarchy.
SD 2 [ 0 1 2 3] SD_ASYM_CPUCAPACITY
SD 1 [ 0 1] [ 2 3] !SD_ASYM_CPUCAPACITY
CPU: 0 1 2 3
capacity: 756 756 1024 1024
If the topology in the example above is duplicated to create an eight
CPU example with third sched_domain level on top (SD 3), this level
should not have the flag set (!SD_ASYM_CPUCAPACITY) as its two group
would both have all CPU capacities represented within them.
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: freedom.tan@mediatek.com
Cc: keita.kobayashi.ym@renesas.com
Cc: mgalbraith@suse.de
Cc: sgurrappadi@nvidia.com
Cc: vincent.guittot@linaro.org
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1469453670-2660-6-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
5743021831 ("sched/cputime: Count actually elapsed irq & softirq time")
... fixed a bug but also triggered a regression:
On an i5 laptop, 4 pCPUs, 4vCPUs for one full dynticks guest, there are four
CPU hog processes(for loop) running in the guest, I hot-unplug the pCPUs
on host one by one until there is only one left, then observe CPU utilization
via 'top' in the guest, it shows:
100% st for cpu0(housekeeping)
75% st for other CPUs (nohz full mode)
However, w/o this commit it shows the correct 75% for all four CPUs.
When a guest is interrupted for a longer amount of time, missed clock ticks
are not redelivered later. Because of that, we should not limit the amount
of steal time accounted to the amount of time that the calling functions
think have passed.
However, the interval returned by account_other_time() is NOT rounded down
to the nearest jiffy, while the base interval in get_vtime_delta() it is
subtracted from is, so the max cputime limit is required to avoid underflow.
This patch fixes the regression by limiting the account_other_time() from
get_vtime_delta() to avoid underflow, and lets the other three call sites
(in account_other_time() and steal_account_process_time()) account however
much steal time the host told us elapsed.
Suggested-by: Rik van Riel <riel@redhat.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Link: http://lkml.kernel.org/r/1471399546-4069-1-git-send-email-wanpeng.li@hotmail.com
[ Improved the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The nohz_stamp member of struct rq has been unused since 2010,
when this commit removed the code that referenced it:
396e894d28 ("sched: Revert nohz_ratelimit() for now")
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160815121410.5ea1c98f@annuminas.surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mike reports:
Roughly 10% of the time, ltp testcase getrusage04 fails:
getrusage04 0 TINFO : Expected timers granularity is 4000 us
getrusage04 0 TINFO : Using 1 as multiply factor for max [us]time increment (1000+4000us)!
getrusage04 0 TINFO : utime: 0us; stime: 179us
getrusage04 0 TINFO : utime: 3751us; stime: 0us
getrusage04 1 TFAIL : getrusage04.c:133: stime increased > 5000us:
And tracked it down to the case where the task simply doesn't get
_any_ [us]time ticks.
Update the code to assume all rtime is utime when we lack information,
thus ensuring a task that elides the tick gets time accounted.
Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Tested-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Fredrik Markstrom <fredrik.markstrom@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: stable@vger.kernel.org # 4.3+
Fixes: 9d7fb04276 ("sched/cputime: Guarantee stime + utime == rtime")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
All of the callers of cpufreq_update_util() pass rq_clock(rq) to it
as the time argument and some of them check whether or not cpu_of(rq)
is equal to smp_processor_id() before calling it, so rework it to
take a runqueue pointer as the argument and move the rq_clock(rq)
evaluation into it.
Additionally, provide a wrapper checking cpu_of(rq) against
smp_processor_id() for the cpufreq_update_util() callers that
need it.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
It is useful to know the reason why cpufreq_update_util() has just
been called and that can be passed as flags to cpufreq_update_util()
and to the ->func() callback in struct update_util_data. However,
doing that in addition to passing the util and max arguments they
already take would be clumsy, so avoid it.
Instead, use the observation that the schedutil governor is part
of the scheduler proper, so it can access scheduler data directly.
This allows the util and max arguments of cpufreq_update_util()
and the ->func() callback in struct update_util_data to be replaced
with a flags one, but schedutil has to be modified to follow.
Thus make the schedutil governor obtain the CFS utilization
information from the scheduler and use the "RT" and "DL" flags
instead of the special utilization value of ULONG_MAX to track
updates from the RT and DL sched classes. Make it non-modular
too to avoid having to export scheduler variables to modules at
large.
Next, update all of the other users of cpufreq_update_util()
and the ->func() callback in struct update_util_data accordingly.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Commit:
f9bcf1e0e0 ("sched/cputime: Fix steal time accounting")
... fixes a leak on steal time accounting but forgets to account
the ticks passed in parameters, assuming there is only one to
take into account.
Let's consider that parameter back.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Wanpeng Li <kernellwp@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: linux-tip-commits@vger.kernel.org
Link: http://lkml.kernel.org/r/20160811125822.GB4214@lerouge
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
5743021831 ("sched/cputime: Count actually elapsed irq & softirq time")
... didn't take steal time into consideration with passing the noirqtime
kernel parameter.
As Paolo pointed out before:
| Why not? If idle=poll, for example, any time the guest is suspended (and
| thus cannot poll) does count as stolen time.
This patch fixes it by reducing steal time from idle time accounting when
the noirqtime parameter is true. The average idle time drops from 56.8%
to 54.75% for nohz idle kvm guest(noirqtime, idle=poll, four vCPUs running
on one pCPU).
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1470893795-3527-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cgroup_path() and friends used to format the path from the end and
thus the resulting path usually didn't start at the start of the
passed in buffer. Also, when the buffer was too small, the partial
result was truncated from the head rather than tail and there was no
way to tell how long the full path would be. These make the functions
less robust and more awkward to use.
With recent updates to kernfs_path(), cgroup_path() and friends can be
made to behave in strlcpy() style.
* cgroup_path(), cgroup_path_ns[_locked]() and task_cgroup_path() now
always return the length of the full path. If buffer is too small,
it contains nul terminated truncated output.
* All users updated accordingly.
v2: cgroup_path() usage in kernel/sched/debug.c converted.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Serge Hallyn <serge.hallyn@ubuntu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
This message is currently really useless since it always prints a value
that comes from the printk() we just did, e.g.:
BUG: sleeping function called from invalid context at mm/slab.h:388
in_atomic(): 0, irqs_disabled(): 0, pid: 31996, name: trinity-c1
Preemption disabled at:[<ffffffff8119db33>] down_trylock+0x13/0x80
BUG: sleeping function called from invalid context at include/linux/freezer.h:56
in_atomic(): 0, irqs_disabled(): 0, pid: 31996, name: trinity-c1
Preemption disabled at:[<ffffffff811aaa37>] console_unlock+0x2f7/0x930
Here, both down_trylock() and console_unlock() is somewhere in the
printk() path.
We should save the value before calling printk() and use the saved value
instead. That immediately reveals the offending callsite:
BUG: sleeping function called from invalid context at mm/slab.h:388
in_atomic(): 0, irqs_disabled(): 0, pid: 14971, name: trinity-c2
Preemption disabled at:[<ffffffff819bcd46>] rhashtable_walk_start+0x46/0x150
Bug report:
http://marc.info/?l=linux-netdev&m=146925979821849&w=2
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russel <rusty@rustcorp.com.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
setup_new_dl_entity() takes two parameters, but it only actually uses
one of them, under a different name, to setup a new dl_entity, after:
2f9f3fdc928 "sched/deadline: Remove dl_new from struct sched_dl_entity"
as we currently do:
setup_new_dl_entity(&p->dl, &p->dl)
However, before Luca's change we were doing:
setup_new_dl_entity(dl_se, pi_se)
in update_dl_entity() for a dl_se->new entity: we were using pi_se's
parameters (the potential PI donor) for setting up a new entity.
This change removes the useless second parameter of setup_new_dl_entity().
While we are at it we also optimize things further calling setup_new_dl_
entity() only for already queued tasks, since (as pointed out by Xunlei)
we already do the very same update at tasks wakeup time anyway. By doing
so, we don't need to worry about a potential PI donor anymore, as
rt_mutex_setprio() takes care of that already for us.
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@unitn.it>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Xunlei Pang <xpang@redhat.com>
Link: http://lkml.kernel.org/r/1470409675-20935-1-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add documentation for the cookie argument in try_to_wake_up_local().
