-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmHwDeMACgkQxWXV+ddt
WDtdMQ//QFqkIB34zW5N3uX1xBFht/G/bCPNdGiK5YerjJZj1f6Rmsytbb6qlWHg
NlB/XEPeQaQVrSfF37svnvATgySPaqePsufrT2XYu3x2w8muPTl460wmzdMt5h47
rGB+ct4JdLBH4KJgqe2Bilrqg+FJmL3XT5k0aU3driy4Gb+bcDGeEyVmTWcnNRIg
DzfUlNwTKhAhZDl8D3B9X2vV8TZDBtrRLquI94eYvooF3LYDL+kExLUW8WDmmAfy
mjnANs8c+EtcVAzN7tW+O1UqdYYJ8Yo4ngk1nVVRdRvA2BDp9ixgWi/m/3jZ3JmJ
jySV1zsZJB3ZGp/hIuEvtGY7jheDtbTnfgtI+vwjVdr208acs+XhfDckuOZBZIUY
7Zk+Qif/narxFAoAvkgkH5QDNSSReKqaHgzohfnzSQqrfO0bh6fw1FnBOm4iXT7C
cXvReD4m36g46SdTsxnvttpXizXIFe4JPOkpRkBzxIQFaMTA4Is43W0lYC24Ppxj
A0UVevh3HPhOYzABynuy0EnknZeylb6P+WpGG6Ge+sVrVquQiwR01n4HeoaJO3qe
re46uUGwO8Q30blYY50HBSJp0bpcciPZRVMJaspcAT9KD0fJ1s/csd2lQyP4ewn6
A0zg6eabc0PD3LwdlHqp//jTNft/BL4RVZ2c3uM+mgXnGeekcoQ=
=EysX
-----END PGP SIGNATURE-----
Merge tag 'for-5.17-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Several fixes for defragmentation that got broken in 5.16 after
refactoring and added subpage support. The observed bugs are excessive
IO or uninterruptible ioctl.
All stable material"
* tag 'for-5.17-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: update writeback index when starting defrag
btrfs: add back missing dirty page rate limiting to defrag
btrfs: fix deadlock when reserving space during defrag
btrfs: defrag: properly update range->start for autodefrag
btrfs: defrag: fix wrong number of defragged sectors
btrfs: allow defrag to be interruptible
btrfs: fix too long loop when defragging a 1 byte file
When starting a defrag, we should update the writeback index of the
inode's mapping in case it currently has a value beyond the start of the
range we are defragging. This can help performance and often result in
getting less extents after writeback - for e.g., if the current value
of the writeback index sits somewhere in the middle of a range that
gets dirty by the defrag, then after writeback we can get two smaller
extents instead of a single, larger extent.
We used to have this before the refactoring in 5.16, but it was removed
without any reason to do so. Originally it was added in kernel 3.1, by
commit 2a0f7f5769 ("Btrfs: fix recursive auto-defrag"), in order to
fix a loop with autodefrag resulting in dirtying and writing pages over
and over, but some testing on current code did not show that happening,
at least with the test described in that commit.
So add back the behaviour, as at the very least it is a nice to have
optimization.
Fixes: 7b508037d4 ("btrfs: defrag: use defrag_one_cluster() to implement btrfs_defrag_file()")
CC: stable@vger.kernel.org # 5.16
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A defrag operation can dirty a lot of pages, specially if operating on
the entire file or a large file range. Any task dirtying pages should
periodically call balance_dirty_pages_ratelimited(), as stated in that
function's comments, otherwise they can leave too many dirty pages in
the system. This is what we did before the refactoring in 5.16, and
it should have remained, just like in the buffered write path and
relocation. So restore that behaviour.
Fixes: 7b508037d4 ("btrfs: defrag: use defrag_one_cluster() to implement btrfs_defrag_file()")
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When defragging we can end up collecting a range for defrag that has
already pages under delalloc (dirty), as long as the respective extent
map for their range is not mapped to a hole, a prealloc extent or
the extent map is from an old generation.
Most of the time that is harmless from a functional perspective at
least, however it can result in a deadlock:
1) At defrag_collect_targets() we find an extent map that meets all
requirements but there's delalloc for the range it covers, and we add
its range to list of ranges to defrag;
2) The defrag_collect_targets() function is called at defrag_one_range(),
after it locked a range that overlaps the range of the extent map;
3) At defrag_one_range(), while the range is still locked, we call
defrag_one_locked_target() for the range associated to the extent
map we collected at step 1);
4) Then finally at defrag_one_locked_target() we do a call to
btrfs_delalloc_reserve_space(), which will reserve data and metadata
space. If the space reservations can not be satisfied right away, the
flusher might be kicked in and start flushing delalloc and wait for
the respective ordered extents to complete. If this happens we will
deadlock, because both flushing delalloc and finishing an ordered
extent, requires locking the range in the inode's io tree, which was
already locked at defrag_collect_targets().
So fix this by skipping extent maps for which there's already delalloc.
Fixes: eb793cf857 ("btrfs: defrag: introduce helper to collect target file extents")
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Apparently, there are some applications that use IN_DELETE event as an
invalidation mechanism and expect that if they try to open a file with
the name reported with the delete event, that it should not contain the
content of the deleted file.
Commit 49246466a9 ("fsnotify: move fsnotify_nameremove() hook out of
d_delete()") moved the fsnotify delete hook before d_delete() so fsnotify
will have access to a positive dentry.
This allowed a race where opening the deleted file via cached dentry
is now possible after receiving the IN_DELETE event.
To fix the regression, create a new hook fsnotify_delete() that takes
the unlinked inode as an argument and use a helper d_delete_notify() to
pin the inode, so we can pass it to fsnotify_delete() after d_delete().
Backporting hint: this regression is from v5.3. Although patch will
apply with only trivial conflicts to v5.4 and v5.10, it won't build,
because fsnotify_delete() implementation is different in each of those
versions (see fsnotify_link()).
A follow up patch will fix the fsnotify_unlink/rmdir() calls in pseudo
filesystem that do not need to call d_delete().
Link: https://lore.kernel.org/r/20220120215305.282577-1-amir73il@gmail.com
Reported-by: Ivan Delalande <colona@arista.com>
Link: https://lore.kernel.org/linux-fsdevel/YeNyzoDM5hP5LtGW@visor/
Fixes: 49246466a9 ("fsnotify: move fsnotify_nameremove() hook out of d_delete()")
Cc: stable@vger.kernel.org # v5.3+
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Patch series "remove Xen tmem leftovers".
Since the removal of the Xen tmem driver in 2019, the cleancache hooks
are entirely unused, as are large parts of frontswap. This series
against linux-next (with the folio changes included) removes
cleancaches, and cuts down frontswap to the bits actually used by zswap.
This patch (of 13):
The cleancache subsystem is unused since the removal of Xen tmem driver
in commit 814bbf49dc ("xen: remove tmem driver").
[akpm@linux-foundation.org: remove now-unreachable code]
Link: https://lkml.kernel.org/r/20211224062246.1258487-1-hch@lst.de
Link: https://lkml.kernel.org/r/20211224062246.1258487-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge more updates from Andrew Morton:
"55 patches.
Subsystems affected by this patch series: percpu, procfs, sysctl,
misc, core-kernel, get_maintainer, lib, checkpatch, binfmt, nilfs2,
hfs, fat, adfs, panic, delayacct, kconfig, kcov, and ubsan"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (55 commits)
lib: remove redundant assignment to variable ret
ubsan: remove CONFIG_UBSAN_OBJECT_SIZE
kcov: fix generic Kconfig dependencies if ARCH_WANTS_NO_INSTR
lib/Kconfig.debug: make TEST_KMOD depend on PAGE_SIZE_LESS_THAN_256KB
btrfs: use generic Kconfig option for 256kB page size limit
arch/Kconfig: split PAGE_SIZE_LESS_THAN_256KB from PAGE_SIZE_LESS_THAN_64KB
configs: introduce debug.config for CI-like setup
delayacct: track delays from memory compact
Documentation/accounting/delay-accounting.rst: add thrashing page cache and direct compact
delayacct: cleanup flags in struct task_delay_info and functions use it
delayacct: fix incomplete disable operation when switch enable to disable
delayacct: support swapin delay accounting for swapping without blkio
panic: remove oops_id
panic: use error_report_end tracepoint on warnings
fs/adfs: remove unneeded variable make code cleaner
FAT: use io_schedule_timeout() instead of congestion_wait()
hfsplus: use struct_group_attr() for memcpy() region
nilfs2: remove redundant pointer sbufs
fs/binfmt_elf: use PT_LOAD p_align values for static PIE
const_structs.checkpatch: add frequently used ops structs
...
Use the newly introduced CONFIG_PAGE_SIZE_LESS_THAN_256KB to describe
the dependency introduced by commit b05fbcc36b ("btrfs: disable build
on platforms having page size 256K").
Link: https://lkml.kernel.org/r/20211129230141.228085-3-nathan@kernel.org
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: David Sterba <dsterba@suse.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[BUG]
After commit 7b508037d4 ("btrfs: defrag: use defrag_one_cluster() to
implement btrfs_defrag_file()") autodefrag no longer properly re-defrag
the file from previously finished location.
[CAUSE]
The recent refactoring of defrag only focuses on defrag ioctl subpage
support, doesn't take autodefrag into consideration.
There are two problems involved which prevents autodefrag to restart its
scan:
- No range.start update
Previously when one defrag target is found, range->start will be
updated to indicate where next search should start from.
But now btrfs_defrag_file() doesn't update it anymore, making all
autodefrag to rescan from file offset 0.
This would also make autodefrag to mark the same range dirty again and
again, causing extra IO.
- No proper quick exit for defrag_one_cluster()
Currently if we reached or exceed @max_sectors limit, we just exit
defrag_one_cluster(), and let next defrag_one_cluster() call to do a
quick exit.
This makes @cur increase, thus no way to properly know which range is
defragged and which range is skipped.
[FIX]
The fix involves two modifications:
- Update range->start to next cluster start
This is a little different from the old behavior.
Previously range->start is updated to the next defrag target.
But in the end, the behavior should still be pretty much the same,
as now we skip to next defrag target inside btrfs_defrag_file().
Thus if auto-defrag determines to re-scan, then we still do the skip,
just at a different timing.
- Make defrag_one_cluster() to return >0 to indicate a quick exit
So that btrfs_defrag_file() can also do a quick exit, without
increasing @cur to the range end, and re-use @cur to update
@range->start.
- Add comment for btrfs_defrag_file() to mention the range->start update
Currently only autodefrag utilize this behavior, as defrag ioctl won't
set @max_to_defrag parameter, thus unless interrupted it will always
try to defrag the whole range.
Reported-by: Filipe Manana <fdmanana@suse.com>
Fixes: 7b508037d4 ("btrfs: defrag: use defrag_one_cluster() to implement btrfs_defrag_file()")
Link: https://lore.kernel.org/linux-btrfs/0a269612-e43f-da22-c5bc-b34b1b56ebe8@mailbox.org/
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There are users using autodefrag mount option reporting obvious increase
in IO:
> If I compare the write average (in total, I don't have it per process)
> when taking idle periods on the same machine:
> Linux 5.16:
> without autodefrag: ~ 10KiB/s
> with autodefrag: between 1 and 2MiB/s.
>
> Linux 5.15:
> with autodefrag:~ 10KiB/s (around the same as without
> autodefrag on 5.16)
[CAUSE]
When autodefrag mount option is enabled, btrfs_defrag_file() will be
called with @max_sectors = BTRFS_DEFRAG_BATCH (1024) to limit how many
sectors we can defrag in one try.
And then use the number of sectors defragged to determine if we need to
re-defrag.
But commit b18c3ab234 ("btrfs: defrag: introduce helper to defrag one
cluster") uses wrong unit to increase @sectors_defragged, which should
be in unit of sector, not byte.
This means, if we have defragged any sector, then @sectors_defragged
will be >= sectorsize (normally 4096), which is larger than
BTRFS_DEFRAG_BATCH.
This makes the @max_sectors check in defrag_one_cluster() to underflow,
rendering the whole @max_sectors check useless.
Thus causing way more IO for autodefrag mount options, as now there is
no limit on how many sectors can really be defragged.
[FIX]
Fix the problems by:
- Use sector as unit when increasing @sectors_defragged
- Include @sectors_defragged > @max_sectors case to break the loop
- Add extra comment on the return value of btrfs_defrag_file()
Reported-by: Anthony Ruhier <aruhier@mailbox.org>
Fixes: b18c3ab234 ("btrfs: defrag: introduce helper to defrag one cluster")
Link: https://lore.kernel.org/linux-btrfs/0a269612-e43f-da22-c5bc-b34b1b56ebe8@mailbox.org/
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During defrag, at btrfs_defrag_file(), we have this loop that iterates
over a file range in steps no larger than 256K subranges. If the range
is too long, there's no way to interrupt it. So make the loop check in
each iteration if there's signal pending, and if there is, break and
return -AGAIN to userspace.
Before kernel 5.16, we used to allow defrag to be cancelled through a
signal, but that was lost with commit 7b508037d4 ("btrfs: defrag:
use defrag_one_cluster() to implement btrfs_defrag_file()").
This change adds back the possibility to cancel a defrag with a signal
and keeps the same semantics, returning -EAGAIN to user space (and not
the usually more expected -EINTR).
This is also motivated by a recent bug on 5.16 where defragging a 1 byte
file resulted in iterating from file range 0 to (u64)-1, as hitting the
bug triggered a too long loop, basically requiring one to reboot the
machine, as it was not possible to cancel defrag.
Fixes: 7b508037d4 ("btrfs: defrag: use defrag_one_cluster() to implement btrfs_defrag_file()")
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When attempting to defrag a file with a single byte, we can end up in a
too long loop, which is nearly infinite because at btrfs_defrag_file()
we end up with the variable last_byte assigned with a value of
18446744073709551615 (which is (u64)-1). The problem comes from the fact
we end up doing:
last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
So if last_byte was assigned 0, which is i_size - 1, we underflow and
end up with the value 18446744073709551615.
This is trivial to reproduce and the following script triggers it:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
echo -n "X" > $MNT/foobar
btrfs filesystem defragment $MNT/foobar
umount $MNT
So fix this by not decrementing last_byte by 1 before doing the sector
size round up. Also, to make it easier to follow, make the round up right
after computing last_byte.
Reported-by: Anthony Ruhier <aruhier@mailbox.org>
Fixes: 7b508037d4 ("btrfs: defrag: use defrag_one_cluster() to implement btrfs_defrag_file()")
Link: https://lore.kernel.org/linux-btrfs/0a269612-e43f-da22-c5bc-b34b1b56ebe8@mailbox.org/
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Print extra information about how many dirty bytes an uncommitted
has at the end of mount.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we extended the size of a swapfile after its header was created (by the
mkswap utility) and then try to activate it, we will map the entire file
when activating the swap file, instead of limiting to the max size defined
in the swap file's header.
Currently test case generic/643 from fstests fails because we do not
respect that size limit defined in the swap file's header.
So fix this by not mapping file ranges beyond the max size defined in the
swap header.
This is the same type of bug that iomap used to have, and was fixed in
commit 36ca7943ac ("mm/swap: consider max pages in
iomap_swapfile_add_extent").
Fixes: ed46ff3d42 ("Btrfs: support swap files")
CC: stable@vger.kernel.org # 5.4+
Reviewed-and-tested-by: Josef Bacik <josef@toxicpanda.com
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The warnings were found by running scripts/kernel-doc, which is
caused by using 'make W=1'.
fs/btrfs/extent_io.c:3210: warning: Function parameter or member
'bio_ctrl' not described in 'btrfs_bio_add_page'
fs/btrfs/extent_io.c:3210: warning: Excess function parameter 'bio'
description in 'btrfs_bio_add_page'
fs/btrfs/extent_io.c:3210: warning: Excess function parameter
'prev_bio_flags' description in 'btrfs_bio_add_page'
fs/btrfs/space-info.c:1602: warning: Excess function parameter 'root'
description in 'btrfs_reserve_metadata_bytes'
fs/btrfs/space-info.c:1602: warning: Function parameter or member
'fs_info' not described in 'btrfs_reserve_metadata_bytes'
Note: this is fixing only the warnings regarding parameter list, the
first line is not strictly conforming to the kdoc format as the btrfs
codebase does not stick to that and keeps the first line more free form
(because it's only for internal use).
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add note ]
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_decompress_bio, the only caller of compression_decompress_bio gets
type from @cb and passes it to compression_decompress_bio.
However, compression_decompress_bio can get compression type directly
from @cb.
So remove the parameter and access it through @cb. No functional
change.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Su Yue <l@damenly.su>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When code modifying extent-io-tree get modified and got that selftest
failed, it can take some time to pin down the cause.
To make it easier to expose the problem, dump the extent io tree if the
selftest failed.
This can save developers debug time, especially since the selftest we
can not use the trace events, thus have to manually add debug trace
points.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The argument list of btrfs_stripe() has similar problems of
scrub_chunk():
- Duplicated and ambiguous @base argument
Can be fetched from btrfs_block_group::bg.
- Ambiguous argument @length
It's again device extent length
- Ambiguous argument @num
The instinctive guess would be mirror number, but in fact it's stripe
index.
Fix it by:
- Remove @base parameter
- Rename @length to @dev_extent_len
- Rename @num to @stripe_index
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The argument list of scrub_chunk() has the following problems:
- Duplicated @chunk_offset
It is the same as btrfs_block_group::start.
- Confusing @length
The most instinctive guess is chunk length, and one may want to delete
it, but the truth is, it's the device extent length.
Fix this by:
- Remove @chunk_offset
Use btrfs_block_group::start instead.
- Rename @length to @dev_extent_len
Also rename the caller to remove the ambiguous naming.
- Rename @cache to @bg
The "_cache" suffix for btrfs_block_group has been removed for a while.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently there is only one user for btrfs metadata readahead, and
that's scrub.
But even for the single user, it's not providing the correct
functionality it needs, as scrub needs reada for commit root, which
current readahead can't provide. (Although it's pretty easy to add such
feature).
Despite this, there are some extra problems related to metadata
readahead:
- Duplicated feature with btrfs_path::reada
- Partly duplicated feature of btrfs_fs_info::buffer_radix
Btrfs already caches its metadata in buffer_radix, while readahead
tries to read the tree block no matter if it's already cached.
- Poor layer separation
Metadata readahead works kinda at device level.
This is definitely not the correct layer it should be, since metadata
is at btrfs logical address space, it should not bother device at all.
This brings extra chance for bugs to sneak in, while brings
unnecessary complexity.
- Dead code
In the very beginning of scrub.c we have #undef DEBUG, rendering all
the debug related code useless and unable to test.
Thus here I purpose to remove the metadata readahead mechanism
completely.
[BENCHMARK]
There is a full benchmark for the scrub performance difference using the
old btrfs_reada_add() and btrfs_path::reada.
For the worst case (no dirty metadata, slow HDD), there could be a 5%
performance drop for scrub.