This caused the following warning when building documentation:
kernel/sched/core.c:2088: warning: No description found for parameter 'cookie'
Signed-off-by: Luis de Bethencourt <luisbg@osg.samsung.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Fixes: e7904a28f5 ("ilocking/lockdep, sched/core: Implement a better lock pinning scheme")
Link: http://lkml.kernel.org/r/1468159226-17674-1-git-send-email-luisbg@osg.samsung.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the current find_idlest_group()/find_idlest_cpu() search we end up
calling find_idlest_cpu() in a sched_group containing only one CPU in
the end. Checking idle-states becomes pointless when there is no
alternative, so bail out instead.
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: linux-kernel@vger.kernel.org
Cc: mgalbraith@suse.de
Cc: vincent.guittot@linaro.org
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1466615004-3503-4-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In commit:
ac66f54772 ("sched/numa: Introduce migrate_swap()")
select_task_rq() got a 'cpu' argument to enable overriding of prev_cpu
in special cases (NUMA task swapping).
However, the select_task_rq_fair() helper functions: wake_affine() and
select_idle_sibling(), still use task_cpu(p) directly to work out
prev_cpu, which leads to inconsistencies.
This patch passes prev_cpu (potentially overridden by NUMA code) into
the helper functions to ensure prev_cpu is indeed the same CPU
everywhere in the wakeup path.
cc: Ingo Molnar <mingo@redhat.com>
cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: linux-kernel@vger.kernel.org
Cc: mgalbraith@suse.de
Cc: vincent.guittot@linaro.org
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1466615004-3503-3-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vincent noted that the update_tg_load_avg() usage in commit:
3d30544f02 ("sched/fair: Apply more PELT fixes")
isn't entirely sufficient. We need to call this function every time
cfs_rq->avg.load changes, this includes when update_cfs_rq_load_avg()
returns true, but {attach,detach}_entity_load_avg() themselves also
change it. This means we need to unconditionally call
update_tg_load_avg().
Also, add more comments.
Reported-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix one minor typo in the comment: s/targer/target/.
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1470378758-15066-1-git-send-email-leo.yan@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The update_next_balance() function is only used by idle balancing, so its
'cpu_busy' parameter is always 0.
Open code it instead of passing it around.
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1470378689-14892-1-git-send-email-leo.yan@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following warning can be triggered by hot-unplugging the CPU
on which an active SCHED_DEADLINE task is running on:
WARNING: CPU: 0 PID: 0 at kernel/locking/lockdep.c:3531 lock_release+0x690/0x6a0
releasing a pinned lock
Call Trace:
dump_stack+0x99/0xd0
__warn+0xd1/0xf0
? dl_task_timer+0x1a1/0x2b0
warn_slowpath_fmt+0x4f/0x60
? sched_clock+0x13/0x20
lock_release+0x690/0x6a0
? enqueue_pushable_dl_task+0x9b/0xa0
? enqueue_task_dl+0x1ca/0x480
_raw_spin_unlock+0x1f/0x40
dl_task_timer+0x1a1/0x2b0
? push_dl_task.part.31+0x190/0x190
WARNING: CPU: 0 PID: 0 at kernel/locking/lockdep.c:3649 lock_unpin_lock+0x181/0x1a0
unpinning an unpinned lock
Call Trace:
dump_stack+0x99/0xd0
__warn+0xd1/0xf0
warn_slowpath_fmt+0x4f/0x60
lock_unpin_lock+0x181/0x1a0
dl_task_timer+0x127/0x2b0
? push_dl_task.part.31+0x190/0x190
As per the comment before this code, its safe to drop the RQ lock
here, and since we (potentially) change rq, unpin and repin to avoid
the splat.
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
[ Rewrote changelog. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@unitn.it>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1470274940-17976-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
6e998916df ("sched/cputime: Fix clock_nanosleep()/clock_gettime() inconsistency")
fixed a problem whereby clock_nanosleep() followed by clock_gettime() could
allow a task to wake early. It addressed the problem by calling the scheduling
classes update_curr() when the cputimer starts.
Said change induced a considerable performance regression on the syscalls
times() and clock_gettimes(CLOCK_PROCESS_CPUTIME_ID). There are some
debuggers and applications that monitor their own performance that
accidentally depend on the performance of these specific calls.
This patch mitigates the performace loss by prefetching data in the CPU
cache, as stalls due to cache misses appear to be where most time is spent
in our benchmarks.
Here are the performance gain of this patch over v4.7-rc7 on a Sandy Bridge
box with 32 logical cores and 2 NUMA nodes. The test is repeated with a
variable number of threads, from 2 to 4*num_cpus; the results are in
seconds and correspond to the average of 10 runs; the percentage gain is
computed with (before-after)/before so a positive value is an improvement
(it's faster). The improvement varies between a few percents for 5-20
threads and more than 10% for 2 or >20 threads.
pound_clock_gettime:
threads 4.7-rc7 patched 4.7-rc7
[num] [secs] [secs (percent)]
2 3.48 3.06 ( 11.83%)
5 3.33 3.25 ( 2.40%)
8 3.37 3.26 ( 3.30%)
12 3.32 3.37 ( -1.60%)
21 4.01 3.90 ( 2.74%)
30 3.63 3.36 ( 7.41%)
48 3.71 3.11 ( 16.27%)
79 3.75 3.16 ( 15.74%)
110 3.81 3.25 ( 14.80%)
128 3.88 3.31 ( 14.76%)
pound_times:
threads 4.7-rc7 patched 4.7-rc7
[num] [secs] [secs (percent)]
2 3.65 3.25 ( 11.03%)
5 3.45 3.17 ( 7.92%)
8 3.52 3.22 ( 8.69%)
12 3.29 3.36 ( -2.04%)
21 4.07 3.92 ( 3.78%)
30 3.87 3.40 ( 12.17%)
48 3.79 3.16 ( 16.61%)
79 3.88 3.28 ( 15.42%)
110 3.90 3.38 ( 13.35%)
128 4.00 3.38 ( 15.45%)
pound_clock_gettime and pound_clock_gettime are two benchmarks included in
the MMTests framework. They launch a given number of threads which
repeatedly call times() or clock_gettimes(). The results above can be
reproduced with cloning MMTests from github.com and running the "poundtime"
workload:
$ git clone https://github.com/gormanm/mmtests.git
$ cd mmtests
$ cp configs/config-global-dhp__workload_poundtime config
$ ./run-mmtests.sh --run-monitor $(uname -r)
The above will run "poundtime" measuring the kernel currently running on
the machine; Once a new kernel is installed and the machine rebooted,
running again
$ cd mmtests
$ ./run-mmtests.sh --run-monitor $(uname -r)
will produce results to compare with. A comparison table will be output
with:
$ cd mmtests/work/log
$ ../../compare-kernels.sh
the table will contain a lot of entries; grepping for "Amean" (as in
"arithmetic mean") will give the tables presented above. The source code
for the two benchmarks is reported at the end of this changelog for
clairity.
The cache misses addressed by this patch were found using a combination of
`perf top`, `perf record` and `perf annotate`. The incriminated lines were
found to be
struct sched_entity *curr = cfs_rq->curr;
and
delta_exec = now - curr->exec_start;
in the function update_curr() from kernel/sched/fair.c. This patch
prefetches the data from memory just before update_curr is called in the
interested execution path.
A comparison of the total number of cycles before and after the patch
follows; the data is obtained using `perf stat -r 10 -ddd <program>`
running over the same sequence of number of threads used above (a positive
gain is an improvement):
threads cycles before cycles after gain
2 19,699,563,964 +-1.19% 17,358,917,517 +-1.85% 11.88%
5 47,401,089,566 +-2.96% 45,103,730,829 +-0.97% 4.85%
8 80,923,501,004 +-3.01% 71,419,385,977 +-0.77% 11.74%
12 112,326,485,473 +-0.47% 110,371,524,403 +-0.47% 1.74%
21 193,455,574,299 +-0.72% 180,120,667,904 +-0.36% 6.89%
30 315,073,519,013 +-1.64% 271,222,225,950 +-1.29% 13.92%
48 321,969,515,332 +-1.48% 273,353,977,321 +-1.16% 15.10%
79 337,866,003,422 +-0.97% 289,462,481,538 +-1.05% 14.33%
110 338,712,691,920 +-0.78% 290,574,233,170 +-0.77% 14.21%
128 348,384,794,006 +-0.50% 292,691,648,206 +-0.66% 15.99%
A comparison of cache miss vs total cache loads ratios, before and after
the patch (again from the `perf stat -r 10 -ddd <program>` tables):
threads L1 misses/total*100 L1 misses/total*100 gain
before after
2 7.43 +-4.90% 7.36 +-4.70% 0.94%
5 13.09 +-4.74% 13.52 +-3.73% -3.28%
8 13.79 +-5.61% 12.90 +-3.27% 6.45%
12 11.57 +-2.44% 8.71 +-1.40% 24.72%
21 12.39 +-3.92% 9.97 +-1.84% 19.53%
30 13.91 +-2.53% 11.73 +-2.28% 15.67%
48 13.71 +-1.59% 12.32 +-1.97% 10.14%
79 14.44 +-0.66% 13.40 +-1.06% 7.20%
110 15.86 +-0.50% 14.46 +-0.59% 8.83%
128 16.51 +-0.32% 15.06 +-0.78% 8.78%
As a final note, the following shows the evolution of performance figures
in the "poundtime" benchmark and pinpoints commit 6e998916df
("sched/cputime: Fix clock_nanosleep()/clock_gettime() inconsistency") as a
major source of degradation, mostly unaddressed to this day (figures
expressed in seconds).
pound_clock_gettime:
threads parent of 6e998916df 4.7-rc7
6e998916df itself
2 2.23 3.68 ( -64.56%) 3.48 (-55.48%)
5 2.83 3.78 ( -33.42%) 3.33 (-17.43%)
8 2.84 4.31 ( -52.12%) 3.37 (-18.76%)
12 3.09 3.61 ( -16.74%) 3.32 ( -7.17%)
21 3.14 4.63 ( -47.36%) 4.01 (-27.71%)
30 3.28 5.75 ( -75.37%) 3.63 (-10.80%)
48 3.02 6.05 (-100.56%) 3.71 (-22.99%)
79 2.88 6.30 (-118.90%) 3.75 (-30.26%)
110 2.95 6.46 (-119.00%) 3.81 (-29.24%)
128 3.05 6.42 (-110.08%) 3.88 (-27.04%)
pound_times:
threads parent of 6e998916df 4.7-rc7
6e998916df itself
2 2.27 3.73 ( -64.71%) 3.65 (-61.14%)
5 2.78 3.77 ( -35.56%) 3.45 (-23.98%)
8 2.79 4.41 ( -57.71%) 3.52 (-26.05%)
12 3.02 3.56 ( -17.94%) 3.29 ( -9.08%)
21 3.10 4.61 ( -48.74%) 4.07 (-31.34%)
30 3.33 5.75 ( -72.53%) 3.87 (-16.01%)
48 2.96 6.06 (-105.04%) 3.79 (-28.10%)
79 2.88 6.24 (-116.83%) 3.88 (-34.81%)
110 2.98 6.37 (-114.08%) 3.90 (-31.12%)
128 3.10 6.35 (-104.61%) 4.00 (-28.87%)
The source code of the two benchmarks follows. To compile the two:
NR_THREADS=42
for FILE in pound_times pound_clock_gettime; do
gcc -lrt -O2 -lpthread -DNUM_THREADS=$NR_THREADS $FILE.c -o $FILE
done
==== BEGIN pound_times.c ====
struct tms start;
void *pound (void *threadid)
{
struct tms end;
int oldutime = 0;
int utime;
int i;
for (i = 0; i < 5000000 / NUM_THREADS; i++) {
times(&end);
utime = ((int)end.tms_utime - (int)start.tms_utime);
if (oldutime > utime) {
printf("utime decreased, was %d, now %d!\n", oldutime, utime);
}
oldutime = utime;
}
pthread_exit(NULL);
}
int main()
{
pthread_t th[NUM_THREADS];
long i;
times(&start);
for (i = 0; i < NUM_THREADS; i++) {
pthread_create (&th[i], NULL, pound, (void *)i);
}
pthread_exit(NULL);
return 0;
}
==== END pound_times.c ====
==== BEGIN pound_clock_gettime.c ====
void *pound (void *threadid)
{
struct timespec ts;
int rc, i;
unsigned long prev = 0, this = 0;
for (i = 0; i < 5000000 / NUM_THREADS; i++) {
rc = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
if (rc < 0)
perror("clock_gettime");
this = (ts.tv_sec * 1000000000) + ts.tv_nsec;
if (0 && this < prev)
printf("%lu ns timewarp at iteration %d\n", prev - this, i);
prev = this;
}
pthread_exit(NULL);
}
int main()
{
pthread_t th[NUM_THREADS];
long rc, i;
pid_t pgid;
for (i = 0; i < NUM_THREADS; i++) {
rc = pthread_create(&th[i], NULL, pound, (void *)i);
if (rc < 0)
perror("pthread_create");
}
pthread_exit(NULL);
return 0;
}
==== END pound_clock_gettime.c ====
Suggested-by: Mike Galbraith <mgalbraith@suse.de>
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1470385316-15027-2-git-send-email-ggherdovich@suse.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We should update cfs_rq->throttled_clock_task, not
pcfs_rq->throttle_clock_task.
The effects of this bug was probably occasionally erratic
group scheduling, particularly in cgroups-intense workloads.
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
[ Added changelog. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 55e16d30bd ("sched/fair: Rework throttle_count sync")
Link: http://lkml.kernel.org/r/1468050862-18864-1-git-send-email-xlpang@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Current code in cpudeadline.c has a bug in re-heapifying when adding a
new element at the end of the heap, because a deadline value of 0 is
temporarily set in the new elem, then cpudl_change_key() is called
with the actual elem deadline as param.
However, the function compares the new deadline to set with the one
previously in the elem, which is 0. So, if current absolute deadlines
grew so much to have negative values as s64, the comparison in
cpudl_change_key() makes the wrong decision. Instead, as from
dl_time_before(), the kernel should handle correctly abs deadlines
wrap-arounds.
This patch fixes the problem with a minimally invasive change that
forces cpudl_change_key() to heapify up in this case.
Signed-off-by: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Luca Abeni <luca.abeni@unitn.it>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1468921493-10054-2-git-send-email-tommaso.cucinotta@sssup.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- ACPI support for guests on ARM platforms.
- Generic steal time support for arm and x86.
- Support cases where kernel cpu is not Xen VCPU number (e.g., if
in-guest kexec is used).
- Use the system workqueue instead of a custom workqueue in various
places.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJXmLlrAAoJEFxbo/MsZsTRvRQH/1wOMF8BmlbZfR7H3qwDfjst
ApNifCiZE08xDtWBlwUaBFAQxyflQS9BBiNZDVK0sysIdXeOdpWV7V0ZjRoLL+xr
czsaaGXDcmXxJxApoMDVuT7FeP6rEk6LVAYRoHpVjJjMZGW3BbX1vZaMW4DXl2WM
9YNaF2Lj+rpc1f8iG31nUxwkpmcXFog6ct4tu7HiyCFT3hDkHt/a4ghuBdQItCkd
vqBa1pTpcGtQBhSmWzlylN/PV2+NKcRd+kGiwd09/O/rNzogTMCTTWeHKAtMpPYb
Cu6oSqJtlK5o0vtr0qyLSWEGIoyjE2gE92s0wN3iCzFY1PldqdsxUO622nIj+6o=
=G6q3
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.8-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from David Vrabel:
"Features and fixes for 4.8-rc0:
- ACPI support for guests on ARM platforms.
- Generic steal time support for arm and x86.
- Support cases where kernel cpu is not Xen VCPU number (e.g., if
in-guest kexec is used).
- Use the system workqueue instead of a custom workqueue in various
places"
* tag 'for-linus-4.8-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (47 commits)
xen: add static initialization of steal_clock op to xen_time_ops
xen/pvhvm: run xen_vcpu_setup() for the boot CPU
xen/evtchn: use xen_vcpu_id mapping
xen/events: fifo: use xen_vcpu_id mapping
xen/events: use xen_vcpu_id mapping in events_base
x86/xen: use xen_vcpu_id mapping when pointing vcpu_info to shared_info
x86/xen: use xen_vcpu_id mapping for HYPERVISOR_vcpu_op
xen: introduce xen_vcpu_id mapping
x86/acpi: store ACPI ids from MADT for future usage
x86/xen: update cpuid.h from Xen-4.7
xen/evtchn: add IOCTL_EVTCHN_RESTRICT
xen-blkback: really don't leak mode property
xen-blkback: constify instance of "struct attribute_group"
xen-blkfront: prefer xenbus_scanf() over xenbus_gather()
xen-blkback: prefer xenbus_scanf() over xenbus_gather()
xen: support runqueue steal time on xen
arm/xen: add support for vm_assist hypercall
xen: update xen headers
xen-pciback: drop superfluous variables
xen-pciback: short-circuit read path used for merging write values
...
- Rework the cpufreq governor interface to make it more straightforward
and modify the conservative governor to avoid using transition
notifications (Rafael Wysocki).