For other cases (even SATA SSD), there is no distinguishable performance
difference.
The number is reported scrub speed, in MiB/s.
The resolution is limited by the reported duration, which only has a
resolution of 1 second.
Old New Diff
SSD 455.3 466.332 +2.42%
HDD 103.927 98.012 -5.69%
Comprehensive test methodology is in the cover letter of the patch.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For scrub, we trigger two readaheads for two trees, extent tree to get
where to scrub, and csum tree to get the data checksum.
For csum tree we already trigger readahead in
btrfs_lookup_csums_range(), by setting path->reada.
But for extent tree we don't have any path based readahead.
Add the readahead for extent tree as well, so we can later remove the
btrfs_reada_add() based readahead.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In function scrub_stripe() we allocated two btrfs_path's, one @path for
extent tree search and another @ppath for full stripe extent tree search
for RAID56.
This is totally umncessary, as the @ppath usage is completely inside
scrub_raid56_parity(), thus we can move the path allocation into
scrub_raid56_parity() completely.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The purpose of this function is to unlock all nodes in a btrfs path
which are above 'lowest_unlock' and whose slot used is different than 0.
As such it used slightly awkward structure of 'if' as well as somewhat
cryptic "no_skip" control variable which denotes whether we should
check the current level of skipability or no.
This patch does the following (cosmetic) refactorings:
* Renames 'no_skip' to 'check_skip' and makes it a boolean. This
variable controls whether we are below the lowest_unlock/skip_level
levels.
* Consolidates the 2 conditions which warrant checking whether the
current level should be skipped under 1 common if (check_skip) branch,
this increase indentation level but is not critical.
* Consolidates the 'skip_level < i && i >= lowest_unlock' and
'i >= lowest_unlock && i > skip_level' condition into a common branch
since those are identical.
* Eliminates the local extent_buffer variable as in this case it doesn't
bring anything to function readability.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At ioctl.c:create_subvol(), when we fail to create a subvolume we always
commit the transaction. In most cases this is a no-op, since all the error
paths, except for one, abort the transaction - the only exception is when
we fail to insert the new root item into the root tree, in that case we
don't abort the transaction because we didn't do anything that is
irreversible - however we end up committing the transaction which although
is not a functional problem, it adds unnecessary rotation of the backup
roots in the superblock and unnecessary work.
So change that to commit a transaction only when no error happened,
otherwise just call btrfs_end_transaction() to release our reference on
the transaction.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The ZNS specification defines a limit on the number of "active"
zones. That limit impose us to limit the number of block groups which
can be used for an allocation at the same time. Not to exceed the
limit, we reuse the existing active block groups as much as possible
when we can't activate any other zones without sacrificing an already
activated block group in commit a85f05e59b ("btrfs: zoned: avoid
chunk allocation if active block group has enough space").
However, the check is wrong in two ways. First, it checks the
condition for every raid index (ffe_ctl->index). Even if it reaches
the condition and "ffe_ctl->max_extent_size >=
ffe_ctl->min_alloc_size" is met, there can be other block groups
having enough space to hold ffe_ctl->num_bytes. (Actually, this won't
happen in the current zoned code as it only supports SINGLE
profile. But, it can happen once it enables other RAID types.)
Second, it checks the active zone availability depending on the
raid index. The raid index is just an index for
space_info->block_groups, so it has nothing to do with chunk allocation.
These mistakes are causing a faulty allocation in a certain
situation. Consider we are running zoned btrfs on a device whose
max_active_zone == 0 (no limit). And, suppose no block group have a
room to fit ffe_ctl->num_bytes but some room to meet
ffe_ctl->min_alloc_size (i.e. max_extent_size > num_bytes >=
min_alloc_size).
In this situation, the following occur:
- With SINGLE raid_index, it reaches the chunk allocation checking
code
- The check returns true because we can activate a new zone (no limit)
- But, before allocating the chunk, it iterates to the next raid index
(RAID5)
- Since there are no RAID5 block groups on zoned mode, it again
reaches the check code
- The check returns false because of btrfs_can_activate_zone()'s "if
(raid_index != BTRFS_RAID_SINGLE)" part
- That results in returning -ENOSPC without allocating a new chunk
As a result, we end up hitting -ENOSPC too early.
Move the check to the right place in the can_allocate_chunk() hook,
and do the active zone check depending on the allocation flag, not on
the raid index.
CC: stable@vger.kernel.org # 5.16
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce a new hook for an extent allocator policy. With the new
hook, a policy can decide to allocate a new block group or not. If
not, it will return -ENOSPC, so btrfs_reserve_extent() will cut the
allocation size in half and retry the allocation if min_alloc_size is
large enough.
The hook has a place holder and will be replaced with the real
implementation in the next patch.
CC: stable@vger.kernel.org # 5.16
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Allocating an extent from a block group can fail for various reasons.
When an allocation from a dedicated block group (for tree-log or
relocation data) fails, we need to unregister it as a dedicated one so
that we can allocate a new block group for the dedicated one.
However, we are returning early when the block group in case it is
read-only, fully used, or not be able to activate the zone. As a result,
we keep the non-usable block group as a dedicated one, leading to
further allocation failure. With many block groups, the allocator will
iterate hopeless loop to find a free extent, results in a hung task.
Fix the issue by delaying the return and doing the proper cleanups.
CC: stable@vger.kernel.org # 5.16
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
REQ_OP_ZONE_APPEND can only work on zoned devices, so it is redundant to
check if the filesystem is zoned when REQ_OP_ZONE_APPEND is set as the
bio's bio_op.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Sink zone check into btrfs_repair_one_zone() so we don't need to do it
in all callers.
Also as btrfs_repair_one_zone() doesn't return a sensible error, make it
a boolean function and return false in case it got called on a non-zoned
filesystem and true on a zoned filesystem.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_check_meta_write_pointer() will always be called with a NULL
'cache_ret' argument.
As there's no need to check if we have a valid block_group passed in
remove these checks.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Encapsulate the inode lock needed for serializing the data relocation
writes on a zoned filesystem into a helper.
This streamlines the code reading flow and hides special casing for
zoned filesystems.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the case of the seed device, the fsid can be different from the mounted
sprout fsid. The userland has to read the device superblock to know the
fsid but, that idea fails if the device is missing. So add a sysfs
interface devinfo/<devid>/fsid to show the fsid of the device.
For example:
$ cd /sys/fs/btrfs/b10b02a5-f9de-4276-b9e8-2bfd09a578a8
$ cat devinfo/1/fsid
c44d771f-639d-4df3-99ec-5bc7ad2af93b
$ cat devinfo/3/fsid
b10b02a5-f9de-4276-b9e8-2bfd09a578a8
Though it's related to seeding, the name of the sysfs file is plain fsid as it
matches what blkid says. A path to the device's fsid will aid scripting.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Filipe reported a problem where sometimes he'd get an ENOSPC abort when
running delayed refs with generic/619 and the free space tree enabled.
This is partly because we do not reserve space for modifying the free
space tree, nor do we have a block rsv associated with that tree.
The delayed_refs_rsv tracks the amount of space required to run delayed
refs. This means 1 modification means 1 change to the extent root.
With the free space tree this turns into 2 changes, because modifying 1
extent means updating the extent tree and potentially updating the free
space tree to either remove that entry or add the free space. Thus if
we have the FST enabled, simply double the reservation size for our
modification.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Filipe reported a problem where generic/619 was failing with an ENOSPC
abort while running delayed refs, like the following
BTRFS: Transaction aborted (error -28)
WARNING: CPU: 3 PID: 522920 at fs/btrfs/free-space-tree.c:1049 add_to_free_space_tree+0xe5/0x110 [btrfs]
CPU: 3 PID: 522920 Comm: kworker/u16:19 Tainted: G W 5.16.0-rc2-btrfs-next-106 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
RIP: 0010:add_to_free_space_tree+0xe5/0x110 [btrfs]
RSP: 0000:ffffa65087fb7b20 EFLAGS: 00010282
RAX: 0000000000000000 RBX: 0000000000001000 RCX: 0000000000000000
RDX: 0000000000000001 RSI: ffffffff9131eeaa RDI: 00000000ffffffff
RBP: ffff8d62e26481b8 R08: ffffffff9ad97ce0 R09: 0000000000000001
R10: 0000000000000000 R11: 0000000000000001 R12: 00000000ffffffe4
R13: ffff8d61c25fe688 R14: ffff8d61ebd88800 R15: ffff8d61ebd88a90
FS: 0000000000000000(0000) GS:ffff8d64ed400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa46a8b1000 CR3: 0000000148d18003 CR4: 0000000000370ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
__btrfs_free_extent+0x516/0x950 [btrfs]
__btrfs_run_delayed_refs+0x2b1/0x1250 [btrfs]
btrfs_run_delayed_refs+0x86/0x210 [btrfs]
flush_space+0x403/0x630 [btrfs]
? call_rcu_tasks_generic+0x50/0x80
? lock_release+0x223/0x4a0
? btrfs_get_alloc_profile+0xb5/0x290 [btrfs]
? do_raw_spin_unlock+0x4b/0xa0
btrfs_async_reclaim_metadata_space+0x139/0x320 [btrfs]
process_one_work+0x24c/0x5b0
worker_thread+0x55/0x3c0
? process_one_work+0x5b0/0x5b0
kthread+0x17c/0x1a0
? set_kthread_struct+0x40/0x40
ret_from_fork+0x22/0x30
There's a couple of reasons for this, but in generic/619's case the
largest reason is because it is a very small file system, ad we do not
reserve enough space for the global reserve.
With the free space tree we now have the free space tree that we need to
modify when running delayed refs. This means we need the global reserve
to take this into account when it calculates the minimum size it needs
to be. This is especially important for very small file systems.
Fix this by adjusting the minimum global block rsv size math to include
the size of the free space tree when calculating the size.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These two values were introduced in commit ff023aac31 ("Btrfs: add code
to scrub to copy read data to another disk") as an optimization.
But the truth is, block layer scheduler can do whatever it wants to
merge/split bios to improve performance.
Doing such "optimization" is not really going to affect much, especially
considering how good current block layer optimizations are doing.
Remove such old and immature optimization from our code.
Since we're here, also change BUG_ON()s using these two macros to use
ASSERT()s.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use BTRFS_MAX_METADATA_BLOCKSIZE and SZ_4K (minimal sectorsize) to
calculate this value.
And remove one stale comment on the value, in fact with recent subpage
support, BTRFS_MAX_METADATA_BLOCKSIZE * PAGE_SIZE is already beyond
BTRFS_STRIPE_LEN, just we don't use the full page.
Also since we're here, update the BUG_ON() related to
SCRUB_MAX_PAGES_PER_BLOCK to ASSERT().
As those ASSERT() are really only for developers to catch early obvious
bugs, not to let end users suffer.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We only throttle the btrfs_truncate_inode_items if the root is
SHAREABLE, which isn't set on the log root, which means this loop is
unnecessary.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We reset this bool on every loop through the truncate loop, make this
variable local to the loop.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have
if (del_item)
// do something
else
// something else
if (del_item)
// do yet another thing
else
// something else entirely
back to back in btrfs_truncate_inode_items, collapse these two sets of
if statements into one.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is a logic correctness check, convert it into an ASSERT() instead
of a BUG().
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a correctness BUG_ON() in btrfs_truncate_inode_items to make
sure that we're always using min_type == BTRFS_EXTENT_DATA_KEY if
new_size is > 0. Convert this to an ASSERT.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the future we're going to want to use btrfs_truncate_inode_items
without looking up the associated inode. In order to accommodate this
add the inode to btrfs_truncate_control and handle the case where
control->inode is NULL appropriately. This is fairly straightforward,
we simply need to add a helper for the trace points, as the file extent
map update is controlled by a flag on btrfs_truncate_control.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the future we are going to want to truncate inode items without
needing to have an btrfs_inode to pass in, so add ino to the
btrfs_truncate_control and use that to look up the inode items to
truncate.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We only care about updating the file extent range when we are doing a
normal truncation. We skip this for tree logging currently, but we can
also skip this for eviction as well. Using a flag makes it more
explicit when we want to do this work.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We've had weird bugs in the past where we forgot to adjust the truncate
path to deal with the fact that we can be called by the tree log path.
Instead of checking if our root is a LOG_ROOT use a flag on the
btrfs_truncate_control to indicate that we don't want to do extent
reference updates during this truncate.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We currently have a bunch of awkward checks to make sure we only update
the inode i_bytes if we're truncating the real inode. Instead keep
track of the number of bytes we need to sub in the
btrfs_truncate_control, and then do the appropriate adjustment in the
truncate paths that care.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We currently will update the i_size of the inode as we truncate it down,
however we skip this if we're calling btrfs_truncate_inode_items from
the tree log code. However we also don't care about this in the case of
evict. Instead keep track of this value in the btrfs_truncate_control
and then have btrfs_truncate() and the free space cache truncate path
both do the i_size update themselves.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I'm going to be adding more arguments and counters to
btrfs_truncate_inode_items, so add a control struct to handle all of the
extra arguments to make it easier to follow.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We only set this if we find a normal file extent, del_item == 1, and the
file extent points to a real extent and isn't a hole extent. We can use
del_item == 1 && extent_start != 0 to get the same information that
found_extent provides, so remove this variable and use the other
variables instead.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a special case in btrfs_truncate_inode_items() to call
btrfs_kill_delayed_inode_items() if min_type == 0, which is only called
during evict.
Instead move this out into evict proper, and add some comments because I
erroneously attempted to remove this code altogether without
understanding what we were doing.
Evict is updating the inode only because we only care about making sure
the i_nlink count has hit disk. If we had pending deletions we don't
want to process those via the delayed inode updates, we simply want to
drop all of them and reclaim the reserved metadata space. Then from
there the btrfs_truncate_inode_items() will do the work to remove all of
the items as appropriate.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We no longer have inode cache feature, so this check is extraneous as
the only inode cache is in the tree_root, which is not marked as
SHAREABLE.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we are locking the extent and dropping the extent cache for
any inodes we truncate, unless they're in the tree log. We call this
helper from:
- truncate
- evict
- tree log
- free space cache truncation
For evict we've already dropped all of the extent cache for this inode
once we've gotten here, and we're the only one accessing this inode, so
this step is unnecessary.
For the tree log code we already skip this part.
Pull this work into the truncate path and the free space cache
truncation path.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is an inode item related manipulation with a few vfs related
adjustments. I'm going to remove the vfs related code from this helper
and simplify it a lot, but I want those changes to be easily seen via
git blame, so move this function now and then the simplification work
can be done.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a few helpers in inode-item.c, and I'm going to make a few
changes to how we do truncate in the future, so break out these
definitions into their own header file to trim down ctree.h some and
make it easier to do the work on truncate in the future.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The comment refers to the old extent buffer locking code, where we used to
have custom locks that had blocking and spinning behaviour modes. That is
not the case anymore, since we have transitioned to rw semaphores, so the
comment does not offer any value anymore. Remove it.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After calling split_leaf() we BUG_ON() if the returned value is greater
than zero. However split_leaf() only returns 0, in case of success, or a
negative value in case of an error.
The reason for the BUG_ON() is that if we ever get a positive return
value from split_leaf(), we can not simply propagate it to the callers
of btrfs_search_slot(), as that would be interpreted as "key not found"
and not as an error. That means it could result in callers ending up
causing some potential silent corruption.
So change the BUG_ON() to an ASSERT(), and in case assertions are
disabled, produce a warning and set the return value to an error, to make
it not possible to get into a silent corruption and having the error not
noticed.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's quite a significant amount of code for doing the key search for a
leaf at btrfs_search_slot(), with a couple labels and gotos in it, plus
btrfs_search_slot() is already big enough.
So move the logic that does the key search on a leaf into a new helper
function. This makes it better organized, removing the need for the labels
and the gotos, as well as reducing the indentation level and the size of
btrfs_search_slot().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When inserting a key, we check if the write_lock_level is less than 1,
and if so we set it to 1, release the path and retry the tree traversal.
However that is unnecessary, because when ins_len is greater than 0, we
know that write_lock_level can never be less than 1.
The logic to retry is also buggy, because in case ins_len was decremented,
due to an exact key match and the search is not meant for item extension
(path->search_for_extension is 0), we retry without incrementing ins_len,
which would make the next retry decrement it again by the same amount.
So remove the check for write_lock_level being less than 1 and add an
assertion to assert it's always >= 1.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When inserting a new key, we release the write lock on the leaf's parent
only after doing the binary search on the leaf. This is because if the
key ends up at slot 0, we will have to update the key at slot 0 of the
parent node. The same reasoning applies to any other upper level nodes
when their slot is 0. We also need to keep the parent locked in case the
leaf does not have enough free space to insert the new key/item, because
in that case we will split the leaf and we will need to add a new key to
the parent due to a new leaf resulting from the split operation.
However if the leaf has enough space for the new key and the key does not
end up at slot 0 of the leaf we could release our write lock on the parent
before doing the binary search on the leaf to figure out the destination
slot. That leads to reducing the amount of time other tasks are blocked
waiting to lock the parent, therefore increasing parallelism when there
are other tasks that are trying to access other leaves accessible through
the same parent. This also applies to other upper nodes besides the
immediate parent, when their slot is 0, since we keep locks on them until
we figure out if the leaf slot is slot 0 or not.
In fact, having the key ending at up slot 0 when is rare. Typically it
only happens when the key is less than or equals to the smallest, the
"left most", key of the entire btree, during a split attempt when we try
to push to the right sibling leaf or when the caller just wants to update
the item of an existing key. It's also very common that a leaf has enough
space to insert a new key, since after a split we move about half of the
keys from one into the new leaf.
So unlock the parent, and any other upper level nodes, when during a key
insertion we notice the key is greater then the first key in the leaf and
the leaf has enough free space. After unlocking the upper level nodes, do
the binary search using a low boundary of slot 1 and not slot 0, to figure
out the slot where the key will be inserted (or where the key already is
in case it exists and the caller wants to modify its item data).
This extra comparison, with the first key, is cheap and the key is very
likely already in a cache line because it immediately follows the header
of the extent buffer and we have recently read the level field of the
header (which in fact is the last field of the header).