- Rework the handling of frequency tables by the cpufreq core to make
it more efficient (Viresh Kumar).
- Modify the schedutil governor to reduce the number of wakeups it
causes to occur in cases when the CPU frequency doesn't need to be
changed (Steve Muckle, Viresh Kumar).
- Fix some minor issues and clean up code in the cpufreq core and
governors (Rafael Wysocki, Viresh Kumar).
- Add Intel Broxton support to the intel_pstate driver (Srinivas
Pandruvada).
- Fix problems related to the config TDP feature and to the validity
of the MSR_HWP_INTERRUPT register in intel_pstate (Jan Kiszka,
Srinivas Pandruvada).
- Make intel_pstate update the cpu_frequency tracepoint even if
the frequency doesn't change to avoid confusing powertop (Rafael
Wysocki).
- Clean up the usage of __init/__initdata in intel_pstate, mark some
of its internal variables as __read_mostly and drop an unused
structure element from it (Jisheng Zhang, Carsten Emde).
- Clean up the usage of some duplicate MSR symbols in intel_pstate
and turbostat (Srinivas Pandruvada).
- Update/fix the powernv, s3c24xx and mvebu cpufreq drivers (Akshay
Adiga, Viresh Kumar, Ben Dooks).
- Fix a regression (introduced during the 4.5 cycle) in the
pcc-cpufreq driver by reverting the problematic commit (Andreas
Herrmann).
- Add support for Intel Denverton to intel_idle, clean up Broxton
support in it and make it explicitly non-modular (Jacob Pan,
Jan Beulich, Paul Gortmaker).
- Add support for Denverton and Ivy Bridge server to the Intel RAPL
power capping driver and make it more careful about the handing
of MSRs that may not be present (Jacob Pan, Xiaolong Wang).
- Fix resume from hibernation on x86-64 by making the CPU offline
during resume avoid using MONITOR/MWAIT in the "play dead" loop
which may lead to an inadvertent "revival" of a "dead" CPU and
a page fault leading to a kernel crash from it (Rafael Wysocki).
- Make memory management during resume from hibernation more
straightforward (Rafael Wysocki).
- Add debug features that should help to detect problems related
to hibernation and resume from it (Rafael Wysocki, Chen Yu).
- Clean up hibernation core somewhat (Rafael Wysocki).
- Prevent KASAN from instrumenting the hibernation core which leads
to large numbers of false-positives from it (James Morse).
- Prevent PM (hibernate and suspend) notifiers from being called
during the cleanup phase if they have not been called during the
corresponding preparation phase which is possible if one of the
other notifiers returns an error at that time (Lianwei Wang).
- Improve suspend-related debug printout in the tasks freezer and
clean up suspend-related console handling (Roger Lu, Borislav
Petkov).
- Update the AnalyzeSuspend script in the kernel sources to
version 4.2 (Todd Brandt).
- Modify the generic power domains framework to make it handle
system suspend/resume better (Ulf Hansson).
- Make the runtime PM framework avoid resuming devices synchronously
when user space changes the runtime PM settings for them and
improve its error reporting (Rafael Wysocki, Linus Walleij).
- Fix error paths in devfreq drivers (exynos, exynos-ppmu, exynos-bus)
and in the core, make some devfreq code explicitly non-modular and
change some of it into tristate (Bartlomiej Zolnierkiewicz,
Peter Chen, Paul Gortmaker).
- Add DT support to the generic PM clocks management code and make
it export some more symbols (Jon Hunter, Paul Gortmaker).
- Make the PCI PM core code slightly more robust against possible
driver errors (Andy Shevchenko).
- Make it possible to change DESTDIR and PREFIX in turbostat
(Andy Shevchenko).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJXl7/dAAoJEILEb/54YlRx+VgQAIQJOWvxKew3Yl02c/sdj9OT
5VNnFrzGzdcAPofvvG9qGq8B0Es1vYehJpwwOB21ri8EvYv0riIiU1yrqslObojQ
oaZOkSBpbIoKjGR4CpYA/A+feE+8EqIBdPGd+lx5a6oRdUi7tRVHBG9lyLO3FB/i
jan1q8dMpZsmu+Y+rVVHGnCVuIlIEqr2ZnZfCwDAulO2Arp/QFAh4kH08ELATvrl
bkPa25vq7/VMP/vCDzrfZKD5mUuKogIRu/J5wx4py1nE+FB35cKKyqBOgklLwAeY
UI8vjDhr/myNUs54AZlktOkq47TCYvjvhX9kmOxBjuWqFbRusU012IRek1fYPRIV
ZqbkqNX7UEVQwunAEg9AyFwyzEtOht93dQDT5RLEd4QzKuM76gmHpLeTGGMzE+nu
FnmF9JGl4DVwqpZl9yU2+hR2Mt3bP8OF8qYmNiGUB3KO4emPslhSd+6y8liA5Bx2
SJf0Gb//vaHCh3/uMnwAonYPqRkZvBLOMwuL1VUjNQfRMnQtDdgHMYB1aT/EglPA
8ww6j4J8rVRLAxvYQ3UEmNA/vBNclKXblRR18+JddEZP9/oX0ATfwnCCUpr839uk
xxyQhrm4/AI60+PHWCX4GG80YrKdOGTkF7LXCQZanVWjjuyF17rufegZ2YWLT07v
JU1Cmumfdy2jJluT8xsR
=uVGz
-----END PGP SIGNATURE-----
Merge tag 'pm-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"Again, the majority of changes go into the cpufreq subsystem, but
there are no big features this time. The cpufreq changes that stand
out somewhat are the governor interface rework and improvements
related to the handling of frequency tables. Apart from those, there
are fixes and new device/CPU IDs in drivers, cleanups and an
improvement of the new schedutil governor.
Next, there are some changes in the hibernation core, including a fix
for a nasty problem related to the MONITOR/MWAIT usage by CPU offline
during resume from hibernation, a few core improvements related to
memory management during resume, a couple of additional debug features
and cleanups.
Finally, we have some fixes and cleanups in the devfreq subsystem,
generic power domains framework improvements related to system
suspend/resume, support for some new chips in intel_idle and in the
power capping RAPL driver, a new version of the AnalyzeSuspend utility
and some assorted fixes and cleanups.
Specifics:
- Rework the cpufreq governor interface to make it more
straightforward and modify the conservative governor to avoid using
transition notifications (Rafael Wysocki).
- Rework the handling of frequency tables by the cpufreq core to make
it more efficient (Viresh Kumar).
- Modify the schedutil governor to reduce the number of wakeups it
causes to occur in cases when the CPU frequency doesn't need to be
changed (Steve Muckle, Viresh Kumar).
- Fix some minor issues and clean up code in the cpufreq core and
governors (Rafael Wysocki, Viresh Kumar).
- Add Intel Broxton support to the intel_pstate driver (Srinivas
Pandruvada).
- Fix problems related to the config TDP feature and to the validity
of the MSR_HWP_INTERRUPT register in intel_pstate (Jan Kiszka,
Srinivas Pandruvada).
- Make intel_pstate update the cpu_frequency tracepoint even if the
frequency doesn't change to avoid confusing powertop (Rafael
Wysocki).
- Clean up the usage of __init/__initdata in intel_pstate, mark some
of its internal variables as __read_mostly and drop an unused
structure element from it (Jisheng Zhang, Carsten Emde).
- Clean up the usage of some duplicate MSR symbols in intel_pstate
and turbostat (Srinivas Pandruvada).
- Update/fix the powernv, s3c24xx and mvebu cpufreq drivers (Akshay
Adiga, Viresh Kumar, Ben Dooks).
- Fix a regression (introduced during the 4.5 cycle) in the
pcc-cpufreq driver by reverting the problematic commit (Andreas
Herrmann).
- Add support for Intel Denverton to intel_idle, clean up Broxton
support in it and make it explicitly non-modular (Jacob Pan, Jan
Beulich, Paul Gortmaker).
- Add support for Denverton and Ivy Bridge server to the Intel RAPL
power capping driver and make it more careful about the handing of
MSRs that may not be present (Jacob Pan, Xiaolong Wang).
- Fix resume from hibernation on x86-64 by making the CPU offline
during resume avoid using MONITOR/MWAIT in the "play dead" loop
which may lead to an inadvertent "revival" of a "dead" CPU and a
page fault leading to a kernel crash from it (Rafael Wysocki).
- Make memory management during resume from hibernation more
straightforward (Rafael Wysocki).
- Add debug features that should help to detect problems related to
hibernation and resume from it (Rafael Wysocki, Chen Yu).