The following fs_mark test was run on a non-debug kernel (debian's default
kernel config), with a 12 cores intel CPU, and using a NVMe device:
$ cat run-fsmark.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-O no-holes -R free-space-tree"
FILES=100000
THREADS=$(nproc --all)
FILE_SIZE=0
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s $FILE_SIZE -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before this change:
FSUse% Count Size Files/sec App Overhead
0 1200000 0 165273.6 5958381
0 2400000 0 190938.3 6284477
0 3600000 0 181429.1 6044059
0 4800000 0 173979.2 6223418
0 6000000 0 139288.0 6384560
0 7200000 0 163000.4 6520083
1 8400000 0 57799.2 5388544
1 9600000 0 66461.6 5552969
2 10800000 0 49593.5 5163675
2 12000000 0 57672.1 4889398
After this change:
FSUse% Count Size Files/sec App Overhead
0 1200000 0 167987.3 (+1.6%) 6272730
0 2400000 0 198563.9 (+4.0%) 6048847
0 3600000 0 197436.6 (+8.8%) 6163637
0 4800000 0 202880.7 (+16.6%) 6371771
1 6000000 0 167275.9 (+20.1%) 6556733
1 7200000 0 204051.2 (+25.2%) 6817091
1 8400000 0 69622.8 (+20.5%) 5525675
1 9600000 0 69384.5 (+4.4%) 5700723
1 10800000 0 61454.1 (+23.9%) 5363754
3 12000000 0 61908.7 (+7.3%) 5370196
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Right now generic_bin_search() always uses a low boundary slot of 0, but
in the next patch we'll want to often skip slot 0 when searching for a
key. So make generic_bin_search() have the low boundary slot specified
as an argument, and move the check for the extent buffer level from
btrfs_bin_search() to generic_bin_search() to avoid adding another
wrapper around generic_bin_search().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we clear the extent buffer uptodate if we fail to write it out
we need to check to see if our root node is uptodate before we search
down it. Otherwise we could return stale data (or potentially corrupt
data that was caught by the write verification step) and think that the
path is OK to search down.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently paused balance precludes adding a device since they are both
considered exclusive ops and we can have at most one running at a time.
This is problematic in case a filesystem encounters an ENOSPC situation
while balance is running, in this case the only thing the user can do
is mount the fs with "skip_balance" which pauses balance and delete some
data to free up space for balance. However, it should be possible to add
a new device when balance is paused.
Fix this by allowing device add to proceed when balance is paused.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is needed to enable device add to work in cases when a file system
has been mounted with 'skip_balance' mount option.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Current set of exclusive operation states is not sufficient to handle
all practical use cases. In particular there is a need to be able to add
a device to a filesystem that have paused balance. Currently there is no
way to distinguish between a running and a paused balance. Fix this by
introducing BTRFS_EXCLOP_BALANCE_PAUSED which is going to be set in 2
occasions:
1. When a filesystem is mounted with skip_balance and there is an
unfinished balance it will now be into BALANCE_PAUSED instead of
simply BALANCE state.
2. When a running balance is paused.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't allow send and balance/relocation to run in parallel in order
to prevent send failing or silently producing some bad stream. This is
because while send is using an extent (specially metadata) or about to
read a metadata extent and expecting it belongs to a specific parent
node, relocation can run, the transaction used for the relocation is
committed and the extent gets reallocated while send is still using the
extent, so it ends up with a different content than expected. This can
result in just failing to read a metadata extent due to failure of the
validation checks (parent transid, level, etc), failure to find a
backreference for a data extent, and other unexpected failures. Besides
reallocation, there's also a similar problem of an extent getting
discarded when it's unpinned after the transaction used for block group
relocation is committed.
The restriction between balance and send was added in commit 9e967495e0
("Btrfs: prevent send failures and crashes due to concurrent relocation"),
kernel 5.3, while the more general restriction between send and relocation
was added in commit 1cea5cf0e6 ("btrfs: ensure relocation never runs
while we have send operations running"), kernel 5.14.
Both send and relocation can be very long running operations. Relocation
because it has to do a lot of IO and expensive backreference lookups in
case there are many snapshots, and send due to read IO when operating on
very large trees. This makes it inconvenient for users and tools to deal
with scheduling both operations.
For zoned filesystem we also have automatic block group relocation, so
send can fail with -EAGAIN when users least expect it or send can end up
delaying the block group relocation for too long. In the future we might
also get the automatic block group relocation for non zoned filesystems.
This change makes it possible for send and relocation to run in parallel.
This is achieved the following way:
1) For all tree searches, send acquires a read lock on the commit root
semaphore;
2) After each tree search, and before releasing the commit root semaphore,
the leaf is cloned and placed in the search path (struct btrfs_path);
3) After releasing the commit root semaphore, the changed_cb() callback
is invoked, which operates on the leaf and writes commands to the pipe
(or file in case send/receive is not used with a pipe). It's important
here to not hold a lock on the commit root semaphore, because if we did
we could deadlock when sending and receiving to the same filesystem
using a pipe - the send task blocks on the pipe because it's full, the
receive task, which is the only consumer of the pipe, triggers a
transaction commit when attempting to create a subvolume or reserve
space for a write operation for example, but the transaction commit
blocks trying to write lock the commit root semaphore, resulting in a
deadlock;
4) Before moving to the next key, or advancing to the next change in case
of an incremental send, check if a transaction used for relocation was
committed (or is about to finish its commit). If so, release the search
path(s) and restart the search, to where we were before, so that we
don't operate on stale extent buffers. The search restarts are always
possible because both the send and parent roots are RO, and no one can
add, remove of update keys (change their offset) in RO trees - the
only exception is deduplication, but that is still not allowed to run
in parallel with send;
5) Periodically check if there is contention on the commit root semaphore,
which means there is a transaction commit trying to write lock it, and
release the semaphore and reschedule if there is contention, so as to
avoid causing any significant delays to transaction commits.
This leaves some room for optimizations for send to have less path
releases and re searching the trees when there's relocation running, but
for now it's kept simple as it performs quite well (on very large trees
with resulting send streams in the order of a few hundred gigabytes).
Test case btrfs/187, from fstests, stresses relocation, send and
deduplication attempting to run in parallel, but without verifying if send
succeeds and if it produces correct streams. A new test case will be added
that exercises relocation happening in parallel with send and then checks
that send succeeds and the resulting streams are correct.
A final note is that for now this still leaves the mutual exclusion
between send operations and deduplication on files belonging to a root
used by send operations. A solution for that will be slightly more complex
but it will eventually be built on top of this change.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_free_space_ctl::private is either unset or it always points to
struct btrfs_block_group when it is set. So there's no point in keeping
the unhelpful 'private' name and keeping it an untyped pointer. Change
both the type and name to be self-describing. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is no point in the function taking an fs_info and a
btrfs_free_space because the ctl passed always belongs to the block
group. Furthermore fs_info can be referenced from the block group. No
functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The only difference between the two is whether btrfs_free_space::bytes
is adjusted. Instead of having 2 separate functions control this
behavior via an additional parameter and make them one function instead.
No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The only difference is the former adjusts btrfs_free_space::bytes
member. Consolidate the two function into 1 and add a bool parameter
which controls whether the adjustment is made or not. No functional
changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the future we are going to have multiple copies of these trees. To
facilitate this we need a way to lookup the different roots we are
looking for. Handle this by adding a global root rb tree that is
indexed on the root->root_key. Then instead of loading the roots at
mount time with individually targeted keys, simply search the tree_root
for anything with the specific objectid we want. This will make it
straightforward to support both old style and new style file systems.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't set SHAREABLE on the extent root, we don't need to have this
safety check here.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're going to have multiple free space roots in the future, so adjust
all the users of the free space root to use a helper to access the root.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are going to have multiple csum roots in the future, so convert all
users of ->csum_root to btrfs_csum_root() and rename ->csum_root to
->_csum_root so we can easily find remaining users in the future.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a few places where we skip doing csums if we mounted with one of
the rescue options that ignores bad csum roots. In the future when
there are multiple csum roots it'll be costly to check and see if there
are any missing csum roots, so simply add a flag to indicate the fs
should skip loading csums in case of errors.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the future we may have multiple csum roots, so simply check the
objectid is for a csum root instead of checking against ->csum_root.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we start having multiple extent roots we'll need to use a helper to
get to the correct extent_root. Rename fs_info->extent_root to
_extent_root and convert all of the users of the extent root to using
the btrfs_extent_root() helper. This will allow us to easily clean up
the remaining direct accesses in the future.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the future we're going to have multiple csum and extent root trees,
so init the roots block_rsv at setup_root time based on their root key
objectid.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We only need the root to start a transaction, and since it's a global
root we can pick anything, change to the tree_root as we'll have a lot
of extent roots in the future.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are going to have many extent_roots soon, and we don't need a root
here necessarily as we're not modifying anything, we're just getting the
trans handle so we can have an accurate view of references, so use the
tree_root here.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're just using the extent_root to set the chunk owner to
root_key->objectid, which is BTRFS_EXTENT_TREE_OBJECTID, so use that
directly instead of using the root.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We only defrag leaves on roots that have SHAREABLE set, so we don't need
to check if we're the extent root as it doesn't have SHAREABLE set.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is a leftover from when we used to independently swap the extent
root's commit root and the fs tree commit roots. At the time I simply
changed the helper to a list_add. There's actually no reason to not add
the extent root to the switch commit root at this point, we don't care
about the order we do the switching since it's all done under the
commit_root_sem.
If we re-mark the extent root dirty after adding it to the
switch_commits list we'll see that BTRFS_ROOT_DIRTY isn't set and then
list_move it back onto the dirty list, and then we'll redo the tree
update and everything will be ok.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're only using this to start the transaction with to possibly allocate
a chunk. It doesn't really matter which root to use, but with extent
tree v2 we'll need a bytenr to look up a extent root which makes the
usage of the extent_root awkward here. Simply change it to the
chunk_root.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With extent tree v2 we'll have a different extent root based on where
the bytenr is located, so adjust the remove_extent_backref() helper and
it's helpers to pass the extent_root around.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With extent tree v2 we will have a separate root to hold the block group
items. Add a btrfs_block_group_root() that will return the appropriate
root given the flags of the fs, and convert all functions that need to
modify block group items to use the helper.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we're looking for leafs that point to a data extent we want to record
the extent items that point at our bytenr. At this point we have the
reference and we know for a fact that this leaf should have a reference
to our bytenr. However if there's some sort of corruption we may not
find any references to our leaf, and thus could end up with eie == NULL.
Replace this BUG_ON() with an ASSERT() and then return -EUCLEAN for the
mortals.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We search for an extent entry with .offset = -1, which shouldn't be a
thing, but corruption happens. Add an ASSERT() for the developers,
return -EUCLEAN for mortals.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We define __TRANS_DUMMY always, so this extra ifdef stuff is not needed.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This comment was much closer to the related code when it was originally
added, but has slowly migrated north far from its ancestral lands. Move
it back down with its people.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We pass in the path, but use btrfs_next_item() using the root we
searched with. Pass the root down to add_keyed_refs() instead of the
fs_info so we can continue to use the same root we searched with.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Nobody is using this anymore, remove it.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The root on the trans->root can be anything, and generally we're
committing from the transaction kthread so it's usually the tree_root.
Change this to just take an fs_info, and to maintain compatibility
simply put the ROOT_TREE_OBJECTID as the root objectid for the
tracepoint. This will allow use to remove trans->root.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we do this awful thing where we get another ref on a trans
handle, async off that handle and commit the transaction from that work.
Because we do this we have to mess with current->journal_info and the
freeze counting stuff.
We already have an async thing to kick for the transaction commit, the
transaction kthread. Replace this work struct with a flag on the
fs_info to tell the kthread to go ahead and commit even if it's before
our timeout. Then we can drastically simplify the async transaction
commit path.
Note: this can be simplified and functionality based on the pending
operation COMMIT.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
[ add note ]
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is no longer used, the -o nobarrier is handled by
BTRFS_MOUNT_NOBARRIER. Remove the flag.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reshuffle the code inside the first loop of tree_search_offset so that
one if() is eliminated and the becomes more linear.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When debugging calc_bio_boundaries(), I found that even for RAID1
metadata, we're following stripe length to calculate stripe boundary.
# mkfs.btrfs -m raid1 -d raid1 /dev/test/scratch[12]
# mount /dev/test/scratch /mnt/btrfs
# xfs_io -f -c "pwrite 0 64K" /mnt/btrfs/file
# umount
Above very basic operations will make calc_bio_boundaries() to report
the following result:
submit_extent_page: r/i=1/1 file_offset=22036480 len_to_stripe_boundary=49152
submit_extent_page: r/i=1/1 file_offset=30474240 len_to_stripe_boundary=65536
...
submit_extent_page: r/i=1/1 file_offset=30523392 len_to_stripe_boundary=16384
submit_extent_page: r/i=1/1 file_offset=30457856 len_to_stripe_boundary=16384
submit_extent_page: r/i=5/257 file_offset=0 len_to_stripe_boundary=65536
submit_extent_page: r/i=5/257 file_offset=65536 len_to_stripe_boundary=65536
submit_extent_page: r/i=1/1 file_offset=30490624 len_to_stripe_boundary=49152
submit_extent_page: r/i=1/1 file_offset=30507008 len_to_stripe_boundary=32768
Where "r/i" is the rootid and inode, 1/1 means they metadata.
The remaining names match the member used in kernel.
Even all data/metadata are using RAID1, we're still following stripe
length.
[CAUSE]
This behavior is caused by a wrong condition in btrfs_get_io_geometry():
if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
/* Fill using stripe_len */
len = min_t(u64, em->len - offset, max_len);
} else {
len = em->len - offset;
}
This means, only for SINGLE we will not follow stripe_len.
However for profiles like RAID1*, DUP, they don't need to bother
stripe_len.
This can lead to unnecessary bio split for RAID1*/DUP profiles, and can
even be a blockage for future zoned RAID support.
[FIX]
Introduce one single-use macro, BTRFS_BLOCK_GROUP_STRIPE_MASK, and
change the condition to only calculate the length using stripe length
for stripe based profiles.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is a small optimisation since the currently 'entry' is already
checked in the if () {} else if {} construct above the loop. In essence
the first iteration of the final while loop is redundant. To eliminate
this extra check simply get the next entry at the beginning of the loop.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I noticed a few corner cases when looking at my bytes_index patch for
obvious bugs, so add a bunch of tests to validate proper behavior of the
bytes_index tree. A couple of basic tests to make sure it puts things
in the correct order, and then more complicated tests to make sure it
re-arranges bitmap entries properly and does the right thing when we try
to make allocations.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we index free space on offset only, because usually we have a
hint from the allocator that we want to honor for locality reasons.
However if we fail to use this hint we have to go back to a brute force
search through the free space entries to find a large enough extent.
With sufficiently fragmented free space this becomes quite expensive, as
we have to linearly search all of the free space entries to find if we
have a part that's long enough.
To fix this add a cached rb tree to index based on free space entry
bytes. This will allow us to quickly look up the largest chunk in the
free space tree for this block group, and stop searching once we've
found an entry that is too small to satisfy our allocation. We simply
choose to use this tree if we're searching from the beginning of the
block group, as we know we do not care about locality at that point.
I wrote an allocator test that creates a 10TiB ram backed null block
device and then fallocates random files until the file system is full.
I think go through and delete all of the odd files. Then I spawn 8
threads that fallocate 64MiB files (1/2 our extent size cap) until the
file system is full again. I use bcc's funclatency to measure the
latency of find_free_extent. The baseline results are
nsecs : count distribution
0 -> 1 : 0 | |
2 -> 3 : 0 | |
4 -> 7 : 0 | |
8 -> 15 : 0 | |
16 -> 31 : 0 | |
32 -> 63 : 0 | |
64 -> 127 : 0 | |
128 -> 255 : 0 | |
256 -> 511 : 10356 |**** |
512 -> 1023 : 58242 |************************* |
1024 -> 2047 : 74418 |******************************** |
2048 -> 4095 : 90393 |****************************************|
4096 -> 8191 : 79119 |*********************************** |
8192 -> 16383 : 35614 |*************** |
16384 -> 32767 : 13418 |***** |
32768 -> 65535 : 12811 |***** |
65536 -> 131071 : 17090 |******* |
131072 -> 262143 : 26465 |*********** |
262144 -> 524287 : 40179 |***************** |
524288 -> 1048575 : 55469 |************************ |
1048576 -> 2097151 : 48807 |********************* |
2097152 -> 4194303 : 26744 |*********** |
4194304 -> 8388607 : 35351 |*************** |
8388608 -> 16777215 : 13918 |****** |
16777216 -> 33554431 : 21 | |
avg = 908079 nsecs, total: 580889071441 nsecs, count: 639690
And the patch results are
nsecs : count distribution
0 -> 1 : 0 | |
2 -> 3 : 0 | |
4 -> 7 : 0 | |
8 -> 15 : 0 | |
16 -> 31 : 0 | |
32 -> 63 : 0 | |
64 -> 127 : 0 | |
128 -> 255 : 0 | |
256 -> 511 : 6883 |** |
512 -> 1023 : 54346 |********************* |
1024 -> 2047 : 79170 |******************************** |
2048 -> 4095 : 98890 |****************************************|
4096 -> 8191 : 81911 |********************************* |
8192 -> 16383 : 27075 |********** |
16384 -> 32767 : 14668 |***** |
32768 -> 65535 : 13251 |***** |
65536 -> 131071 : 15340 |****** |
131072 -> 262143 : 26715 |********** |
262144 -> 524287 : 43274 |***************** |
524288 -> 1048575 : 53870 |********************* |
1048576 -> 2097151 : 55368 |********************** |
2097152 -> 4194303 : 41036 |**************** |
4194304 -> 8388607 : 24927 |********** |
8388608 -> 16777215 : 33 | |
16777216 -> 33554431 : 9 | |
avg = 623599 nsecs, total: 397259314759 nsecs, count: 637042
There's a little variation in the amount of calls done because of timing
of the threads with metadata requirements, but the avg, total, and
count's are relatively consistent between runs (usually within 2-5% of
each other). As you can see here we have around a 30% decrease in
average latency with a 30% decrease in overall time spent in
find_free_extent.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While adding self tests for my space index change I was hitting a
problem where the space indexed tree wasn't returning the expected
->max_extent_size. This is because we will skip searching any entry
that doesn't have ->bytes >= the amount of bytes we want. However we'll
still set the max_extent_size based on that entry. The problem is if we
don't search the bitmap we won't have ->max_extent_size set properly, so
we can't really trust it.
This doesn't really result in a problem per-se, it can just result in us
not finding contiguous area that may exist. Fix the max_extent_size
helper to return ->bytes if ->max_extent_size isn't set, and add a big
comment explaining why we're doing this.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We use @nr_written to record how many pages have been started by
btrfs_run_delalloc_range().
Currently there are only two cases that would populate @nr_written:
- Inline extent creation
- Compressed write
But both cases will also set @page_started to one.
In fact, in writepage_delalloc() we have the following code, showing
that @nr_written is really only utilized for above two cases:
/* did the fill delalloc function already unlock and start
* the IO?
*/
if (page_started) {
/*
* we've unlocked the page, so we can't update
* the mapping's writeback index, just update
* nr_to_write.
*/
wbc->nr_to_write -= nr_written;
return 1;
}
But for such cases, writepage_delalloc() will return 1, and exit
__extent_writepage() without going through __extent_writepage_io().
Thus this means, inside __extent_writepage_io(), we always get
@nr_written as 0.
So this patch is going to remove the unnecessary parameter from the
following functions:
- writepage_delalloc()
As @nr_written passed in is always the initial value 0.