- Clean up hibernation core somewhat (Rafael Wysocki).
- Prevent KASAN from instrumenting the hibernation core which leads
to large numbers of false-positives from it (James Morse).
- Prevent PM (hibernate and suspend) notifiers from being called
during the cleanup phase if they have not been called during the
corresponding preparation phase which is possible if one of the
other notifiers returns an error at that time (Lianwei Wang).
- Improve suspend-related debug printout in the tasks freezer and
clean up suspend-related console handling (Roger Lu, Borislav
Petkov).
- Update the AnalyzeSuspend script in the kernel sources to version
4.2 (Todd Brandt).
- Modify the generic power domains framework to make it handle system
suspend/resume better (Ulf Hansson).
- Make the runtime PM framework avoid resuming devices synchronously
when user space changes the runtime PM settings for them and
improve its error reporting (Rafael Wysocki, Linus Walleij).
- Fix error paths in devfreq drivers (exynos, exynos-ppmu,
exynos-bus) and in the core, make some devfreq code explicitly
non-modular and change some of it into tristate (Bartlomiej
Zolnierkiewicz, Peter Chen, Paul Gortmaker).
- Add DT support to the generic PM clocks management code and make it
export some more symbols (Jon Hunter, Paul Gortmaker).
- Make the PCI PM core code slightly more robust against possible
driver errors (Andy Shevchenko).
- Make it possible to change DESTDIR and PREFIX in turbostat (Andy
Shevchenko)"
* tag 'pm-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (89 commits)
Revert "cpufreq: pcc-cpufreq: update default value of cpuinfo_transition_latency"
PM / hibernate: Introduce test_resume mode for hibernation
cpufreq: export cpufreq_driver_resolve_freq()
cpufreq: Disallow ->resolve_freq() for drivers providing ->target_index()
PCI / PM: check all fields in pci_set_platform_pm()
cpufreq: acpi-cpufreq: use cached frequency mapping when possible
cpufreq: schedutil: map raw required frequency to driver frequency
cpufreq: add cpufreq_driver_resolve_freq()
cpufreq: intel_pstate: Check cpuid for MSR_HWP_INTERRUPT
intel_pstate: Update cpu_frequency tracepoint every time
cpufreq: intel_pstate: clean remnant struct element
PM / tools: scripts: AnalyzeSuspend v4.2
x86 / hibernate: Use hlt_play_dead() when resuming from hibernation
cpufreq: powernv: Replacing pstate_id with frequency table index
intel_pstate: Fix MSR_CONFIG_TDP_x addressing in core_get_max_pstate()
PM / hibernate: Image data protection during restoration
PM / hibernate: Add missing braces in __register_nosave_region()
PM / hibernate: Clean up comments in snapshot.c
PM / hibernate: Clean up function headers in snapshot.c
PM / hibernate: Add missing braces in hibernate_setup()
...
Pull NOHZ updates from Ingo Molnar:
- fix system/idle cputime leaked on cputime accounting (all nohz
configs) (Rik van Riel)
- remove the messy, ad-hoc irqtime account on nohz-full and make it
compatible with CONFIG_IRQ_TIME_ACCOUNTING=y instead (Rik van Riel)
- cleanups (Frederic Weisbecker)
- remove unecessary irq disablement in the irqtime code (Rik van Riel)
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/cputime: Drop local_irq_save/restore from irqtime_account_irq()
sched/cputime: Reorganize vtime native irqtime accounting headers
sched/cputime: Clean up the old vtime gen irqtime accounting completely
sched/cputime: Replace VTIME_GEN irq time code with IRQ_TIME_ACCOUNTING code
sched/cputime: Count actually elapsed irq & softirq time
Pull scheduler updates from Ingo Molnar:
- introduce and use task_rcu_dereference()/try_get_task_struct() to fix
and generalize task_struct handling (Oleg Nesterov)
- do various per entity load tracking (PELT) fixes and optimizations
(Peter Zijlstra)
- cputime virt-steal time accounting enhancements/fixes (Wanpeng Li)
- introduce consolidated cputime output file cpuacct.usage_all and
related refactorings (Zhao Lei)
- ... plus misc fixes and enhancements
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/core: Panic on scheduling while atomic bugs if kernel.panic_on_warn is set
sched/cpuacct: Introduce cpuacct.usage_all to show all CPU stats together
sched/cpuacct: Use loop to consolidate code in cpuacct_stats_show()
sched/cpuacct: Merge cpuacct_usage_index and cpuacct_stat_index enums
sched/fair: Rework throttle_count sync
sched/core: Fix sched_getaffinity() return value kerneldoc comment
sched/fair: Reorder cgroup creation code
sched/fair: Apply more PELT fixes
sched/fair: Fix PELT integrity for new tasks
sched/cgroup: Fix cpu_cgroup_fork() handling
sched/fair: Fix PELT integrity for new groups
sched/fair: Fix and optimize the fork() path
sched/cputime: Add steal time support to full dynticks CPU time accounting
sched/cputime: Fix prev steal time accouting during CPU hotplug
KVM: Fix steal clock warp during guest CPU hotplug
sched/debug: Always show 'nr_migrations'
sched/fair: Use task_rcu_dereference()
sched/api: Introduce task_rcu_dereference() and try_get_task_struct()
sched/idle: Optimize the generic idle loop
sched/fair: Fix the wrong throttled clock time for cfs_rq_clock_task()
Pull locking updates from Ingo Molnar:
"The locking tree was busier in this cycle than the usual pattern - a
couple of major projects happened to coincide.
The main changes are:
- implement the atomic_fetch_{add,sub,and,or,xor}() API natively
across all SMP architectures (Peter Zijlstra)
- add atomic_fetch_{inc/dec}() as well, using the generic primitives
(Davidlohr Bueso)
- optimize various aspects of rwsems (Jason Low, Davidlohr Bueso,
Waiman Long)
- optimize smp_cond_load_acquire() on arm64 and implement LSE based
atomic{,64}_fetch_{add,sub,and,andnot,or,xor}{,_relaxed,_acquire,_release}()
on arm64 (Will Deacon)
- introduce smp_acquire__after_ctrl_dep() and fix various barrier
mis-uses and bugs (Peter Zijlstra)
- after discovering ancient spin_unlock_wait() barrier bugs in its
implementation and usage, strengthen its semantics and update/fix
usage sites (Peter Zijlstra)
- optimize mutex_trylock() fastpath (Peter Zijlstra)
- ... misc fixes and cleanups"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (67 commits)
locking/atomic: Introduce inc/dec variants for the atomic_fetch_$op() API
locking/barriers, arch/arm64: Implement LDXR+WFE based smp_cond_load_acquire()
locking/static_keys: Fix non static symbol Sparse warning
locking/qspinlock: Use __this_cpu_dec() instead of full-blown this_cpu_dec()
locking/atomic, arch/tile: Fix tilepro build
locking/atomic, arch/m68k: Remove comment
locking/atomic, arch/arc: Fix build
locking/Documentation: Clarify limited control-dependency scope
locking/atomic, arch/rwsem: Employ atomic_long_fetch_add()
locking/atomic, arch/qrwlock: Employ atomic_fetch_add_acquire()
locking/atomic, arch/mips: Convert to _relaxed atomics
locking/atomic, arch/alpha: Convert to _relaxed atomics
locking/atomic: Remove the deprecated atomic_{set,clear}_mask() functions
locking/atomic: Remove linux/atomic.h:atomic_fetch_or()
locking/atomic: Implement atomic{,64,_long}_fetch_{add,sub,and,andnot,or,xor}{,_relaxed,_acquire,_release}()
locking/atomic: Fix atomic64_relaxed() bits
locking/atomic, arch/xtensa: Implement atomic_fetch_{add,sub,and,or,xor}()
locking/atomic, arch/x86: Implement atomic{,64}_fetch_{add,sub,and,or,xor}()
locking/atomic, arch/tile: Implement atomic{,64}_fetch_{add,sub,and,or,xor}()
locking/atomic, arch/sparc: Implement atomic{,64}_fetch_{add,sub,and,or,xor}()
...