Although inside that function, we still need a local @nr_written
to update wbc->nr_to_write.
- __extent_writepage_io()
As explained above, @nr_written passed in can only be 0.
This also means we can remove one update_nr_written() call.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We used to need the root for btrfs_reserve_metadata_bytes to check the
orphan cleanup state, but we no longer need that, we simply need the
fs_info. Change btrfs_reserve_metadata_bytes() to use the fs_info, and
change both btrfs_block_rsv_refill() and btrfs_block_rsv_add() to do the
same as they simply call btrfs_reserve_metadata_bytes() and then
manipulate the block_rsv that is being used.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we don't care about the stage of the orphan_cleanup_state,
simply replace it with a bit on ->state to make sure we don't call the
orphan cleanup every time we wander into this root.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is very old code before we were stealing from the global reserve
during evict. We have proper ways to steal from the global reserve
while we're evicting, so rip out this code as it's no longer necessary.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I forgot to convert this over when I introduced the global reserve
stealing code to the space flushing code. Evict was simply trying to
make its reservation and then if it failed it would steal from the
global rsv, which is racey because it's outside of the normal ticketing
code.
Fix this by setting ticket->steal if we are BTRFS_RESERVE_FLUSH_EVICT,
and then make the priority flushing path do the steal for us.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're going to use this helper in the priority flushing loop, move this
check into the helper to simplify the logic.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since we're dropping locks before we enter the priority flushing loops
we could have had our ticket granted before we got the space_info->lock.
So add this check to avoid doing some extra flushing in the priority
flushing cases.
The case in priority_reclaim_metadata_space is an optimization. Think
we came in to reserve, we didn't have the space, we added our ticket to
the list. But at the same time somebody was waiting on the space_info
lock to add space and do btrfs_try_granting_ticket(), so we drop the
lock, get satisfied, come in to do our loop, and we have been
satisfied.
This is the priority reclaim path, so to_reclaim could be !0 still
because we may have only satisfied the priority tickets and still left
non priority tickets on the list. We would then have to_reclaim but
->bytes == 0.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
[ add note about the optimization ]
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the error case for the priority tickets is handled where we
deal with all of the tickets, priority and non-priority. This is OK in
general, but it makes for some awkward locking. We take and drop the
space_info->lock back to back because of these different types of
tickets.
Rework the code to handle priority ticket failures in their respective
helpers. This allows us to be less wonky with our space_info->lock
usage, and means that the main handler simply has to check
ticket->error, as the ticket is guaranteed to be off any list and
completely handled by the time it exits one of the handlers.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When mounting a device, we are reporting the zones twice: once for
checking the zone attributes in btrfs_get_dev_zone_info and once for
loading block groups' zone info in
btrfs_load_block_group_zone_info(). With a lot of block groups, that
leads to a lot of REPORT ZONE commands and slows down the mount
process.
This patch introduces a zone info cache in struct
btrfs_zoned_device_info. The cache is populated while in
btrfs_get_dev_zone_info() and used for
btrfs_load_block_group_zone_info() to reduce the number of REPORT ZONE
commands. The zone cache is then released after loading the block
groups, as it will not be much effective during the run time.
Benchmark: Mount an HDD with 57,007 block groups
Before patch: 171.368 seconds
After patch: 64.064 seconds
While it still takes a minute due to the slowness of loading all the
block groups, the patch reduces the mount time by 1/3.
Link: https://lore.kernel.org/linux-btrfs/CAHQ7scUiLtcTqZOMMY5kbWUBOhGRwKo6J6wYPT5WY+C=cD49nQ@mail.gmail.com/
Fixes: 5b31646898 ("btrfs: get zone information of zoned block devices")
CC: stable@vger.kernel.org
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit ba8a9d0795 ("Btrfs: delete the entire async bio submission
framework") removed submit workqueues, the parameter fs_devices is not used
anymore.
Remove it, no functional changes.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Su Yue <l@damenly.su>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the transaction commit path we are acquiring the tree log mutex too
early and we have a stale comment because:
1) It mentions a function named btrfs_commit_tree_roots(), which does not
exists anymore, it was the old name of commit_cowonly_roots(), renamed
a very long time ago by commit 5d4f98a28c ("Btrfs: Mixed back
reference (FORWARD ROLLING FORMAT CHANGE)"));
2) It mentions that we need to acquire the tree log mutex at that point
to ensure we have no running log writers. That is not correct anymore,
for many years at least, since we are guaranteed that we do not have
any log writers at that point simply because we have set the state of
the transaction to TRANS_STATE_COMMIT_DOING and have waited for all
writers to complete - meaning no one can log until we change the state
of the transaction to TRANS_STATE_UNBLOCKED. Any attempts to join the
transaction or start a new one will block until we do that state
transition;
3) The comment mentions a "trans mutex" which doesn't exists since 2011,
commit a4abeea41a ("Btrfs: kill trans_mutex") removed it;
4) The current use of the tree log mutex is to ensure proper serialization
of super block writes - if someone started a new transaction and uses it
for logging, it will wait for the previous transaction to write its
super block before writing the super block when attempting to sync the
log.
So acquire the tree log mutex only when it's absolutely needed, before
setting the transaction state to TRANS_STATE_UNBLOCKED, fix and move the
stale comment, add some assertions and new comments where appropriate.
Also, this has no effect on concurrency or performance, since the new
start of the critical section is still when the transaction is in the
state TRANS_STATE_COMMIT_DOING.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_prepare_sprout() splices seed devices into its own struct fs_devices,
so that its parent function btrfs_init_new_device() can add the new sprout
device to fs_info->fs_devices.
Both btrfs_prepare_sprout() and btrfs_init_new_device() need
device_list_mutex. But they are holding it separately, thus create a
small race window. Close it and hold device_list_mutex across both
functions btrfs_init_new_device() and btrfs_prepare_sprout().
Split btrfs_prepare_sprout() into btrfs_init_sprout() and
btrfs_setup_sprout(). This split is essential because device_list_mutex
must not be held for allocations in btrfs_init_sprout() but must be held
for btrfs_setup_sprout(). So now a common device_list_mutex can be used
between btrfs_init_new_device() and btrfs_setup_sprout().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Declare int seeding_dev as a bool. Also, move its declaration a line
below to adjust packing.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Again, I don't think this was ever used since iterate_dir_item() is only
used for xattrs. No functional change.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As far as I can tell, this was never used. No functional change.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The name btrfs_item_end_nr() is a bit of a misnomer, as it's actually
the offset of the end of the data the item points to. In fact all of
the helpers that we use btrfs_item_end_nr() use data in their name, like
BTRFS_LEAF_DATA_SIZE() and leaf_data(). Rename to btrfs_item_data_end()
to make it clear what this helper is giving us.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're only using btrfs_item_end() from btrfs_item_end_nr(), so this can
be collapsed.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all call sites are using the slot number to modify item values,
rename the SETGET helpers to raw_item_*(), and then rework the _nr()
helpers to be the btrfs_item_*() btrfs_set_item_*() helpers, and then
rename all of the callers to the new helpers.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The last remaining place where we have the pattern of
item = btrfs_item_nr(slot)
<do something with the item>
are the token helpers. Handle this by introducing token helpers that
will do the btrfs_item_nr() work inside of the helper itself, and then
convert all users of the btrfs_item token helpers to the new _nr()
variants.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of getting the btrfs_item for this, simply pass in the slot of
the item and then use the btrfs_item_size_nr() helper inside of
btrfs_file_extent_inline_item_len().
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have the pattern of
item = btrfs_item_nr(slot);
btrfs_set_item_*(leaf, item);
in a bunch of places in our code. Fix this by adding
btrfs_set_item_*_nr() helpers which will do the appropriate work, and
replace those calls with
btrfs_set_item_*_nr(leaf, slot);
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have this pattern in a lot of places
item = btrfs_item_nr(slot);
btrfs_item_size(leaf, item);
when we could simply use
btrfs_item_size(leaf, slot);
Fix all callers of btrfs_item_size() and btrfs_item_offset() to use the
_nr variation of the helpers.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we log only dir index keys when logging a directory, we no longer
need to deal with dir item keys in the log replay code for replaying
directory deletes. This is also true for the case when we replay a log
tree created by a kernel that still logs dir items.
So remove the remaining code of the replay of directory deletes algorithm
that deals with dir item keys.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, when logging a directory, we copy both dir items and dir index
items from the fs/subvolume tree to the log tree. Both items have exactly
the same data (same struct btrfs_dir_item), the difference lies in the key
values, where a dir index key contains the index number of a directory
entry while the dir item key does not, as it's used for doing fast lookups
of an entry by name, while the former is used for sorting entries when
listing a directory.
We can exploit that and log only the dir index items, since they contain
all the information needed to correctly add, replace and delete directory
entries when replaying a log tree. Logging only the dir index items is
also backward and forward compatible: an unpatched kernel (without this
change) can correctly replay a log tree generated by a patched kernel
(with this patch), and a patched kernel can correctly replay a log tree
generated by an unpatched kernel.
The backward compatibility is ensured because:
1) For inserting a new dentry: a dentry is only inserted when we find a
new dir index key - we can only insert if we know the dir index offset,
which is encoded in the dir index key's offset;
2) For deleting dentries: during log replay, before adding or replacing
dentries, we first replay dentry deletions. Whenever we find a dir item
key or a dir index key in the subvolume/fs tree that is not logged in
a range for which the log tree is authoritative, we do the unlink of
the dentry, which removes both the existing dir item key and the dir
index key. Therefore logging just dir index keys is enough to ensure
dentry deletions are correctly replayed;
3) For dentry replacements: they work when we log only dir index keys
and this is mostly due to a combination of 1) and 2). If we replace a
dentry with name "foobar" to point from inode A to inode B, then we
know the dir index key for the new dentry is different from the old
one, as it has an index number (key offset) larger than the old one.
This results in replaying a deletion, through replay_dir_deletes(),
that causes the old dentry to be removed, both the dir item key and
the dir index key, as mentioned at 2). Then when processing the new
dir index key, we add the new dentry, adding both a new dir item key
and a new index key pointing to inode B, as stated in 1).
The forward compatibility, the ability for a patched kernel to replay a
log created by an older, unpatched kernel, comes from the changes required
for making sure we are able to replay a log that only contains dir index
keys - we simply ignore every dir item key we find.
So modify directory logging to log only dir index items, and modify the
log replay process to ignore dir item keys, from log trees created by an
unpatched kernel, and process only with dir index keys. This reduces the
amount of logged metadata by about half, and therefore the time spent
logging or fsyncing large directories (less CPU time and less IO).
The following test script was used to measure this change:
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
NUM_NEW_FILES=1000000
NUM_FILE_DELETES=10000
mkfs.btrfs -f $DEV
mount -o ssd $DEV $MNT
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_NEW_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
start=$(date +%s%N)
xfs_io -c "fsync" $MNT/testdir
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "dir fsync took $dur ms after adding $NUM_NEW_FILES files"
# sync to force transaction commit and wipeout the log.
sync
del_inc=$(( $NUM_NEW_FILES / $NUM_FILE_DELETES ))
for ((i = 1; i <= $NUM_NEW_FILES; i += $del_inc)); do
rm -f $MNT/testdir/file_$i
done
start=$(date +%s%N)
xfs_io -c "fsync" $MNT/testdir
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "dir fsync took $dur ms after deleting $NUM_FILE_DELETES files"
echo
umount $MNT
The tests were run on a physical machine, with a non-debug kernel (Debian's
default kernel config), for different values of $NUM_NEW_FILES and
$NUM_FILE_DELETES, and the results were the following:
** Before patch, NUM_NEW_FILES = 1 000 000, NUM_DELETE_FILES = 10 000 **
dir fsync took 8412 ms after adding 1000000 files
dir fsync took 500 ms after deleting 10000 files
** After patch, NUM_NEW_FILES = 1 000 000, NUM_DELETE_FILES = 10 000 **
dir fsync took 4252 ms after adding 1000000 files (-49.5%)
dir fsync took 269 ms after deleting 10000 files (-46.2%)
** Before patch, NUM_NEW_FILES = 100 000, NUM_DELETE_FILES = 1 000 **
dir fsync took 745 ms after adding 100000 files
dir fsync took 59 ms after deleting 1000 files
** After patch, NUM_NEW_FILES = 100 000, NUM_DELETE_FILES = 1 000 **
dir fsync took 404 ms after adding 100000 files (-45.8%)
dir fsync took 31 ms after deleting 1000 files (-47.5%)
** Before patch, NUM_NEW_FILES = 10 000, NUM_DELETE_FILES = 1 000 **
dir fsync took 67 ms after adding 10000 files
dir fsync took 9 ms after deleting 1000 files
** After patch, NUM_NEW_FILES = 10 000, NUM_DELETE_FILES = 1 000 **
dir fsync took 36 ms after adding 10000 files (-46.3%)
dir fsync took 5 ms after deleting 1000 files (-44.4%)
** Before patch, NUM_NEW_FILES = 1 000, NUM_DELETE_FILES = 100 **
dir fsync took 9 ms after adding 1000 files
dir fsync took 4 ms after deleting 100 files
** After patch, NUM_NEW_FILES = 1 000, NUM_DELETE_FILES = 100 **
dir fsync took 7 ms after adding 1000 files (-22.2%)
dir fsync took 3 ms after deleting 100 files (-25.0%)
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since both unused block groups and reclaim bgs lists are protected by
unused_bgs_lock then free them in the same critical section without
doing an extra unlock/lock pair.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When enabling quotas, we attempt to commit a transaction while holding the
mutex fs_info->qgroup_ioctl_lock. This can result on a deadlock with other
quota operations such as:
- qgroup creation and deletion, ioctl BTRFS_IOC_QGROUP_CREATE;
- adding and removing qgroup relations, ioctl BTRFS_IOC_QGROUP_ASSIGN.
This is because these operations join a transaction and after that they
attempt to lock the mutex fs_info->qgroup_ioctl_lock. Acquiring that mutex
after joining or starting a transaction is a pattern followed everywhere
in qgroups, so the quota enablement operation is the one at fault here,
and should not commit a transaction while holding that mutex.
Fix this by making the transaction commit while not holding the mutex.
We are safe from two concurrent tasks trying to enable quotas because
we are serialized by the rw semaphore fs_info->subvol_sem at
btrfs_ioctl_quota_ctl(), which is the only call site for enabling
quotas.
When this deadlock happens, it produces a trace like the following:
INFO: task syz-executor:25604 blocked for more than 143 seconds.
Not tainted 5.15.0-rc6 #4
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:syz-executor state:D stack:24800 pid:25604 ppid: 24873 flags:0x00004004
Call Trace:
context_switch kernel/sched/core.c:4940 [inline]
__schedule+0xcd9/0x2530 kernel/sched/core.c:6287
schedule+0xd3/0x270 kernel/sched/core.c:6366
btrfs_commit_transaction+0x994/0x2e90 fs/btrfs/transaction.c:2201
btrfs_quota_enable+0x95c/0x1790 fs/btrfs/qgroup.c:1120
btrfs_ioctl_quota_ctl fs/btrfs/ioctl.c:4229 [inline]
btrfs_ioctl+0x637e/0x7b70 fs/btrfs/ioctl.c:5010
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f86920b2c4d
RSP: 002b:00007f868f61ac58 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007f86921d90a0 RCX: 00007f86920b2c4d
RDX: 0000000020005e40 RSI: 00000000c0109428 RDI: 0000000000000008
RBP: 00007f869212bd80 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007f86921d90a0
R13: 00007fff6d233e4f R14: 00007fff6d233ff0 R15: 00007f868f61adc0
INFO: task syz-executor:25628 blocked for more than 143 seconds.
Not tainted 5.15.0-rc6 #4
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:syz-executor state:D stack:29080 pid:25628 ppid: 24873 flags:0x00004004
Call Trace:
context_switch kernel/sched/core.c:4940 [inline]
__schedule+0xcd9/0x2530 kernel/sched/core.c:6287
schedule+0xd3/0x270 kernel/sched/core.c:6366
schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425
__mutex_lock_common kernel/locking/mutex.c:669 [inline]
__mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729
btrfs_remove_qgroup+0xb7/0x7d0 fs/btrfs/qgroup.c:1548
btrfs_ioctl_qgroup_create fs/btrfs/ioctl.c:4333 [inline]
btrfs_ioctl+0x683c/0x7b70 fs/btrfs/ioctl.c:5014
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
Reported-by: Hao Sun <sunhao.th@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CACkBjsZQF19bQ1C6=yetF3BvL10OSORpFUcWXTP6HErshDB4dQ@mail.gmail.com/
Fixes: 340f1aa27f ("btrfs: qgroups: Move transaction management inside btrfs_quota_enable/disable")
CC: stable@vger.kernel.org # 4.19
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a direct IO write against a file range that either has
preallocated extents in that range or has regular extents and the file
has the NOCOW attribute set, the write fails with -ENOSPC when all of
the following conditions are met:
1) There are no data blocks groups with enough free space matching
the size of the write;
2) There's not enough unallocated space for allocating a new data block
group;
3) The extents in the target file range are not shared, neither through
snapshots nor through reflinks.
This is wrong because a NOCOW write can be done in such case, and in fact
it's possible to do it using a buffered IO write, since when failing to
allocate data space, the buffered IO path checks if a NOCOW write is
possible.
The failure in direct IO write path comes from the fact that early on,
at btrfs_dio_iomap_begin(), we try to allocate data space for the write
and if it that fails we return the error and stop - we never check if we
can do NOCOW. But later, at btrfs_get_blocks_direct_write(), we check
if we can do a NOCOW write into the range, or a subset of the range, and
then release the previously reserved data space.
Fix this by doing the data reservation only if needed, when we must COW,
at btrfs_get_blocks_direct_write() instead of doing it at
btrfs_dio_iomap_begin(). This also simplifies a bit the logic and removes
the inneficiency of doing unnecessary data reservations.
The following example test script reproduces the problem:
$ cat dio-nocow-enospc.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
# Use a small fixed size (1G) filesystem so that it's quick to fill
# it up.
# Make sure the mixed block groups feature is not enabled because we
# later want to not have more space available for allocating data
# extents but still have enough metadata space free for the file writes.
mkfs.btrfs -f -b $((1024 * 1024 * 1024)) -O ^mixed-bg $DEV
mount $DEV $MNT
# Create our test file with the NOCOW attribute set.
touch $MNT/foobar
chattr +C $MNT/foobar
# Now fill in all unallocated space with data for our test file.
# This will allocate a data block group that will be full and leave
# no (or a very small amount of) unallocated space in the device, so
# that it will not be possible to allocate a new block group later.
echo
echo "Creating test file with initial data..."
xfs_io -c "pwrite -S 0xab -b 1M 0 900M" $MNT/foobar
# Now try a direct IO write against file range [0, 10M[.
# This should succeed since this is a NOCOW file and an extent for the
# range was previously allocated.
echo
echo "Trying direct IO write over allocated space..."
xfs_io -d -c "pwrite -S 0xcd -b 10M 0 10M" $MNT/foobar
umount $MNT
When running the test:
$ ./dio-nocow-enospc.sh
(...)
Creating test file with initial data...
wrote 943718400/943718400 bytes at offset 0
900 MiB, 900 ops; 0:00:01.43 (625.526 MiB/sec and 625.5265 ops/sec)
Trying direct IO write over allocated space...
pwrite: No space left on device
A test case for fstests will follow, testing both this direct IO write
scenario as well as the buffered IO write scenario to make it less likely
to get future regressions on the buffered IO case.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmG8+tEACgkQxWXV+ddt
WDuuGA/9E75ZMqsMLW5az7z8Rt5voBjPeweyRHmGCLZKpgfaj0QjrJRvu0CTKU/W
zCSQf+ShTTY2D3cmh1eEwKyX/waKQ71qBrMX/SgIeA0OjmlhK1UGB18MF5sAVGCB
mymVYJh7IntYJE7S7OiMUL/yILmIWZYrYT+iaPZlIc9M6h0b1gjMIsE0VEmxJMCN
X8RAQ4CfL9bpTTKItNehSyXx+J7TB5yamh5AspaiB/ivyN1DcUcsFf3AoaWXeh2D
YIBzq4WbGnDMfUdWXKE2rqDfQgaTXtN9ffGUvphJnegg8Tqfp29LyLZ1GU0qGSXc
/K8g5QNmM3nhubXq2MG5zfbHPJ1H2CgnvkDqiCcyeop+09yj/ugxTt+ULaIbJL76
pKSpcuIFXTmoW2Z7ZwijIEX4H5Dgk2l2DbE8SkJT4LjJybgpHfBT1KDQrj5iQdx+
XgmG/CbRELuGGltJNuldp0SqIyMNRgDuv6Rheg9N9H73m9epwfH5oiM0Fj/FYyQ6
lfgle6DQCP4xaDmk1zA9zrJHTUqi8Caeyg+tQYT6AbkoeCoXnvEAPgv9OOGe1M+C
Ks7zeAseWs3A/j/+wCdiCKombOfR+AY3RGkPzlodUJj4YYOTyXrigtb5yhTz6Zdv
ozVBZ71LUMMOf0NV45mGtqsiLqyfe3cnlqj1XtHQKaajyjgHvW8=
=G7CE
-----END PGP SIGNATURE-----
Merge tag 'for-5.16-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more fixes, almost all error handling one-liners and for stable.
- regression fix in directory logging items
- regression fix of extent buffer status bits handling after an error
- fix memory leak in error handling path in tree-log
- fix freeing invalid anon device number when handling errors during
subvolume creation
- fix warning when freeing leaf after subvolume creation failure
- fix missing blkdev put in device scan error handling
- fix invalid delayed ref after subvolume creation failure"
* tag 'for-5.16-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix missing blkdev_put() call in btrfs_scan_one_device()
btrfs: fix warning when freeing leaf after subvolume creation failure
btrfs: fix invalid delayed ref after subvolume creation failure
btrfs: check WRITE_ERR when trying to read an extent buffer
btrfs: fix missing last dir item offset update when logging directory
btrfs: fix double free of anon_dev after failure to create subvolume
btrfs: fix memory leak in __add_inode_ref()
The function btrfs_scan_one_device() calls blkdev_get_by_path() and
blkdev_put() to get and release its target block device. However, when
btrfs_sb_log_location_bdev() fails, blkdev_put() is not called and the
block device is left without clean up. This triggered failure of fstests
generic/085. Fix the failure path of btrfs_sb_log_location_bdev() to
call blkdev_put().
Fixes: 12659251ca ("btrfs: implement log-structured superblock for ZONED mode")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When creating a subvolume, at ioctl.c:create_subvol(), if we fail to
insert the new root's root item into the root tree, we are freeing the
metadata extent we reserved for the new root to prevent a metadata
extent leak, as we don't abort the transaction at that point (since
there is nothing at that point that is irreversible).
However we allocated the metadata extent for the new root which we are
creating for the new subvolume, so its delayed reference refers to the
ID of this new root. But when we free the metadata extent we pass the
root of the subvolume where the new subvolume is located to
btrfs_free_tree_block() - this is incorrect because this will generate
a delayed reference that refers to the ID of the parent subvolume's root,
and not to ID of the new root.
This results in a failure when running delayed references that leads to
a transaction abort and a trace like the following:
[3868.738042] RIP: 0010:__btrfs_free_extent+0x709/0x950 [btrfs]
[3868.739857] Code: 68 0f 85 e6 fb ff (...)
[3868.742963] RSP: 0018:ffffb0e9045cf910 EFLAGS: 00010246
[3868.743908] RAX: 00000000fffffffe RBX: 00000000fffffffe RCX: 0000000000000002
[3868.745312] RDX: 00000000fffffffe RSI: 0000000000000002 RDI: ffff90b0cd793b88
[3868.746643] RBP: 000000000e5d8000 R08: 0000000000000000 R09: ffff90b0cd793b88
[3868.747979] R10: 0000000000000002 R11: 00014ded97944d68 R12: 0000000000000000
[3868.749373] R13: ffff90b09afe4a28 R14: 0000000000000000 R15: ffff90b0cd793b88
[3868.750725] FS: 00007f281c4a8b80(0000) GS:ffff90b3ada00000(0000) knlGS:0000000000000000
[3868.752275] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[3868.753515] CR2: 00007f281c6a5000 CR3: 0000000108a42006 CR4: 0000000000370ee0
[3868.754869] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[3868.756228] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[3868.757803] Call Trace:
[3868.758281] <TASK>
[3868.758655] ? btrfs_merge_delayed_refs+0x178/0x1c0 [btrfs]
[3868.759827] __btrfs_run_delayed_refs+0x2b1/0x1250 [btrfs]
[3868.761047] btrfs_run_delayed_refs+0x86/0x210 [btrfs]
[3868.762069] ? lock_acquired+0x19f/0x420
[3868.762829] btrfs_commit_transaction+0x69/0xb20 [btrfs]
[3868.763860] ? _raw_spin_unlock+0x29/0x40
[3868.764614] ? btrfs_block_rsv_release+0x1c2/0x1e0 [btrfs]
[3868.765870] create_subvol+0x1d8/0x9a0 [btrfs]
[3868.766766] btrfs_mksubvol+0x447/0x4c0 [btrfs]
[3868.767669] ? preempt_count_add+0x49/0xa0
[3868.768444] __btrfs_ioctl_snap_create+0x123/0x190 [btrfs]
[3868.769639] ? _copy_from_user+0x66/0xa0
[3868.770391] btrfs_ioctl_snap_create_v2+0xbb/0x140 [btrfs]
[3868.771495] btrfs_ioctl+0xd1e/0x35c0 [btrfs]
[3868.772364] ? __slab_free+0x10a/0x360
[3868.773198] ? rcu_read_lock_sched_held+0x12/0x60
[3868.774121] ? lock_release+0x223/0x4a0
[3868.774863] ? lock_acquired+0x19f/0x420
[3868.775634] ? rcu_read_lock_sched_held+0x12/0x60
[3868.776530] ? trace_hardirqs_on+0x1b/0xe0
[3868.777373] ? _raw_spin_unlock_irqrestore+0x3e/0x60
[3868.778280] ? kmem_cache_free+0x321/0x3c0
[3868.779011] ? __x64_sys_ioctl+0x83/0xb0
[3868.779718] __x64_sys_ioctl+0x83/0xb0
[3868.780387] do_syscall_64+0x3b/0xc0
[3868.781059] entry_SYSCALL_64_after_hwframe+0x44/0xae
[3868.781953] RIP: 0033:0x7f281c59e957
[3868.782585] Code: 3c 1c 48 f7 d8 4c (...)
[3868.785867] RSP: 002b:00007ffe1f83e2b8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[3868.787198] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f281c59e957
[3868.788450] RDX: 00007ffe1f83e2c0 RSI: 0000000050009418 RDI: 0000000000000003
[3868.789748] RBP: 00007ffe1f83f300 R08: 0000000000000000 R09: 00007ffe1f83fe36
[3868.791214] R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000003
[3868.792468] R13: 0000000000000003 R14: 00007ffe1f83e2c0 R15: 00000000000003cc
[3868.793765] </TASK>
[3868.794037] irq event stamp: 0
[3868.794548] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[3868.795670] hardirqs last disabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040
[3868.797086] softirqs last enabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040
[3868.798309] softirqs last disabled at (0): [<0000000000000000>] 0x0
[3868.799284] ---[ end trace be24c7002fe27747 ]---
[3868.799928] BTRFS info (device dm-0): leaf 241188864 gen 1268 total ptrs 214 free space 469 owner 2
[3868.801133] BTRFS info (device dm-0): refs 2 lock_owner 225627 current 225627
[3868.802056] item 0 key (237436928 169 0) itemoff 16250 itemsize 33
[3868.802863] extent refs 1 gen 1265 flags 2
[3868.803447] ref#0: tree block backref root 1610
(...)
[3869.064354] item 114 key (241008640 169 0) itemoff 12488 itemsize 33
[3869.065421] extent refs 1 gen 1268 flags 2
[3869.066115] ref#0: tree block backref root 1689
(...)
[3869.403834] BTRFS error (device dm-0): unable to find ref byte nr 241008640 parent 0 root 1622 owner 0 offset 0
[3869.405641] BTRFS: error (device dm-0) in __btrfs_free_extent:3076: errno=-2 No such entry
[3869.407138] BTRFS: error (device dm-0) in btrfs_run_delayed_refs:2159: errno=-2 No such entry
Fix this by passing the new subvolume's root ID to btrfs_free_tree_block().
This requires changing the root argument of btrfs_free_tree_block() from
struct btrfs_root * to a u64, since at this point during the subvolume
creation we have not yet created the struct btrfs_root for the new
subvolume, and btrfs_free_tree_block() only needs a root ID and nothing
else from a struct btrfs_root.
This was triggered by test case generic/475 from fstests.
Fixes: 67addf2900 ("btrfs: fix metadata extent leak after failure to create subvolume")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Filipe reported a hang when we have errors on btrfs. This turned out to
be a side-effect of my fix c2e3930529 ("btrfs: clear extent buffer
uptodate when we fail to write it") which made it so we clear
EXTENT_BUFFER_UPTODATE on an eb when we fail to write it out.
Below is a paste of Filipe's analysis he got from using drgn to debug
the hang
"""
btree readahead code calls read_extent_buffer_pages(), sets ->io_pages to
a value while writeback of all pages has not yet completed:
--> writeback for the first 3 pages finishes, we clear
EXTENT_BUFFER_UPTODATE from eb on the first page when we get an
error.
--> at this point eb->io_pages is 1 and we cleared Uptodate bit from the
first 3 pages
--> read_extent_buffer_pages() does not see EXTENT_BUFFER_UPTODATE() so
it continues, it's able to lock the pages since we obviously don't
hold the pages locked during writeback
--> read_extent_buffer_pages() then computes 'num_reads' as 3, and sets
eb->io_pages to 3, since only the first page does not have Uptodate
bit set at this point
--> writeback for the remaining page completes, we ended decrementing
eb->io_pages by 1, resulting in eb->io_pages == 2, and therefore
never calling end_extent_buffer_writeback(), so
EXTENT_BUFFER_WRITEBACK remains in the eb's flags
--> of course, when the read bio completes, it doesn't and shouldn't
call end_extent_buffer_writeback()
--> we should clear EXTENT_BUFFER_UPTODATE only after all pages of
the eb finished writeback? or maybe make the read pages code
wait for writeback of all pages of the eb to complete before
checking which pages need to be read, touch ->io_pages, submit
read bio, etc
writeback bit never cleared means we can hang when aborting a
transaction, at:
btrfs_cleanup_one_transaction()
btrfs_destroy_marked_extents()
wait_on_extent_buffer_writeback()
"""
This is a problem because our writes are not synchronized with reads in
any way. We clear the UPTODATE flag and then we can easily come in and
try to read the EB while we're still waiting on other bio's to
complete.
We have two options here, we could lock all the pages, and then check to
see if eb->io_pages != 0 to know if we've already got an outstanding
write on the eb.
Or we can simply check to see if we have WRITE_ERR set on this extent
buffer. We set this bit _before_ we clear UPTODATE, so if the read gets
triggered because we aren't UPTODATE because of a write error we're
guaranteed to have WRITE_ERR set, and in this case we can simply return
-EIO. This will fix the reported hang.
Reported-by: Filipe Manana <fdmanana@suse.com>
Fixes: c2e3930529 ("btrfs: clear extent buffer uptodate when we fail to write it")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When logging a directory, once we finish processing a leaf that is full
of dir items, if we find the next leaf was not modified in the current
transaction, we grab the first key of that next leaf and log it as to
mark the end of a key range boundary.
However we did not update the value of ctx->last_dir_item_offset, which
tracks the offset of the last logged key. This can result in subsequent
logging of the same directory in the current transaction to not realize
that key was already logged, and then add it to the middle of a batch
that starts with a lower key, resulting later in a leaf with one key
that is duplicated and at non-consecutive slots. When that happens we get
an error later when writing out the leaf, reporting that there is a pair
of keys in wrong order. The report is something like the following:
Dec 13 21:44:50 kernel: BTRFS critical (device dm-0): corrupt leaf:
root=18446744073709551610 block=118444032 slot=21, bad key order, prev
(704687 84 4146773349) current (704687 84 1063561078)
Dec 13 21:44:50 kernel: BTRFS info (device dm-0): leaf 118444032 gen
91449 total ptrs 39 free space 546 owner 18446744073709551610
Dec 13 21:44:50 kernel: item 0 key (704687 1 0) itemoff 3835
itemsize 160
Dec 13 21:44:50 kernel: inode generation 35532 size
1026 mode 40755
Dec 13 21:44:50 kernel: item 1 key (704687 12 704685) itemoff
3822 itemsize 13
Dec 13 21:44:50 kernel: item 2 key (704687 24 3817753667)
itemoff 3736 itemsize 86
Dec 13 21:44:50 kernel: item 3 key (704687 60 0) itemoff 3728 itemsize 8
Dec 13 21:44:50 kernel: item 4 key (704687 72 0) itemoff 3720 itemsize 8
Dec 13 21:44:50 kernel: item 5 key (704687 84 140445108)
itemoff 3666 itemsize 54
Dec 13 21:44:50 kernel: dir oid 704793 type 1
Dec 13 21:44:50 kernel: item 6 key (704687 84 298800632)
itemoff 3599 itemsize 67
Dec 13 21:44:50 kernel: dir oid 707849 type 2
Dec 13 21:44:50 kernel: item 7 key (704687 84 476147658)
itemoff 3532 itemsize 67
Dec 13 21:44:50 kernel: dir oid 707901 type 2
Dec 13 21:44:50 kernel: item 8 key (704687 84 633818382)
itemoff 3471 itemsize 61
Dec 13 21:44:50 kernel: dir oid 704694 type 2
Dec 13 21:44:50 kernel: item 9 key (704687 84 654256665)
itemoff 3403 itemsize 68
Dec 13 21:44:50 kernel: dir oid 707841 type 1
Dec 13 21:44:50 kernel: item 10 key (704687 84 995843418)
itemoff 3331 itemsize 72
Dec 13 21:44:50 kernel: dir oid 2167736 type 1
Dec 13 21:44:50 kernel: item 11 key (704687 84 1063561078)
itemoff 3278 itemsize 53
Dec 13 21:44:50 kernel: dir oid 704799 type 2
Dec 13 21:44:50 kernel: item 12 key (704687 84 1101156010)
itemoff 3225 itemsize 53
Dec 13 21:44:50 kernel: dir oid 704696 type 1
Dec 13 21:44:50 kernel: item 13 key (704687 84 2521936574)
itemoff 3173 itemsize 52
Dec 13 21:44:50 kernel: dir oid 704704 type 2
Dec 13 21:44:50 kernel: item 14 key (704687 84 2618368432)
itemoff 3112 itemsize 61
Dec 13 21:44:50 kernel: dir oid 704738 type 1
Dec 13 21:44:50 kernel: item 15 key (704687 84 2676316190)
itemoff 3046 itemsize 66
Dec 13 21:44:50 kernel: dir oid 2167729 type 1
Dec 13 21:44:50 kernel: item 16 key (704687 84 3319104192)
itemoff 2986 itemsize 60
Dec 13 21:44:50 kernel: dir oid 704745 type 2
Dec 13 21:44:50 kernel: item 17 key (704687 84 3908046265)
itemoff 2929 itemsize 57
Dec 13 21:44:50 kernel: dir oid 2167734 type 1
Dec 13 21:44:50 kernel: item 18 key (704687 84 3945713089)
itemoff 2857 itemsize 72
Dec 13 21:44:50 kernel: dir oid 2167730 type 1
Dec 13 21:44:50 kernel: item 19 key (704687 84 4077169308)
itemoff 2795 itemsize 62
Dec 13 21:44:50 kernel: dir oid 704688 type 1
Dec 13 21:44:50 kernel: item 20 key (704687 84 4146773349)
itemoff 2727 itemsize 68
Dec 13 21:44:50 kernel: dir oid 707892 type 1
Dec 13 21:44:50 kernel: item 21 key (704687 84 1063561078)
itemoff 2674 itemsize 53
Dec 13 21:44:50 kernel: dir oid 704799 type 2
Dec 13 21:44:50 kernel: item 22 key (704687 96 2) itemoff 2612
itemsize 62
Dec 13 21:44:50 kernel: item 23 key (704687 96 6) itemoff 2551
itemsize 61
Dec 13 21:44:50 kernel: item 24 key (704687 96 7) itemoff 2498
itemsize 53
Dec 13 21:44:50 kernel: item 25 key (704687 96 12) itemoff
2446 itemsize 52
Dec 13 21:44:50 kernel: item 26 key (704687 96 14) itemoff
2385 itemsize 61
Dec 13 21:44:50 kernel: item 27 key (704687 96 18) itemoff
2325 itemsize 60
Dec 13 21:44:50 kernel: item 28 key (704687 96 24) itemoff
2271 itemsize 54
Dec 13 21:44:50 kernel: item 29 key (704687 96 28) itemoff
2218 itemsize 53
Dec 13 21:44:50 kernel: item 30 key (704687 96 62) itemoff
2150 itemsize 68
Dec 13 21:44:50 kernel: item 31 key (704687 96 66) itemoff
2083 itemsize 67
Dec 13 21:44:50 kernel: item 32 key (704687 96 75) itemoff
2015 itemsize 68
Dec 13 21:44:50 kernel: item 33 key (704687 96 79) itemoff
1948 itemsize 67
Dec 13 21:44:50 kernel: item 34 key (704687 96 82) itemoff
1882 itemsize 66
Dec 13 21:44:50 kernel: item 35 key (704687 96 83) itemoff
1810 itemsize 72
Dec 13 21:44:50 kernel: item 36 key (704687 96 85) itemoff
1753 itemsize 57
Dec 13 21:44:50 kernel: item 37 key (704687 96 87) itemoff
1681 itemsize 72
Dec 13 21:44:50 kernel: item 38 key (704694 1 0) itemoff 1521
itemsize 160
Dec 13 21:44:50 kernel: inode generation 35534 size 30
mode 40755
Dec 13 21:44:50 kernel: BTRFS error (device dm-0): block=118444032
write time tree block corruption detected
So fix that by adding the missing update of ctx->last_dir_item_offset with
the offset of the boundary key.