* pm-cpufreq: (41 commits)
Revert "cpufreq: pcc-cpufreq: update default value of cpuinfo_transition_latency"
cpufreq: export cpufreq_driver_resolve_freq()
cpufreq: Disallow ->resolve_freq() for drivers providing ->target_index()
cpufreq: acpi-cpufreq: use cached frequency mapping when possible
cpufreq: schedutil: map raw required frequency to driver frequency
cpufreq: add cpufreq_driver_resolve_freq()
cpufreq: intel_pstate: Check cpuid for MSR_HWP_INTERRUPT
intel_pstate: Update cpu_frequency tracepoint every time
cpufreq: intel_pstate: clean remnant struct element
cpufreq: powernv: Replacing pstate_id with frequency table index
intel_pstate: Fix MSR_CONFIG_TDP_x addressing in core_get_max_pstate()
cpufreq: Reuse new freq-table helpers
cpufreq: Handle sorted frequency tables more efficiently
cpufreq: Drop redundant check from cpufreq_update_current_freq()
intel_pstate: Declare pid_params/pstate_funcs/hwp_active __read_mostly
intel_pstate: add __init/__initdata marker to some functions/variables
intel_pstate: Fix incorrect placement of __initdata
cpufreq: mvebu: fix integer to pointer cast
cpufreq: intel_pstate: Broxton support
cpufreq: conservative: Do not use transition notifications
...
The slow-path frequency transition path is relatively expensive as it
requires waking up a thread to do work. Should support be added for
remote CPU cpufreq updates that is also expensive since it requires an
IPI. These activities should be avoided if they are not necessary.
To that end, calculate the actual driver-supported frequency required by
the new utilization value in schedutil by using the recently added
cpufreq_driver_resolve_freq API. If it is the same as the previously
requested driver frequency then there is no need to continue with the
update assuming the cpu frequency limits have not changed. This will
have additional benefits should the semantics of the rate limit be
changed to apply solely to frequency transitions rather than to
frequency calculations in schedutil.
The last raw required frequency is cached. This allows the driver
frequency lookup to be skipped in the event that the new raw required
frequency matches the last one, assuming a frequency update has not been
forced due to limits changing (indicated by a next_freq value of
UINT_MAX, see sugov_should_update_freq).
Signed-off-by: Steve Muckle <smuckle@linaro.org>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Paolo pointed out that irqs are already blocked when irqtime_account_irq()
is called. That means there is no reason to call local_irq_save/restore()
again.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1468421405-20056-6-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vtime generic irqtime accounting has been removed but there are a few
remnants to clean up:
* The vtime_accounting_cpu_enabled() check in irq entry was only used
by CONFIG_VIRT_CPU_ACCOUNTING_GEN. We can safely remove it.
* Without the vtime_accounting_cpu_enabled(), we no longer need to
have a vtime_common_account_irq_enter() indirect function.
* Move vtime_account_irq_enter() implementation under
CONFIG_VIRT_CPU_ACCOUNTING_NATIVE which is the last user.
* The vtime_account_user() call was only used on irq entry for
CONFIG_VIRT_CPU_ACCOUNTING_GEN. We can remove that too.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1468421405-20056-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The CONFIG_VIRT_CPU_ACCOUNTING_GEN irq time tracking code does not
appear to currently work right.
On CPUs without nohz_full=, only tick based irq time sampling is
done, which breaks down when dealing with a nohz_idle CPU.
On firewalls and similar systems, no ticks may happen on a CPU for a
while, and the irq time spent may never get accounted properly. This
can cause issues with capacity planning and power saving, which use
the CPU statistics as inputs in decision making.
Remove the VTIME_GEN vtime irq time code, and replace it with the
IRQ_TIME_ACCOUNTING code, when selected as a config option by the user.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1468421405-20056-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, if there was any irq or softirq time during 'ticks'
jiffies, the entire period will be accounted as irq or softirq
time.
This is inaccurate if only a subset of the time was actually spent
handling irqs, and could conceivably mis-count all of the ticks during
a period as irq time, when there was some irq and some softirq time.
This can actually happen when irqtime_account_process_tick is called
from account_idle_ticks, which can pass a larger number of ticks down
all at once.
Fix this by changing irqtime_account_hi_update(), irqtime_account_si_update(),
and steal_account_process_ticks() to work with cputime_t time units, and
return the amount of time spent in each mode.
Rename steal_account_process_ticks() to steal_account_process_time(), to
reflect that time is now accounted in cputime_t, instead of ticks.
Additionally, have irqtime_account_process_tick() take into account how
much time was spent in each of steal, irq, and softirq time.
The latter could help improve the accuracy of cputime
accounting when returning from idle on a NO_HZ_IDLE CPU.
Properly accounting how much time was spent in hardirq and
softirq time will also allow the NO_HZ_FULL code to re-use
these same functions for hardirq and softirq accounting.
Signed-off-by: Rik van Riel <riel@redhat.com>
[ Make nsecs_to_cputime64() actually return cputime64_t. ]
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1468421405-20056-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The move of calc_load_migrate() from CPU_DEAD to CPU_DYING did not take into
account that the function is now called from a thread running on the outgoing
CPU. As a result a cpu unplug leakes a load of 1 into the global load
accounting mechanism.
Fix it by adjusting for the currently running thread which calls
calc_load_migrate().
Reported-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Cc: rt@linutronix.de
Cc: shreyas@linux.vnet.ibm.com
Fixes: e9cd8fa4fcfd: ("sched/migration: Move calc_load_migrate() into CPU_DYING")
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1607121744350.4083@nanos
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, a schedule while atomic error prints the stack trace to the
kernel log and the system continue running.
Although it is possible to collect the kernel log messages and analyze
it, often more information are needed. Furthermore, keep the system
running is not always the best choice. For example, when the preempt
count underflows the system will not stop to complain about scheduling
while atomic, so the kernel log can wrap around overwriting the first
stack trace, tuning the analysis even more challenging.
This patch uses the kernel.panic_on_warn sysctl to help out on these
more complex situations.
When kernel.panic_on_warn is set to 1, the kernel will panic() in the
schedule while atomic detection.
The default value of the sysctl is 0, maintaining the current behavior.
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Reviewed-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/e8f7b80f353aa22c63bd8557208163989af8493d.1464983675.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In current code, we can get cpuacct data from several files,
but each file has various limitations.
For example:
- We can get CPU usage in user and kernel mode via cpuacct.stat,
but we can't get detailed data about each CPU.
- We can get each CPU's kernel mode usage in cpuacct.usage_percpu_sys,
but we can't get user mode usage data at the same time.
This patch introduces cpuacct.usage_all, to show all detailed CPU
accounting data together:
# cat cpuacct.usage_all
cpu user system
0 3809760299 5807968992
1 3250329855 454612211
..
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/7744460969edd7caaf0e903592ee52353ed9bdd6.1466415271.git.zhaolei@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In cpuacct_stats_show() we currently we have copies of similar code,
for each cpustat(system/user) variant.
Use a loop instead to consolidate the code. This will also work better
if we extend the CPUACCT_STAT_NSTATS type.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/b0597d4224655e9f333f1a6224ed9654c7d7d36a.1466415271.git.zhaolei@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
These two types have similar function, no need to separate them.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/436748885270d64363c7dc67167507d486c2057a.1466415271.git.zhaolei@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The pv_time_ops structure contains a function pointer for the
"steal_clock" functionality used only by KVM and Xen on ARM. Xen on x86
uses its own mechanism to account for the "stolen" time a thread wasn't
able to run due to hypervisor scheduling.
Add support in Xen arch independent time handling for this feature by
moving it out of the arm arch into drivers/xen and remove the x86 Xen
hack.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Stefano Stabellini <sstabellini@kernel.org>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Since we already take rq->lock when creating a cgroup, use it to also
sync the throttle_count and avoid the extra state and enqueue path
branch.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: linux-kernel@vger.kernel.org
[ Fixed build warning. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Previous version was probably written referencing the man page for
glibc's wrapper, but the wrapper's behavior differs from that of the
syscall itself in this case.
Signed-off-by: Zev Weiss <zev@bewilderbeest.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1466975603-25408-1-git-send-email-zev@bewilderbeest.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A future patch needs rq->lock held _after_ we link the task_group into
the hierarchy. In order to avoid taking every rq->lock twice, reorder
things a little and create online_fair_sched_group() to be called
after we link the task_group.
All this code is still ran from css_alloc() so css_online() isn't in
fact used for this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
One additional 'rule' for using update_cfs_rq_load_avg() is that one
should call update_tg_load_avg() if it returns true.
Add a bunch of comments to hopefully clarify some of the rules:
o You need to update cfs_rq _before_ any entity attach/detach,
this is important, because while for mathmatical consisency this
isn't strictly needed, it is required for the physical
interpretation of the model, you attach/detach _now_.
o When you modify the cfs_rq avg, you have to then call
update_tg_load_avg() in order to propagate changes upwards.
o (Fair) entities are always attached, switched_{to,from}_fair()
deal with !fair. This directly follows from the definition of the
cfs_rq averages, namely that they are a direct sum of all
(runnable or blocked) entities on that rq.