Reported-by: Chris Murphy <lists@colorremedies.com>
Link: https://lore.kernel.org/linux-btrfs/CAJCQCtT+RSzpUjbMq+UfzNUMe1X5+1G+DnAGbHC=OZ=iRS24jg@mail.gmail.com/
Fixes: dc2872247e ("btrfs: keep track of the last logged keys when logging a directory")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When creating a subvolume, at create_subvol(), we allocate an anonymous
device and later call btrfs_get_new_fs_root(), which in turn just calls
btrfs_get_root_ref(). There we call btrfs_init_fs_root() which assigns
the anonymous device to the root, but if after that call there's an error,
when we jump to 'fail' label, we call btrfs_put_root(), which frees the
anonymous device and then returns an error that is propagated back to
create_subvol(). Than create_subvol() frees the anonymous device again.
When this happens, if the anonymous device was not reallocated after
the first time it was freed with btrfs_put_root(), we get a kernel
message like the following:
(...)
[13950.282466] BTRFS: error (device dm-0) in create_subvol:663: errno=-5 IO failure
[13950.283027] ida_free called for id=65 which is not allocated.
[13950.285974] BTRFS info (device dm-0): forced readonly
(...)
If the anonymous device gets reallocated by another btrfs filesystem
or any other kernel subsystem, then bad things can happen.
So fix this by setting the root's anonymous device to 0 at
btrfs_get_root_ref(), before we call btrfs_put_root(), if an error
happened.
Fixes: 2dfb1e43f5 ("btrfs: preallocate anon block device at first phase of snapshot creation")
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Line 1169 (#3) allocates a memory chunk for victim_name by kmalloc(),
but when the function returns in line 1184 (#4) victim_name allocated
by line 1169 (#3) is not freed, which will lead to a memory leak.
There is a similar snippet of code in this function as allocating a memory
chunk for victim_name in line 1104 (#1) as well as releasing the memory
in line 1116 (#2).
We should kfree() victim_name when the return value of backref_in_log()
is less than zero and before the function returns in line 1184 (#4).
1057 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1058 struct btrfs_root *root,
1059 struct btrfs_path *path,
1060 struct btrfs_root *log_root,
1061 struct btrfs_inode *dir,
1062 struct btrfs_inode *inode,
1063 u64 inode_objectid, u64 parent_objectid,
1064 u64 ref_index, char *name, int namelen,
1065 int *search_done)
1066 {
1104 victim_name = kmalloc(victim_name_len, GFP_NOFS);
// #1: kmalloc (victim_name-1)
1105 if (!victim_name)
1106 return -ENOMEM;
1112 ret = backref_in_log(log_root, &search_key,
1113 parent_objectid, victim_name,
1114 victim_name_len);
1115 if (ret < 0) {
1116 kfree(victim_name); // #2: kfree (victim_name-1)
1117 return ret;
1118 } else if (!ret) {
1169 victim_name = kmalloc(victim_name_len, GFP_NOFS);
// #3: kmalloc (victim_name-2)
1170 if (!victim_name)
1171 return -ENOMEM;
1180 ret = backref_in_log(log_root, &search_key,
1181 parent_objectid, victim_name,
1182 victim_name_len);
1183 if (ret < 0) {
1184 return ret; // #4: missing kfree (victim_name-2)
1185 } else if (!ret) {
1241 return 0;
1242 }
Fixes: d3316c8233 ("btrfs: Properly handle backref_in_log retval")
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Jianglei Nie <niejianglei2021@163.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmGwxl8ACgkQxWXV+ddt
WDvSeQ//T+mv4o7ucldQZCVdN0TTVCkQUhia+ZdMwBcPty2/ZEdap+KEIVmfCV/v
OLRmSNkIPDhHcIc/O3zJ1/AY0DFbb9brYGkMD/qidgPbRArhDZSrDIr+xnrKJ0iq
HFxM01B54l8hJe6GWIGFuuOz+nXUP1o9SfiDOwMDTkqgzz1JSvPec70RKMxG8pTC
4plVrGaUXkKTC8WyBXnSvkP2gvjfJxqnEKv2Ru1eP1t7Bq65aed0+Z32Mogzl2ip
ZSHVlRergeB03xF9YErWSfgofVWLEIXgLCh/Wfq73sMnHUHUGM/dpEKxP911MI00
A5TuTl3I25cVnDv3qMayBPECMCCGZc2vUyXTLCWUNYLb/vEUTI36QBu/KglRURmO
Zx20B+3/7Yu9pFeZ23S+nlNdGDADmjkOfvZIZDoYDzqBAKWM6kZ/9oWiib21Uwi6
ql5oZNl7G6UXLPvgJoq8dqZIj/HYeLEHeqwf/tepSVQLXYzQyWYDMp686z958XI1
K/A/TKaKk19nn1Dhsz4KJeb3xhMFlFN30K7BNjdH3XRH1RrwJP6pLF/WUduJq2qn
rAvJoODLHkby1D9+HqSKW/RToeR5NbBYYdfB0Q8zpy9zF/gZX7wgFc21/4B7qtib
hkKfNSfAVjedOJJWTFCUDnZwwrqtcrKxYzUpdcls/O1AjifK7+U=
=Mh19
-----END PGP SIGNATURE-----
Merge tag 'for-5.16-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more regression fixes and stable patches, mostly one-liners.
Regression fixes:
- fix pointer/ERR_PTR mismatch returned from memdup_user
- reset dedicated zoned mode relocation block group to avoid using it
and filling it without any recourse
Fixes:
- handle a case to FITRIM range (also to make fstests/generic/260
work)
- fix warning when extent buffer state and pages get out of sync
after an IO error
- fix transaction abort when syncing due to missing mapping error set
on metadata inode after inlining a compressed file
- fix transaction abort due to tree-log and zoned mode interacting in
an unexpected way
- fix memory leak of additional extent data when qgroup reservation
fails
- do proper handling of slot search call when deleting root refs"
* tag 'for-5.16-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: replace the BUG_ON in btrfs_del_root_ref with proper error handling
btrfs: zoned: clear data relocation bg on zone finish
btrfs: free exchange changeset on failures
btrfs: fix re-dirty process of tree-log nodes
btrfs: call mapping_set_error() on btree inode with a write error
btrfs: clear extent buffer uptodate when we fail to write it
btrfs: fail if fstrim_range->start == U64_MAX
btrfs: fix error pointer dereference in btrfs_ioctl_rm_dev_v2()
I hit the BUG_ON() with generic/475 test case, and to my surprise, all
callers of btrfs_del_root_ref() are already aborting transaction, thus
there is not need for such BUG_ON(), just go to @out label and caller
will properly handle the error.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When finishing a zone that is used by a dedicated data relocation
block group, also remove its reference from fs_info, so we're not trying
to use a full block group for allocations during data relocation, which
will always fail.
The result is we're not making any forward progress and end up in a
deadlock situation.
Fixes: c2707a2556 ("btrfs: zoned: add a dedicated data relocation block group")
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fstests runs on my VMs have show several kmemleak reports like the following.
unreferenced object 0xffff88811ae59080 (size 64):
comm "xfs_io", pid 12124, jiffies 4294987392 (age 6.368s)
hex dump (first 32 bytes):
00 c0 1c 00 00 00 00 00 ff cf 1c 00 00 00 00 00 ................
90 97 e5 1a 81 88 ff ff 90 97 e5 1a 81 88 ff ff ................
backtrace:
[<00000000ac0176d2>] ulist_add_merge+0x60/0x150 [btrfs]
[<0000000076e9f312>] set_state_bits+0x86/0xc0 [btrfs]
[<0000000014fe73d6>] set_extent_bit+0x270/0x690 [btrfs]
[<000000004f675208>] set_record_extent_bits+0x19/0x20 [btrfs]
[<00000000b96137b1>] qgroup_reserve_data+0x274/0x310 [btrfs]
[<0000000057e9dcbb>] btrfs_check_data_free_space+0x5c/0xa0 [btrfs]
[<0000000019c4511d>] btrfs_delalloc_reserve_space+0x1b/0xa0 [btrfs]
[<000000006d37e007>] btrfs_dio_iomap_begin+0x415/0x970 [btrfs]
[<00000000fb8a74b8>] iomap_iter+0x161/0x1e0
[<0000000071dff6ff>] __iomap_dio_rw+0x1df/0x700
[<000000002567ba53>] iomap_dio_rw+0x5/0x20
[<0000000072e555f8>] btrfs_file_write_iter+0x290/0x530 [btrfs]
[<000000005eb3d845>] new_sync_write+0x106/0x180
[<000000003fb505bf>] vfs_write+0x24d/0x2f0
[<000000009bb57d37>] __x64_sys_pwrite64+0x69/0xa0
[<000000003eba3fdf>] do_syscall_64+0x43/0x90
In case brtfs_qgroup_reserve_data() or btrfs_delalloc_reserve_metadata()
fail the allocated extent_changeset will not be freed.
So in btrfs_check_data_free_space() and btrfs_delalloc_reserve_space()
free the allocated extent_changeset to get rid of the allocated memory.
The issue currently only happens in the direct IO write path, but only
after 65b3c08606e5 ("btrfs: fix ENOSPC failure when attempting direct IO
write into NOCOW range"), and also at defrag_one_locked_target(). Every
other place is always calling extent_changeset_free() even if its call
to btrfs_delalloc_reserve_space() or btrfs_check_data_free_space() has
failed.
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a report of a transaction abort of -EAGAIN with the following
script.
#!/bin/sh
for d in sda sdb; do
mkfs.btrfs -d single -m single -f /dev/\${d}
done
mount /dev/sda /mnt/test
mount /dev/sdb /mnt/scratch
for dir in test scratch; do
echo 3 >/proc/sys/vm/drop_caches
fio --directory=/mnt/\${dir} --name=fio.\${dir} --rw=read --size=50G --bs=64m \
--numjobs=$(nproc) --time_based --ramp_time=5 --runtime=480 \
--group_reporting |& tee /dev/shm/fio.\${dir}
echo 3 >/proc/sys/vm/drop_caches
done
for d in sda sdb; do
umount /dev/\${d}
done
The stack trace is shown in below.
[3310.967991] BTRFS: error (device sda) in btrfs_commit_transaction:2341: errno=-11 unknown (Error while writing out transaction)
[3310.968060] BTRFS info (device sda): forced readonly
[3310.968064] BTRFS warning (device sda): Skipping commit of aborted transaction.
[3310.968065] ------------[ cut here ]------------
[3310.968066] BTRFS: Transaction aborted (error -11)
[3310.968074] WARNING: CPU: 14 PID: 1684 at fs/btrfs/transaction.c:1946 btrfs_commit_transaction.cold+0x209/0x2c8
[3310.968131] CPU: 14 PID: 1684 Comm: fio Not tainted 5.14.10-300.fc35.x86_64 #1
[3310.968135] Hardware name: DIAWAY Tartu/Tartu, BIOS V2.01.B10 04/08/2021
[3310.968137] RIP: 0010:btrfs_commit_transaction.cold+0x209/0x2c8
[3310.968144] RSP: 0018:ffffb284ce393e10 EFLAGS: 00010282
[3310.968147] RAX: 0000000000000026 RBX: ffff973f147b0f60 RCX: 0000000000000027
[3310.968149] RDX: ffff974ecf098a08 RSI: 0000000000000001 RDI: ffff974ecf098a00
[3310.968150] RBP: ffff973f147b0f08 R08: 0000000000000000 R09: ffffb284ce393c48
[3310.968151] R10: ffffb284ce393c40 R11: ffffffff84f47468 R12: ffff973f101bfc00
[3310.968153] R13: ffff971f20cf2000 R14: 00000000fffffff5 R15: ffff973f147b0e58
[3310.968154] FS: 00007efe65468740(0000) GS:ffff974ecf080000(0000) knlGS:0000000000000000
[3310.968157] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[3310.968158] CR2: 000055691bcbe260 CR3: 000000105cfa4001 CR4: 0000000000770ee0
[3310.968160] PKRU: 55555554
[3310.968161] Call Trace:
[3310.968167] ? dput+0xd4/0x300
[3310.968174] btrfs_sync_file+0x3f1/0x490
[3310.968180] __x64_sys_fsync+0x33/0x60
[3310.968185] do_syscall_64+0x3b/0x90
[3310.968190] entry_SYSCALL_64_after_hwframe+0x44/0xae
[3310.968194] RIP: 0033:0x7efe6557329b
[3310.968200] RSP: 002b:00007ffe0236ebc0 EFLAGS: 00000293 ORIG_RAX: 000000000000004a
[3310.968203] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007efe6557329b
[3310.968204] RDX: 0000000000000000 RSI: 00007efe58d77010 RDI: 0000000000000006
[3310.968205] RBP: 0000000004000000 R08: 0000000000000000 R09: 00007efe58d77010
[3310.968207] R10: 0000000016cacc0c R11: 0000000000000293 R12: 00007efe5ce95980
[3310.968208] R13: 0000000000000000 R14: 00007efe6447c790 R15: 0000000c80000000
[3310.968212] ---[ end trace 1a346f4d3c0d96ba ]---
[3310.968214] BTRFS: error (device sda) in cleanup_transaction:1946: errno=-11 unknown
The abort occurs because of a write hole while writing out freeing tree
nodes of a tree-log tree. For zoned btrfs, we re-dirty a freed tree
node to ensure btrfs can write the region and does not leave a hole on
write on a zoned device. The current code fails to re-dirty a node
when the tree-log tree's depth is greater or equal to 2. That leads to
a transaction abort with -EAGAIN.
Fix the issue by properly re-dirtying a node on walking up the tree.
Fixes: d3575156f6 ("btrfs: zoned: redirty released extent buffers")
CC: stable@vger.kernel.org # 5.12+
Link: https://github.com/kdave/btrfs-progs/issues/415
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
generic/484 fails sometimes with compression on because the write ends
up small enough that it goes into the btree. This means that we never
call mapping_set_error() on the inode itself, because the page gets
marked as fine when we inline it into the metadata. When the metadata
writeback happens we see it and abort the transaction properly and mark
the fs as readonly, however we don't do the mapping_set_error() on
anything. In syncfs() we will simply return 0 if the sb is marked
read-only, so we can't check for this in our syncfs callback. The only
way the error gets returned if we called mapping_set_error() on
something. Fix this by calling mapping_set_error() on the btree inode
mapping. This allows us to properly return an error on syncfs and pass
generic/484 with compression on.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I got dmesg errors on generic/281 on our overnight fstests. Looking at
the history this happens occasionally, with errors like this
WARNING: CPU: 0 PID: 673217 at fs/btrfs/extent_io.c:6848 assert_eb_page_uptodate+0x3f/0x50
CPU: 0 PID: 673217 Comm: kworker/u4:13 Tainted: G W 5.16.0-rc2+ #469
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Workqueue: btrfs-cache btrfs_work_helper
RIP: 0010:assert_eb_page_uptodate+0x3f/0x50
RSP: 0018:ffffae598230bc60 EFLAGS: 00010246
RAX: 0017ffffc0002112 RBX: ffffebaec4100900 RCX: 0000000000001000
RDX: ffffebaec45733c7 RSI: ffffebaec4100900 RDI: ffff9fd98919f340
RBP: 0000000000000d56 R08: ffff9fd98e300000 R09: 0000000000000000
R10: 0001207370a91c50 R11: 0000000000000000 R12: 00000000000007b0
R13: ffff9fd98919f340 R14: 0000000001500000 R15: 0000000001cb0000
FS: 0000000000000000(0000) GS:ffff9fd9fbc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f549fcf8940 CR3: 0000000114908004 CR4: 0000000000370ef0
Call Trace:
extent_buffer_test_bit+0x3f/0x70
free_space_test_bit+0xa6/0xc0
load_free_space_tree+0x1d6/0x430
caching_thread+0x454/0x630
? rcu_read_lock_sched_held+0x12/0x60
? rcu_read_lock_sched_held+0x12/0x60
? rcu_read_lock_sched_held+0x12/0x60
? lock_release+0x1f0/0x2d0
btrfs_work_helper+0xf2/0x3e0
? lock_release+0x1f0/0x2d0
? finish_task_switch.isra.0+0xf9/0x3a0
process_one_work+0x270/0x5a0
worker_thread+0x55/0x3c0
? process_one_work+0x5a0/0x5a0
kthread+0x174/0x1a0
? set_kthread_struct+0x40/0x40
ret_from_fork+0x1f/0x30
This happens because we're trying to read from a extent buffer page that
is !PageUptodate. This happens because we will clear the page uptodate
when we have an IO error, but we don't clear the extent buffer uptodate.
If we do a read later and find this extent buffer we'll think its valid
and not return an error, and then trip over this warning.
Fix this by also clearing uptodate on the extent buffer when this
happens, so that we get an error when we do a btrfs_search_slot() and
find this block later.
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We've always been failing generic/260 because it's testing things we
actually don't care about and thus won't fail for. However we probably
should fail for fstrim_range->start == U64_MAX since we clearly can't
trim anything past that. This in combination with an update to
generic/260 will allow us to pass this test properly.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If memdup_user() fails the error handing will crash when it tries
to kfree() an error pointer. Just return directly because there is
no cleanup required.
Fixes: 1a15eb724a ("btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmGg+PIACgkQxWXV+ddt
WDsWDBAAk//y15bs3SGQLPshFuFidcRmudQkXGE8431ftjWZtuz1UY046rVvC8I5
FkotiiDVrnuyg1kBU1k0vYGS0Fo687JHw2E+8abD2KCicF4MSNIAlc5D9M5B7jzp
GpSIPoZjs05H85kxcoy3BmdQR1DyjR/xOqvTe2IVswPQSj2B1qZKMCbU4927U+e8
Tu18kr7FTxpnzLhtt9Ahr8xVol6bcV/3zB0nC+O5hRbfg5gH87tpb7giLICwfipq
eYY8I361iYDKtDQlR/qvpmkUAfPO4ahYz1yumTxm0twuIv34PugcCP0oLtGCbWwU
71YflcuZa6L2vmXNK8cjXf/9Frg/7k0FlyepEAhjhbooqT92m9Sv4iCX5z9mrsqf
40aoLBXrrPCewa9j31Aw+JuUEjWC4G7U2v+TqJ3waHgUyfeDQUGhOGLmvQJqGyMd
SL4QhGz9aQGlLmUVkDlUemkmMtGBwn87sD1HCJkkNrHS0OWOHb12tpijOu7UAIp3
ih/nXtAayVZV5LS1hfxfYuXzpP8E6dXUnR2vWpvvDqihvfq6ubkt497yVN+vUFBw
6GEhvePwa/w0U1Kn4cZUZxFnalBAmeYcahBBL9ngrHLBD57IJL/yLcOue5nCgqqN
DvLKl8tJUDQTmayx1MjdpdPNckAbY3cp0OP8uEowL0rJjxJPyAE=
=/pKc
-----END PGP SIGNATURE-----
Merge tag 'for-5.16-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fix from David Sterba:
"One more fix to the lzo code, a missing put_page causing memory leaks
when some error branches are taken"
* tag 'for-5.16-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix the memory leak caused in lzo_compress_pages()
[BUG]
Fstests generic/027 is pretty easy to trigger a slow but steady memory
leak if run with "-o compress=lzo" mount option.
Normally one single run of generic/027 is enough to eat up at least 4G ram.
[CAUSE]
In commit d4088803f5 ("btrfs: subpage: make lzo_compress_pages()
compatible") we changed how @page_in is released.
But that refactoring makes @page_in only released after all pages being
compressed.
This leaves error path not releasing @page_in. And by "error path"
things like incompressible data will also be treated as an error
(-E2BIG).
Thus it can cause a memory leak if even nothing wrong happened.
[FIX]
Add check under @out label to release @page_in when needed, so when we
hit any error, the input page is properly released.
Reported-by: Josef Bacik <josef@toxicpanda.com>
Fixes: d4088803f5 ("btrfs: subpage: make lzo_compress_pages() compatible")
Reviewed-and-tested-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmGWiSAACgkQxWXV+ddt
WDtKiA//VFrxg5I1yrTyyVvc2RqcPg0aCopO6wIAgcHV1yzseJ7AyP7two1p5dg8
3DPDKaXFvONZYXl8j9ZuzFiryKPGJxp1KSagKyt6EKDRYm50HOreTC1Qt2ZvLJHn
wHohwHX96yv+4gyKvpCBZVpp3dSIDbsbCxlpz3mm7kZv//wHxA5l0chZpHbTqUF6
JloRSrOIGlSeQYPog1Lnu1c92qoGzLL5n47aXS3s5afpkqqkOlKZLsyb90N4uJx4
M1htsl4ga7b3OB8jbR95wlbd/qXsB+dvaBUQHgDm4hafW6ma5ft9NhuePQnQlaVH
ub/rlfNTsKl6jly9eNJ6wGpqi/OBlhA4qCmQVbVDE+HhWUJbdUiQ5UgxoOrQlkOP
Pd3NvW+95qg+Lj/egUA/Mrtz1v/6oSKcf3gQVKMNIrnk6lOUVZWtQhBe5YS3qHih
PzxrCp4ThlvmVeemHS7783akiwkI49wUn7a6dUD87x81ghemUHJzC83/mgs1rl/0
7Q1QLetgfrZpko3W4GzS2J3WwKTB0tvBXxsZ8gU5gI0FNkx90bR8+xI0fVF8IGJo
QglHn9gepb6si7BCxyKDTlQNMt23s7GFH5/4hHtkomtlR6vpRbPJAq5mpOrqsLgJ
VGc/SwCJPSmynqRAxuCn+DqlfaMZZaqtvgVVWnhJl9ylKyUAQKU=
=ze0L
-----END PGP SIGNATURE-----
Merge tag 'for-5.16-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Several xes and one old ioctl deprecation. Namely there's fix for
crashes/warnings with lzo compression that was suspected to be caused
by first pull merge resolution, but it was a different bug.
Summary:
- regression fix for a crash in lzo due to missing boundary checks of
the page array
- fix crashes on ARM64 due to missing barriers when synchronizing
status bits between work queues
- silence lockdep when reading chunk tree during mount
- fix false positive warning in integrity checker on devices with
disabled write caching
- fix signedness of bitfields in scrub
- start deprecation of balance v1 ioctl"
* tag 'for-5.16-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: deprecate BTRFS_IOC_BALANCE ioctl
btrfs: make 1-bit bit-fields of scrub_page unsigned int
btrfs: check-integrity: fix a warning on write caching disabled disk
btrfs: silence lockdep when reading chunk tree during mount
btrfs: fix memory ordering between normal and ordered work functions
btrfs: fix a out-of-bound access in copy_compressed_data_to_page()
The v2 balance ioctl has been introduced more than 9 years ago. Users of
the old v1 ioctl should have long been migrated to it. It's time we
deprecate it and eventually remove it.
The only known user is in btrfs-progs that tries v1 as a fallback in
case v2 is not supported. This is not necessary anymore.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The bitfields have_csum and io_error are currently signed which is not
recommended as the representation is an implementation defined
behaviour. Fix this by making the bit-fields unsigned ints.
Fixes: 2c36395430 ("btrfs: scrub: remove the anonymous structure from scrub_page")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When a disk has write caching disabled, we skip submission of a bio with
flush and sync requests before writing the superblock, since it's not
needed. However when the integrity checker is enabled, this results in
reports that there are metadata blocks referred by a superblock that
were not properly flushed. So don't skip the bio submission only when
the integrity checker is enabled for the sake of simplicity, since this
is a debug tool and not meant for use in non-debug builds.
fstests/btrfs/220 trigger a check-integrity warning like the following
when CONFIG_BTRFS_FS_CHECK_INTEGRITY=y and the disk with WCE=0.
btrfs: attempt to write superblock which references block M @5242880 (sdb2/5242880/0) which is not flushed out of disk's write cache (block flush_gen=1, dev->flush_gen=0)!
------------[ cut here ]------------
WARNING: CPU: 28 PID: 843680 at fs/btrfs/check-integrity.c:2196 btrfsic_process_written_superblock+0x22a/0x2a0 [btrfs]
CPU: 28 PID: 843680 Comm: umount Not tainted 5.15.0-0.rc5.39.el8.x86_64 #1
Hardware name: Dell Inc. Precision T7610/0NK70N, BIOS A18 09/11/2019
RIP: 0010:btrfsic_process_written_superblock+0x22a/0x2a0 [btrfs]
RSP: 0018:ffffb642afb47940 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000
RDX: 00000000ffffffff RSI: ffff8b722fc97d00 RDI: ffff8b722fc97d00
RBP: ffff8b5601c00000 R08: 0000000000000000 R09: c0000000ffff7fff
R10: 0000000000000001 R11: ffffb642afb476f8 R12: ffffffffffffffff
R13: ffffb642afb47974 R14: ffff8b5499254c00 R15: 0000000000000003
FS: 00007f00a06d4080(0000) GS:ffff8b722fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fff5cff5ff0 CR3: 00000001c0c2a006 CR4: 00000000001706e0
Call Trace:
btrfsic_process_written_block+0x2f7/0x850 [btrfs]
__btrfsic_submit_bio.part.19+0x310/0x330 [btrfs]
? bio_associate_blkg_from_css+0xa4/0x2c0
btrfsic_submit_bio+0x18/0x30 [btrfs]
write_dev_supers+0x81/0x2a0 [btrfs]
? find_get_pages_range_tag+0x219/0x280
? pagevec_lookup_range_tag+0x24/0x30
? __filemap_fdatawait_range+0x6d/0xf0
? __raw_callee_save___native_queued_spin_unlock+0x11/0x1e
? find_first_extent_bit+0x9b/0x160 [btrfs]
? __raw_callee_save___native_queued_spin_unlock+0x11/0x1e
write_all_supers+0x1b3/0xa70 [btrfs]
? __raw_callee_save___native_queued_spin_unlock+0x11/0x1e
btrfs_commit_transaction+0x59d/0xac0 [btrfs]
close_ctree+0x11d/0x339 [btrfs]
generic_shutdown_super+0x71/0x110
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0xb8/0x140
task_work_run+0x6d/0xb0
exit_to_user_mode_prepare+0x1f0/0x200
syscall_exit_to_user_mode+0x12/0x30
do_syscall_64+0x46/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f009f711dfb
RSP: 002b:00007fff5cff7928 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
RAX: 0000000000000000 RBX: 000055b68c6c9970 RCX: 00007f009f711dfb
RDX: 0000000000000001 RSI: 0000000000000000 RDI: 000055b68c6c9b50
RBP: 0000000000000000 R08: 000055b68c6ca900 R09: 00007f009f795580
R10: 0000000000000000 R11: 0000000000000246 R12: 000055b68c6c9b50
R13: 00007f00a04bf184 R14: 0000000000000000 R15: 00000000ffffffff
---[ end trace 2c4b82abcef9eec4 ]---
S-65536(sdb2/65536/1)
-->
M-1064960(sdb2/1064960/1)
Reviewed-by: Filipe Manana <fdmanana@gmail.com>
Signed-off-by: Wang Yugui <wangyugui@e16-tech.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Ordered work functions aren't guaranteed to be handled by the same thread
which executed the normal work functions. The only way execution between
normal/ordered functions is synchronized is via the WORK_DONE_BIT,
unfortunately the used bitops don't guarantee any ordering whatsoever.
This manifested as seemingly inexplicable crashes on ARM64, where
async_chunk::inode is seen as non-null in async_cow_submit which causes
submit_compressed_extents to be called and crash occurs because
async_chunk::inode suddenly became NULL. The call trace was similar to:
pc : submit_compressed_extents+0x38/0x3d0
lr : async_cow_submit+0x50/0xd0
sp : ffff800015d4bc20
<registers omitted for brevity>
Call trace:
submit_compressed_extents+0x38/0x3d0
async_cow_submit+0x50/0xd0
run_ordered_work+0xc8/0x280
btrfs_work_helper+0x98/0x250
process_one_work+0x1f0/0x4ac
worker_thread+0x188/0x504
kthread+0x110/0x114
ret_from_fork+0x10/0x18
Fix this by adding respective barrier calls which ensure that all
accesses preceding setting of WORK_DONE_BIT are strictly ordered before
setting the flag. At the same time add a read barrier after reading of
WORK_DONE_BIT in run_ordered_work which ensures all subsequent loads
would be strictly ordered after reading the bit. This in turn ensures
are all accesses before WORK_DONE_BIT are going to be strictly ordered
before any access that can occur in ordered_func.
Reported-by: Chris Murphy <lists@colorremedies.com>
Fixes: 08a9ff3264 ("btrfs: Added btrfs_workqueue_struct implemented ordered execution based on kernel workqueue")
CC: stable@vger.kernel.org # 4.4+
Link: https://bugzilla.redhat.com/show_bug.cgi?id=2011928
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Tested-by: Chris Murphy <chris@colorremedies.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
The following script can cause btrfs to crash:
$ mount -o compress-force=lzo $DEV /mnt
$ dd if=/dev/urandom of=/mnt/foo bs=4k count=1
$ sync
The call trace looks like this:
general protection fault, probably for non-canonical address 0xe04b37fccce3b000: 0000 [#1] PREEMPT SMP NOPTI
CPU: 5 PID: 164 Comm: kworker/u20:3 Not tainted 5.15.0-rc7-custom+ #4
Workqueue: btrfs-delalloc btrfs_work_helper [btrfs]
RIP: 0010:__memcpy+0x12/0x20
Call Trace:
lzo_compress_pages+0x236/0x540 [btrfs]
btrfs_compress_pages+0xaa/0xf0 [btrfs]
compress_file_range+0x431/0x8e0 [btrfs]
async_cow_start+0x12/0x30 [btrfs]
btrfs_work_helper+0xf6/0x3e0 [btrfs]
process_one_work+0x294/0x5d0
worker_thread+0x55/0x3c0
kthread+0x140/0x170
ret_from_fork+0x22/0x30
---[ end trace 63c3c0f131e61982 ]---
[CAUSE]
In lzo_compress_pages(), parameter @out_pages is not only an output
parameter (for the number of compressed pages), but also an input
parameter, as the upper limit of compressed pages we can utilize.
In commit d4088803f5 ("btrfs: subpage: make lzo_compress_pages()
compatible"), the refactoring doesn't take @out_pages as an input, thus
completely ignoring the limit.
And for compress-force case, we could hit incompressible data that
compressed size would go beyond the page limit, and cause the above
crash.
[FIX]
Save @out_pages as @max_nr_page, and pass it to lzo_compress_pages(),
and check if we're beyond the limit before accessing the pages.
Note: this also fixes crash on 32bit architectures that was suspected to
be caused by merge of btrfs patches to 5.16-rc1. Reported in
https://lore.kernel.org/all/20211104115001.GU20319@twin.jikos.cz/ .
Reported-by: Omar Sandoval <osandov@fb.com>
Fixes: d4088803f5 ("btrfs: subpage: make lzo_compress_pages() compatible")
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add note ]
Signed-off-by: David Sterba <dsterba@suse.com>
This PR includes 5 commits that update the zstd library version:
1. Adds a new kernel-style wrapper around zstd. This wrapper API
is functionally equivalent to the subset of the current zstd API that is
currently used. The wrapper API changes to be kernel style so that the symbols
don't collide with zstd's symbols. The update to zstd-1.4.10 maintains the same
API and preserves the semantics, so that none of the callers need to be
updated. All callers are updated in the commit, because there are zero
functional changes.
2. Adds an indirection for `lib/decompress_unzstd.c` so it
doesn't depend on the layout of `lib/zstd/` to include every source file.
This allows the next patch to be automatically generated.
3. Imports the zstd-1.4.10 source code. This commit is automatically generated
from upstream zstd (https://github.com/facebook/zstd).
4. Adds me (terrelln@fb.com) as the maintainer of `lib/zstd`.
5. Fixes a newly added build warning for clang.
The discussion around this patchset has been pretty long, so I've included a
FAQ-style summary of the history of the patchset, and why we are taking this
approach.
Why do we need to update?
-------------------------
The zstd version in the kernel is based off of zstd-1.3.1, which is was released
August 20, 2017. Since then zstd has seen many bug fixes and performance
improvements. And, importantly, upstream zstd is continuously fuzzed by OSS-Fuzz,
and bug fixes aren't backported to older versions. So the only way to sanely get
these fixes is to keep up to date with upstream zstd. There are no known security
issues that affect the kernel, but we need to be able to update in case there
are. And while there are no known security issues, there are relevant bug fixes.
For example the problem with large kernel decompression has been fixed upstream
for over 2 years https://lkml.org/lkml/2020/9/29/27.
Additionally the performance improvements for kernel use cases are significant.
Measured for x86_64 on my Intel i9-9900k @ 3.6 GHz:
- BtrFS zstd compression at levels 1 and 3 is 5% faster
- BtrFS zstd decompression+read is 15% faster
- SquashFS zstd decompression+read is 15% faster
- F2FS zstd compression+write at level 3 is 8% faster
- F2FS zstd decompression+read is 20% faster
- ZRAM decompression+read is 30% faster
- Kernel zstd decompression is 35% faster
- Initramfs zstd decompression+build is 5% faster
On top of this, there are significant performance improvements coming down the
line in the next zstd release, and the new automated update patch generation
will allow us to pull them easily.
How is the update patch generated?
----------------------------------
The first two patches are preparation for updating the zstd version. Then the
3rd patch in the series imports upstream zstd into the kernel. This patch is
automatically generated from upstream. A script makes the necessary changes and
imports it into the kernel. The changes are:
- Replace all libc dependencies with kernel replacements and rewrite includes.
- Remove unncessary portability macros like: #if defined(_MSC_VER).
- Use the kernel xxhash instead of bundling it.
This automation gets tested every commit by upstream's continuous integration.
When we cut a new zstd release, we will submit a patch to the kernel to update
the zstd version in the kernel.
The automated process makes it easy to keep the kernel version of zstd up to
date. The current zstd in the kernel shares the guts of the code, but has a lot
of API and minor changes to work in the kernel. This is because at the time
upstream zstd was not ready to be used in the kernel envrionment as-is. But,
since then upstream zstd has evolved to support being used in the kernel as-is.
Why are we updating in one big patch?
-------------------------------------
The 3rd patch in the series is very large. This is because it is restructuring
the code, so it both deletes the existing zstd, and re-adds the new structure.
Future updates will be directly proportional to the changes in upstream zstd
since the last import. They will admittidly be large, as zstd is an actively
developed project, and has hundreds of commits between every release. However,
there is no other great alternative.
One option ruled out is to replay every upstream zstd commit. This is not feasible
for several reasons:
- There are over 3500 upstream commits since the zstd version in the kernel.
- The automation to automatically generate the kernel update was only added recently,
so older commits cannot easily be imported.
- Not every upstream zstd commit builds.
- Only zstd releases are "supported", and individual commits may have bugs that were
fixed before a release.
Another option to reduce the patch size would be to first reorganize to the new
file structure, and then apply the patch. However, the current kernel zstd is formatted
with clang-format to be more "kernel-like". But, the new method imports zstd as-is,
without additional formatting, to allow for closer correlation with upstream, and
easier debugging. So the patch wouldn't be any smaller.
It also doesn't make sense to import upstream zstd commit by commit going
forward. Upstream zstd doesn't support production use cases running of the
development branch. We have a lot of post-commit fuzzing that catches many bugs,
so indiviudal commits may be buggy, but fixed before a release. So going forward,
I intend to import every (important) zstd release into the Kernel.
So, while it isn't ideal, updating in one big patch is the only patch I see forward.
Who is responsible for this code?
---------------------------------
I am. This patchset adds me as the maintainer for zstd. Previously, there was no tree
for zstd patches. Because of that, there were several patches that either got ignored,
or took a long time to merge, since it wasn't clear which tree should pick them up.
I'm officially stepping up as maintainer, and setting up my tree as the path through
which zstd patches get merged. I'll make sure that patches to the kernel zstd get
ported upstream, so they aren't erased when the next version update happens.
How is this code tested?
------------------------
I tested every caller of zstd on x86_64 (BtrFS, ZRAM, SquashFS, F2FS, Kernel,
InitRAMFS). I also tested Kernel & InitRAMFS on i386 and aarch64. I checked both
performance and correctness.
Also, thanks to many people in the community who have tested these patches locally.
If you have tested the patches, please reply with a Tested-By so I can collect them
for the PR I will send to Linus.
Lastly, this code will bake in linux-next before being merged into v5.16.
Why update to zstd-1.4.10 when zstd-1.5.0 has been released?
------------------------------------------------------------
This patchset has been outstanding since 2020, and zstd-1.4.10 was the latest
release when it was created. Since the update patch is automatically generated
from upstream, I could generate it from zstd-1.5.0. However, there were some
large stack usage regressions in zstd-1.5.0, and are only fixed in the latest
development branch. And the latest development branch contains some new code that
needs to bake in the fuzzer before I would feel comfortable releasing to the
kernel.
Once this patchset has been merged, and we've released zstd-1.5.1, we can update
the kernel to zstd-1.5.1, and exercise the update process.
You may notice that zstd-1.4.10 doesn't exist upstream. This release is an
artifical release based off of zstd-1.4.9, with some fixes for the kernel
backported from the development branch. I will tag the zstd-1.4.10 release after
this patchset is merged, so the Linux Kernel is running a known version of zstd
that can be debugged upstream.