It is the second rule that this patch enforces, but it adds comments
pertaining to all of them.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vincent and Yuyang found another few scenarios in which entity
tracking goes wobbly.
The scenarios are basically due to the fact that new tasks are not
immediately attached and thereby differ from the normal situation -- a
task is always attached to a cfs_rq load average (such that it
includes its blocked contribution) and are explicitly
detached/attached on migration to another cfs_rq.
Scenario 1: switch to fair class
p->sched_class = fair_class;
if (queued)
enqueue_task(p);
...
enqueue_entity()
enqueue_entity_load_avg()
migrated = !sa->last_update_time (true)
if (migrated)
attach_entity_load_avg()
check_class_changed()
switched_from() (!fair)
switched_to() (fair)
switched_to_fair()
attach_entity_load_avg()
If @p is a new task that hasn't been fair before, it will have
!last_update_time and, per the above, end up in
attach_entity_load_avg() _twice_.
Scenario 2: change between cgroups
sched_move_group(p)
if (queued)
dequeue_task()
task_move_group_fair()
detach_task_cfs_rq()
detach_entity_load_avg()
set_task_rq()
attach_task_cfs_rq()
attach_entity_load_avg()
if (queued)
enqueue_task();
...
enqueue_entity()
enqueue_entity_load_avg()
migrated = !sa->last_update_time (true)
if (migrated)
attach_entity_load_avg()
Similar as with scenario 1, if @p is a new task, it will have
!load_update_time and we'll end up in attach_entity_load_avg()
_twice_.
Furthermore, notice how we do a detach_entity_load_avg() on something
that wasn't attached to begin with.
As stated above; the problem is that the new task isn't yet attached
to the load tracking and thereby violates the invariant assumption.
This patch remedies this by ensuring a new task is indeed properly
attached to the load tracking on creation, through
post_init_entity_util_avg().
Of course, this isn't entirely as straightforward as one might think,
since the task is hashed before we call wake_up_new_task() and thus
can be poked at. We avoid this by adding TASK_NEW and teaching
cpu_cgroup_can_attach() to refuse such tasks.
Reported-by: Yuyang Du <yuyang.du@intel.com>
Reported-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A new fair task is detached and attached from/to task_group with:
cgroup_post_fork()
ss->fork(child) := cpu_cgroup_fork()
sched_move_task()
task_move_group_fair()
Which is wrong, because at this point in fork() the task isn't fully
initialized and it cannot 'move' to another group, because its not
attached to any group as yet.
In fact, cpu_cgroup_fork() needs a small part of sched_move_task() so we
can just call this small part directly instead sched_move_task(). And
the task doesn't really migrate because it is not yet attached so we
need the following sequence:
do_fork()
sched_fork()
__set_task_cpu()
cgroup_post_fork()
set_task_rq() # set task group and runqueue
wake_up_new_task()
select_task_rq() can select a new cpu
__set_task_cpu
post_init_entity_util_avg
attach_task_cfs_rq()
activate_task
enqueue_task
This patch makes that happen.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
[ Added TASK_SET_GROUP to set depth properly. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vincent reported that when a new task is moved into a new cgroup it
gets attached twice to the load tracking:
sched_move_task()
task_move_group_fair()
detach_task_cfs_rq()
set_task_rq()
attach_task_cfs_rq()
attach_entity_load_avg()
se->avg.last_load_update = cfs_rq->avg.last_load_update // == 0
enqueue_entity()
enqueue_entity_load_avg()
update_cfs_rq_load_avg()
now = clock()
__update_load_avg(&cfs_rq->avg)
cfs_rq->avg.last_load_update = now
// ages load/util for: now - 0, load/util -> 0
if (migrated)
attach_entity_load_avg()
se->avg.last_load_update = cfs_rq->avg.last_load_update; // now != 0
The problem is that we don't update cfs_rq load_avg before all
entity attach/detach operations. Only enqueue_task() and migrate_task()
do this.
By fixing this, the above will not happen, because the
sched_move_task() attach will have updated cfs_rq's last_load_update
time before attach, and in turn the attach will have set the entity's
last_load_update stamp.
Note that there is a further problem with sched_move_task() calling
detach on a task that hasn't yet been attached; this will be taken
care of in a subsequent patch.
Reported-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The task_fork_fair() callback already calls __set_task_cpu() and takes
rq->lock.
If we move the sched_class::task_fork callback in sched_fork() under
the existing p->pi_lock, right after its set_task_cpu() call, we can
avoid doing two such calls and omit the IRQ disabling on the rq->lock.
Change to __set_task_cpu() to skip the migration bits, this is a new
task, not a migration. Similarly, make wake_up_new_task() use
__set_task_cpu() for the same reason, the task hasn't actually
migrated as it hasn't ever ran.
This cures the problem of calling migrate_task_rq_fair(), which does
remove_entity_from_load_avg() on tasks that have never been added to
the load avg to begin with.
This bug would result in transiently messed up load_avg values, averaged
out after a few dozen milliseconds. This is probably the reason why
this bug was not found for such a long time.
Reported-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
fde7d22e01 ("sched/fair: Fix overly small weight for interactive group entities")
did something non-obvious but also did it buggy yet latent.
The problem was exposed for real by a later commit in the v4.7 merge window:
2159197d66 ("sched/core: Enable increased load resolution on 64-bit kernels")
... after which tg->load_avg and cfs_rq->load.weight had different
units (10 bit fixed point and 20 bit fixed point resp.).
Add a comment to explain the use of cfs_rq->load.weight over the
'natural' cfs_rq->avg.load_avg and add scale_load_down() to correct
for the difference in unit.
Since this is (now, as per a previous commit) the only user of
calc_tg_weight(), collapse it.
The effects of this bug should be randomly inconsistent SMP-balancing
of cgroups workloads.
Reported-by: Jirka Hladky <jhladky@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 2159197d66 ("sched/core: Enable increased load resolution on 64-bit kernels")
Fixes: fde7d22e01 ("sched/fair: Fix overly small weight for interactive group entities")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Starting with the following commit:
fde7d22e01 ("sched/fair: Fix overly small weight for interactive group entities")
calc_tg_weight() doesn't compute the right value as expected by effective_load().
The difference is in the 'correction' term. In order to ensure \Sum
rw_j >= rw_i we cannot use tg->load_avg directly, since that might be
lagging a correction on the current cfs_rq->avg.load_avg value.
Therefore we use tg->load_avg - cfs_rq->tg_load_avg_contrib +
cfs_rq->avg.load_avg.
Now, per the referenced commit, calc_tg_weight() doesn't use
cfs_rq->avg.load_avg, as is later used in @w, but uses
cfs_rq->load.weight instead.
So stop using calc_tg_weight() and do it explicitly.
The effects of this bug are wake_affine() making randomly
poor choices in cgroup-intense workloads.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org> # v4.3+
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: fde7d22e01 ("sched/fair: Fix overly small weight for interactive group entities")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
During CPU hotplug, CPU_ONLINE callbacks are run while the CPU is
online but not active. A CPU_ONLINE callback may create or bind a
kthread so that its cpus_allowed mask only allows the CPU which is
being brought online. The kthread may start executing before the CPU
is made active and can end up in select_fallback_rq().
In such cases, the expected behavior is selecting the CPU which is
coming online; however, because select_fallback_rq() only chooses from
active CPUs, it determines that the task doesn't have any viable CPU
in its allowed mask and ends up overriding it to cpu_possible_mask.
CPU_ONLINE callbacks should be able to put kthreads on the CPU which
is coming online. Update select_fallback_rq() so that it follows
cpu_online() rather than cpu_active() for kthreads.
Reported-by: Gautham R Shenoy <ego@linux.vnet.ibm.com>
Tested-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-team@fb.com
Cc: linuxppc-dev@lists.ozlabs.org
Link: http://lkml.kernel.org/r/20160616193504.GB3262@mtj.duckdns.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Hierarchy could be already throttled at this point. Throttled next
buddy could trigger a NULL pointer dereference in pick_next_task_fair().
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/146608183552.21905.15924473394414832071.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cgroup created inside throttled group must inherit current throttle_count.
Broken throttle_count allows to nominate throttled entries as a next buddy,
later this leads to null pointer dereference in pick_next_task_fair().
This patch initialize cfs_rq->throttle_count at first enqueue: laziness
allows to skip locking all rq at group creation. Lazy approach also allows
to skip full sub-tree scan at throttling hierarchy (not in this patch).
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Link: http://lkml.kernel.org/r/146608182119.21870.8439834428248129633.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As per commit:
b7fa30c9cc ("sched/fair: Fix post_init_entity_util_avg() serialization")
> the code generated from update_cfs_rq_load_avg():
>
> if (atomic_long_read(&cfs_rq->removed_load_avg)) {
> s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
> sa->load_avg = max_t(long, sa->load_avg - r, 0);
> sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
> removed_load = 1;
> }
>
> turns into:
>
> ffffffff81087064: 49 8b 85 98 00 00 00 mov 0x98(%r13),%rax
> ffffffff8108706b: 48 85 c0 test %rax,%rax
> ffffffff8108706e: 74 40 je ffffffff810870b0 <update_blocked_averages+0xc0>
> ffffffff81087070: 4c 89 f8 mov %r15,%rax
> ffffffff81087073: 49 87 85 98 00 00 00 xchg %rax,0x98(%r13)
> ffffffff8108707a: 49 29 45 70 sub %rax,0x70(%r13)
> ffffffff8108707e: 4c 89 f9 mov %r15,%rcx
> ffffffff81087081: bb 01 00 00 00 mov $0x1,%ebx
> ffffffff81087086: 49 83 7d 70 00 cmpq $0x0,0x70(%r13)
> ffffffff8108708b: 49 0f 49 4d 70 cmovns 0x70(%r13),%rcx
>
> Which you'll note ends up with sa->load_avg -= r in memory at
> ffffffff8108707a.
So I _should_ have looked at other unserialized users of ->load_avg,
but alas. Luckily nikbor reported a similar /0 from task_h_load() which
instantly triggered recollection of this here problem.
Aside from the intermediate value hitting memory and causing problems,
there's another problem: the underflow detection relies on the signed
bit. This reduces the effective width of the variables, IOW its
effectively the same as having these variables be of signed type.
This patch changes to a different means of unsigned underflow
detection to not rely on the signed bit. This allows the variables to
use the 'full' unsigned range. And it does so with explicit LOAD -
STORE to ensure any intermediate value will never be visible in
memory, allowing these unserialized loads.
Note: GCC generates crap code for this, might warrant a look later.
Note2: I say 'full' above, if we end up at U*_MAX we'll still explode;
maybe we should do clamping on add too.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Cc: bsegall@google.com
Cc: kernel@kyup.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: steve.muckle@linaro.org
Fixes: 9d89c257df ("sched/fair: Rewrite runnable load and utilization average tracking")
Link: http://lkml.kernel.org/r/20160617091948.GJ30927@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Lengthy output of sysrq-w may take a lot of time on slow serial console.
Currently we reset NMI-watchdog on the current CPU to avoid spurious
lockup messages. Sometimes this doesn't work since softlockup watchdog
might trigger on another CPU which is waiting for an IPI to proceed.
We reset softlockup watchdogs on all CPUs, but we do this only after
listing all tasks, and this may be too late on a busy system.
So, reset watchdogs CPUs earlier, in for_each_process_thread() loop.
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/1465474805-14641-1-git-send-email-aryabinin@virtuozzo.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This new form allows using hardware assisted waiting.
Some hardware (ARM64 and x86) allow monitoring an address for changes,
so by providing a pointer we can use this to replace the cpu_relax()
with hardware optimized methods in the future.
Requested-by: Will Deacon <will.deacon@arm.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch adds guest steal-time support to full dynticks CPU
time accounting. After the following commit:
ff9a9b4c43 ("sched, time: Switch VIRT_CPU_ACCOUNTING_GEN to jiffy granularity")
... time sampling became jiffy based, even if we do the sampling from the
context tracking code, so steal_account_process_tick() can be reused
to account how many 'ticks' are stolen-time, after the last accumulation.
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1465813966-3116-4-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
e9532e69b8 ("sched/cputime: Fix steal time accounting vs. CPU hotplug")
... set rq->prev_* to 0 after a CPU hotplug comes back, in order to
fix the case where (after CPU hotplug) steal time is smaller than
rq->prev_steal_time.
However, this should never happen. Steal time was only smaller because of the
KVM-specific bug fixed by the previous patch. Worse, the previous patch
triggers a bug on CPU hot-unplug/plug operation: because
rq->prev_steal_time is cleared, all of the CPU's past steal time will be
accounted again on hot-plug.
Since the root cause has been fixed, we can just revert commit e9532e69b8.
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 'commit e9532e69b8 ("sched/cputime: Fix steal time accounting vs. CPU hotplug")'
Link: http://lkml.kernel.org/r/1465813966-3116-3-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Merge filesystem stacking fixes from Jann Horn.
* emailed patches from Jann Horn <jannh@google.com>:
sched: panic on corrupted stack end
ecryptfs: forbid opening files without mmap handler
proc: prevent stacking filesystems on top
Until now, hitting this BUG_ON caused a recursive oops (because oops
handling involves do_exit(), which calls into the scheduler, which in
turn raises an oops), which caused stuff below the stack to be
overwritten until a panic happened (e.g. via an oops in interrupt
context, caused by the overwritten CPU index in the thread_info).
Just panic directly.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* pm-cpufreq-fixes:
cpufreq: intel_pstate: Fix ->set_policy() interface for no_turbo
cpufreq: intel_pstate: Fix code ordering in intel_pstate_set_policy()
* pm-cpuidle:
cpuidle: Do not access cpuidle_devices when !CONFIG_CPU_IDLE
The nr_migrations field is updated independently of CONFIG_SCHEDSTATS,
so it can be displayed regardless.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/5b1b04057ae2b14d73c2d03f56582c1d38cfe066.1464994423.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 'schedstats=enable' option doesn't work, and also produces the
following warning during boot:
WARNING: CPU: 0 PID: 0 at /home/jpoimboe/git/linux/kernel/jump_label.c:61 static_key_slow_inc+0x8c/0xa0
static_key_slow_inc used before call to jump_label_init
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Not tainted 4.7.0-rc1+ #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.8.1-20150318_183358- 04/01/2014
0000000000000086 3ae3475a4bea95d4 ffffffff81e03da8 ffffffff8143fc83
ffffffff81e03df8 0000000000000000 ffffffff81e03de8 ffffffff810b1ffb
0000003d00000096 ffffffff823514d0 ffff88007ff197c8 0000000000000000
Call Trace:
[<ffffffff8143fc83>] dump_stack+0x85/0xc2
[<ffffffff810b1ffb>] __warn+0xcb/0xf0
[<ffffffff810b207f>] warn_slowpath_fmt+0x5f/0x80
[<ffffffff811e9c0c>] static_key_slow_inc+0x8c/0xa0
[<ffffffff810e07c6>] static_key_enable+0x16/0x40
[<ffffffff8216d633>] setup_schedstats+0x29/0x94
[<ffffffff82148a05>] unknown_bootoption+0x89/0x191
[<ffffffff810d8617>] parse_args+0x297/0x4b0
[<ffffffff82148d61>] start_kernel+0x1d8/0x4a9
[<ffffffff8214897c>] ? set_init_arg+0x55/0x55
[<ffffffff82148120>] ? early_idt_handler_array+0x120/0x120
[<ffffffff821482db>] x86_64_start_reservations+0x2f/0x31
[<ffffffff82148427>] x86_64_start_kernel+0x14a/0x16d
The problem is that it tries to update the 'sched_schedstats' static key
before jump labels have been initialized.
Changing jump_label_init() to be called earlier before
parse_early_param() wouldn't fix it: it would still fail trying to
poke_text() because mm isn't yet initialized.
Instead, just create a temporary '__sched_schedstats' variable which can
be copied to the static key later during sched_init() after jump labels
have been initialized.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: cb2517653f ("sched/debug: Make schedstats a runtime tunable that is disabled by default")
Link: http://lkml.kernel.org/r/453775fe3433bed65731a583e228ccea806d18cd.1465322027.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
cb2517653f ("sched/debug: Make schedstats a runtime tunable that is disabled by default")
... introduced a bug when CONFIG_SCHEDSTATS is enabled and the
runtime tunable is disabled (which is the default).
The wait-time, sum-exec, and sum-sleep fields are missing from the
/proc/sched_debug file in the runnable_tasks section.
Fix it with a new schedstat_val() macro which returns the field value
when schedstats is enabled and zero otherwise. The macro works with
both SCHEDSTATS and !SCHEDSTATS. I put the macro in stats.h since it
might end up being useful in other places.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: cb2517653f ("sched/debug: Make schedstats a runtime tunable that is disabled by default")
Link: http://lkml.kernel.org/r/bcda7c2790cf2ccbe586a28c02dd7b6fe7749a2b.1464994423.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>