Why was a wrapper API added?
----------------------------
The first versions of this patchset migrated the kernel to the upstream zstd
API. It first added a shim API that supported the new upstream API with the old
code, then updated callers to use the new shim API, then transitioned to the
new code and deleted the shim API. However, Cristoph Hellwig suggested that we
transition to a kernel style API, and hide zstd's upstream API behind that.
This is because zstd's upstream API is supports many other use cases, and does
not follow the kernel style guide, while the kernel API is focused on the
kernel's use cases, and follows the kernel style guide.
Where is the previous discussion?
---------------------------------
Links for the discussions of the previous versions of the patch set.
The largest changes in the design of the patchset are driven by the discussions
in V11, V5, and V1. Sorry for the mix of links, I couldn't find most of the the
threads on lkml.org.
V12: https://www.spinics.net/lists/linux-crypto/msg58189.html
V11: https://lore.kernel.org/linux-btrfs/20210430013157.747152-1-nickrterrell@gmail.com/
V10: https://lore.kernel.org/lkml/20210426234621.870684-2-nickrterrell@gmail.com/
V9: https://lore.kernel.org/linux-btrfs/20210330225112.496213-1-nickrterrell@gmail.com/
V8: https://lore.kernel.org/linux-f2fs-devel/20210326191859.1542272-1-nickrterrell@gmail.com/
V7: https://lkml.org/lkml/2020/12/3/1195
V6: https://lkml.org/lkml/2020/12/2/1245
V5: https://lore.kernel.org/linux-btrfs/20200916034307.2092020-1-nickrterrell@gmail.com/
V4: https://www.spinics.net/lists/linux-btrfs/msg105783.html
V3: https://lkml.org/lkml/2020/9/23/1074
V2: https://www.spinics.net/lists/linux-btrfs/msg105505.html
V1: https://lore.kernel.org/linux-btrfs/20200916034307.2092020-1-nickrterrell@gmail.com/
Signed-off-by: Nick Terrell <terrelln@fb.com>
Tested By: Paul Jones <paul@pauljones.id.au>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64
Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEmIwAqlFIzbQodPwyuzRpqaNEqPUFAmGJyKIACgkQuzRpqaNE
qPXnmw/+PKyCn6LvRQqNfdpF5f59j/B1Fab15tkpVyz3UWnCw+EKaPZOoTfIsjRf
7TMUVm4iGsm+6xBO/YrGdRl4IxocNgXzsgnJ1lTGDbvfRC1tG+YNwuv+EEXwKYq5
Yz3DRwDotgsrV0Kg05b+VIgkmAuY3ukmu2n09LnAdKkxoIgmHw3MIDCdVZW2Br4c
sjJmYI+fiJd7nAlbDa42VOrdTiLzkl/2BsjWBqTv6zbiQ5uuJGsKb7P3kpcybWzD
5C118pyE3qlVyvFz+UFu8WbN0NSf47DP22KV/3IrhNX7CVQxYBe+9/oVuPWTgRx0
4Vl0G6u7rzh4wDZuGqTC3LYWwH9GfycI0fnVC0URP2XMOcGfPlGd3L0PEmmAeTmR
fEbaGAN4dr0jNO3lmbyAGe/G8tvtXQx/4ZjS9Pa3TlQP24GARU/f78/blbKR87Vz
BGMndmSi92AscgXb9buO3bCwAY1YtH5WiFaZT1XVk42cj4MiOLvPTvP4UMzDDxcZ
56ahmAP/84kd6H+cv9LmgEMqcIBmxdUcO1nuAItJ4wdrMUgw3+lrbxwFkH9xPV7I
okC1K0TIVEobADbxbdMylxClAylbuW+37Pko97NmAlnzNCPNE38f3s3gtXRrUTaR
IP8jv5UQ7q3dFiWnNLLodx5KM6s32GVBKRLRnn/6SJB7QzlyHXU=
=Xb18
-----END PGP SIGNATURE-----
Merge tag 'zstd-for-linus-v5.16' of git://github.com/terrelln/linux
Pull zstd update from Nick Terrell:
"Update to zstd-1.4.10.
Add myself as the maintainer of zstd and update the zstd version in
the kernel, which is now 4 years out of date, to a much more recent
zstd release. This includes bug fixes, much more extensive fuzzing,
and performance improvements. And generates the kernel zstd
automatically from upstream zstd, so it is easier to keep the zstd
verison up to date, and we don't fall so far out of date again.
This includes 5 commits that update the zstd library version:
- Adds a new kernel-style wrapper around zstd.
This wrapper API is functionally equivalent to the subset of the
current zstd API that is currently used. The wrapper API changes to
be kernel style so that the symbols don't collide with zstd's
symbols. The update to zstd-1.4.10 maintains the same API and
preserves the semantics, so that none of the callers need to be
updated. All callers are updated in the commit, because there are
zero functional changes.
- Adds an indirection for `lib/decompress_unzstd.c` so it doesn't
depend on the layout of `lib/zstd/` to include every source file.
This allows the next patch to be automatically generated.
- Imports the zstd-1.4.10 source code. This commit is automatically
generated from upstream zstd (https://github.com/facebook/zstd).
- Adds me (terrelln@fb.com) as the maintainer of `lib/zstd`.
- Fixes a newly added build warning for clang.
The discussion around this patchset has been pretty long, so I've
included a FAQ-style summary of the history of the patchset, and why
we are taking this approach.
Why do we need to update?
-------------------------
The zstd version in the kernel is based off of zstd-1.3.1, which is
was released August 20, 2017. Since then zstd has seen many bug fixes
and performance improvements. And, importantly, upstream zstd is
continuously fuzzed by OSS-Fuzz, and bug fixes aren't backported to
older versions. So the only way to sanely get these fixes is to keep
up to date with upstream zstd.
There are no known security issues that affect the kernel, but we need
to be able to update in case there are. And while there are no known
security issues, there are relevant bug fixes. For example the problem
with large kernel decompression has been fixed upstream for over 2
years [1]
Additionally the performance improvements for kernel use cases are
significant. Measured for x86_64 on my Intel i9-9900k @ 3.6 GHz:
- BtrFS zstd compression at levels 1 and 3 is 5% faster
- BtrFS zstd decompression+read is 15% faster
- SquashFS zstd decompression+read is 15% faster
- F2FS zstd compression+write at level 3 is 8% faster
- F2FS zstd decompression+read is 20% faster
- ZRAM decompression+read is 30% faster
- Kernel zstd decompression is 35% faster
- Initramfs zstd decompression+build is 5% faster
On top of this, there are significant performance improvements coming
down the line in the next zstd release, and the new automated update
patch generation will allow us to pull them easily.
How is the update patch generated?
----------------------------------
The first two patches are preparation for updating the zstd version.
Then the 3rd patch in the series imports upstream zstd into the
kernel. This patch is automatically generated from upstream. A script
makes the necessary changes and imports it into the kernel. The
changes are:
- Replace all libc dependencies with kernel replacements and rewrite
includes.
- Remove unncessary portability macros like: #if defined(_MSC_VER).
- Use the kernel xxhash instead of bundling it.
This automation gets tested every commit by upstream's continuous
integration. When we cut a new zstd release, we will submit a patch to
the kernel to update the zstd version in the kernel.
The automated process makes it easy to keep the kernel version of zstd
up to date. The current zstd in the kernel shares the guts of the
code, but has a lot of API and minor changes to work in the kernel.
This is because at the time upstream zstd was not ready to be used in
the kernel envrionment as-is. But, since then upstream zstd has
evolved to support being used in the kernel as-is.
Why are we updating in one big patch?
-------------------------------------
The 3rd patch in the series is very large. This is because it is
restructuring the code, so it both deletes the existing zstd, and
re-adds the new structure. Future updates will be directly
proportional to the changes in upstream zstd since the last import.
They will admittidly be large, as zstd is an actively developed
project, and has hundreds of commits between every release. However,
there is no other great alternative.
One option ruled out is to replay every upstream zstd commit. This is
not feasible for several reasons:
- There are over 3500 upstream commits since the zstd version in the
kernel.
- The automation to automatically generate the kernel update was only
added recently, so older commits cannot easily be imported.
- Not every upstream zstd commit builds.
- Only zstd releases are "supported", and individual commits may have
bugs that were fixed before a release.
Another option to reduce the patch size would be to first reorganize
to the new file structure, and then apply the patch. However, the
current kernel zstd is formatted with clang-format to be more
"kernel-like". But, the new method imports zstd as-is, without
additional formatting, to allow for closer correlation with upstream,
and easier debugging. So the patch wouldn't be any smaller.
It also doesn't make sense to import upstream zstd commit by commit
going forward. Upstream zstd doesn't support production use cases
running of the development branch. We have a lot of post-commit
fuzzing that catches many bugs, so indiviudal commits may be buggy,
but fixed before a release. So going forward, I intend to import every
(important) zstd release into the Kernel.
So, while it isn't ideal, updating in one big patch is the only patch
I see forward.
Who is responsible for this code?
---------------------------------
I am. This patchset adds me as the maintainer for zstd. Previously,
there was no tree for zstd patches. Because of that, there were
several patches that either got ignored, or took a long time to merge,
since it wasn't clear which tree should pick them up. I'm officially
stepping up as maintainer, and setting up my tree as the path through
which zstd patches get merged. I'll make sure that patches to the
kernel zstd get ported upstream, so they aren't erased when the next
version update happens.
How is this code tested?
------------------------
I tested every caller of zstd on x86_64 (BtrFS, ZRAM, SquashFS, F2FS,
Kernel, InitRAMFS). I also tested Kernel & InitRAMFS on i386 and
aarch64. I checked both performance and correctness.
Also, thanks to many people in the community who have tested these
patches locally.
Lastly, this code will bake in linux-next before being merged into
v5.16.
Why update to zstd-1.4.10 when zstd-1.5.0 has been released?
------------------------------------------------------------
This patchset has been outstanding since 2020, and zstd-1.4.10 was the
latest release when it was created. Since the update patch is
automatically generated from upstream, I could generate it from
zstd-1.5.0.
However, there were some large stack usage regressions in zstd-1.5.0,
and are only fixed in the latest development branch. And the latest
development branch contains some new code that needs to bake in the
fuzzer before I would feel comfortable releasing to the kernel.
Once this patchset has been merged, and we've released zstd-1.5.1, we
can update the kernel to zstd-1.5.1, and exercise the update process.
You may notice that zstd-1.4.10 doesn't exist upstream. This release
is an artifical release based off of zstd-1.4.9, with some fixes for
the kernel backported from the development branch. I will tag the
zstd-1.4.10 release after this patchset is merged, so the Linux Kernel
is running a known version of zstd that can be debugged upstream.
Why was a wrapper API added?
----------------------------
The first versions of this patchset migrated the kernel to the
upstream zstd API. It first added a shim API that supported the new
upstream API with the old code, then updated callers to use the new
shim API, then transitioned to the new code and deleted the shim API.
However, Cristoph Hellwig suggested that we transition to a kernel
style API, and hide zstd's upstream API behind that. This is because
zstd's upstream API is supports many other use cases, and does not
follow the kernel style guide, while the kernel API is focused on the
kernel's use cases, and follows the kernel style guide.
Where is the previous discussion?
---------------------------------
Links for the discussions of the previous versions of the patch set
below. The largest changes in the design of the patchset are driven by
the discussions in v11, v5, and v1. Sorry for the mix of links, I
couldn't find most of the the threads on lkml.org"
Link: https://lkml.org/lkml/2020/9/29/27 [1]
Link: https://www.spinics.net/lists/linux-crypto/msg58189.html [v12]
Link: https://lore.kernel.org/linux-btrfs/20210430013157.747152-1-nickrterrell@gmail.com/ [v11]
Link: https://lore.kernel.org/lkml/20210426234621.870684-2-nickrterrell@gmail.com/ [v10]
Link: https://lore.kernel.org/linux-btrfs/20210330225112.496213-1-nickrterrell@gmail.com/ [v9]
Link: https://lore.kernel.org/linux-f2fs-devel/20210326191859.1542272-1-nickrterrell@gmail.com/ [v8]
Link: https://lkml.org/lkml/2020/12/3/1195 [v7]
Link: https://lkml.org/lkml/2020/12/2/1245 [v6]
Link: https://lore.kernel.org/linux-btrfs/20200916034307.2092020-1-nickrterrell@gmail.com/ [v5]
Link: https://www.spinics.net/lists/linux-btrfs/msg105783.html [v4]
Link: https://lkml.org/lkml/2020/9/23/1074 [v3]
Link: https://www.spinics.net/lists/linux-btrfs/msg105505.html [v2]
Link: https://lore.kernel.org/linux-btrfs/20200916034307.2092020-1-nickrterrell@gmail.com/ [v1]
Signed-off-by: Nick Terrell <terrelln@fb.com>
Tested By: Paul Jones <paul@pauljones.id.au>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64
Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
* tag 'zstd-for-linus-v5.16' of git://github.com/terrelln/linux:
lib: zstd: Add cast to silence clang's -Wbitwise-instead-of-logical
MAINTAINERS: Add maintainer entry for zstd
lib: zstd: Upgrade to latest upstream zstd version 1.4.10
lib: zstd: Add decompress_sources.h for decompress_unzstd
lib: zstd: Add kernel-specific API
If we do a direct IO read or write when the buffer given by the user is
memory mapped to the file range we are going to do IO, we end up ending
in a deadlock. This is triggered by the new test case generic/647 from
fstests.
For a direct IO read we get a trace like this:
[967.872718] INFO: task mmap-rw-fault:12176 blocked for more than 120 seconds.
[967.874161] Not tainted 5.14.0-rc7-btrfs-next-95 #1
[967.874909] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[967.875983] task:mmap-rw-fault state:D stack: 0 pid:12176 ppid: 11884 flags:0x00000000
[967.875992] Call Trace:
[967.875999] __schedule+0x3ca/0xe10
[967.876015] schedule+0x43/0xe0
[967.876020] wait_extent_bit.constprop.0+0x1eb/0x260 [btrfs]
[967.876109] ? do_wait_intr_irq+0xb0/0xb0
[967.876118] lock_extent_bits+0x37/0x90 [btrfs]
[967.876150] btrfs_lock_and_flush_ordered_range+0xa9/0x120 [btrfs]
[967.876184] ? extent_readahead+0xa7/0x530 [btrfs]
[967.876214] extent_readahead+0x32d/0x530 [btrfs]
[967.876253] ? lru_cache_add+0x104/0x220
[967.876255] ? kvm_sched_clock_read+0x14/0x40
[967.876258] ? sched_clock_cpu+0xd/0x110
[967.876263] ? lock_release+0x155/0x4a0
[967.876271] read_pages+0x86/0x270
[967.876274] ? lru_cache_add+0x125/0x220
[967.876281] page_cache_ra_unbounded+0x1a3/0x220
[967.876291] filemap_fault+0x626/0xa20
[967.876303] __do_fault+0x36/0xf0
[967.876308] __handle_mm_fault+0x83f/0x15f0
[967.876322] handle_mm_fault+0x9e/0x260
[967.876327] __get_user_pages+0x204/0x620
[967.876332] ? get_user_pages_unlocked+0x69/0x340
[967.876340] get_user_pages_unlocked+0xd3/0x340
[967.876349] internal_get_user_pages_fast+0xbca/0xdc0
[967.876366] iov_iter_get_pages+0x8d/0x3a0
[967.876374] bio_iov_iter_get_pages+0x82/0x4a0
[967.876379] ? lock_release+0x155/0x4a0
[967.876387] iomap_dio_bio_actor+0x232/0x410
[967.876396] iomap_apply+0x12a/0x4a0
[967.876398] ? iomap_dio_rw+0x30/0x30
[967.876414] __iomap_dio_rw+0x29f/0x5e0
[967.876415] ? iomap_dio_rw+0x30/0x30
[967.876420] ? lock_acquired+0xf3/0x420
[967.876429] iomap_dio_rw+0xa/0x30
[967.876431] btrfs_file_read_iter+0x10b/0x140 [btrfs]
[967.876460] new_sync_read+0x118/0x1a0
[967.876472] vfs_read+0x128/0x1b0
[967.876477] __x64_sys_pread64+0x90/0xc0
[967.876483] do_syscall_64+0x3b/0xc0
[967.876487] entry_SYSCALL_64_after_hwframe+0x44/0xae
[967.876490] RIP: 0033:0x7fb6f2c038d6
[967.876493] RSP: 002b:00007fffddf586b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000011
[967.876496] RAX: ffffffffffffffda RBX: 0000000000001000 RCX: 00007fb6f2c038d6
[967.876498] RDX: 0000000000001000 RSI: 00007fb6f2c17000 RDI: 0000000000000003
[967.876499] RBP: 0000000000001000 R08: 0000000000000003 R09: 0000000000000000
[967.876501] R10: 0000000000001000 R11: 0000000000000246 R12: 0000000000000003
[967.876502] R13: 0000000000000000 R14: 00007fb6f2c17000 R15: 0000000000000000
This happens because at btrfs_dio_iomap_begin() we lock the extent range
and return with it locked - we only unlock in the endio callback, at
end_bio_extent_readpage() -> endio_readpage_release_extent(). Then after
iomap called the btrfs_dio_iomap_begin() callback, it triggers the page
faults that resulting in reading the pages, through the readahead callback
btrfs_readahead(), and through there we end to attempt to lock again the
same extent range (or a subrange of what we locked before), resulting in
the deadlock.
For a direct IO write, the scenario is a bit different, and it results in
trace like this:
[1132.442520] run fstests generic/647 at 2021-08-31 18:53:35
[1330.349355] INFO: task mmap-rw-fault:184017 blocked for more than 120 seconds.
[1330.350540] Not tainted 5.14.0-rc7-btrfs-next-95 #1
[1330.351158] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[1330.351900] task:mmap-rw-fault state:D stack: 0 pid:184017 ppid:183725 flags:0x00000000
[1330.351906] Call Trace:
[1330.351913] __schedule+0x3ca/0xe10
[1330.351930] schedule+0x43/0xe0
[1330.351935] btrfs_start_ordered_extent+0x108/0x1c0 [btrfs]
[1330.352020] ? do_wait_intr_irq+0xb0/0xb0
[1330.352028] btrfs_lock_and_flush_ordered_range+0x8c/0x120 [btrfs]
[1330.352064] ? extent_readahead+0xa7/0x530 [btrfs]
[1330.352094] extent_readahead+0x32d/0x530 [btrfs]
[1330.352133] ? lru_cache_add+0x104/0x220
[1330.352135] ? kvm_sched_clock_read+0x14/0x40
[1330.352138] ? sched_clock_cpu+0xd/0x110
[1330.352143] ? lock_release+0x155/0x4a0
[1330.352151] read_pages+0x86/0x270
[1330.352155] ? lru_cache_add+0x125/0x220
[1330.352162] page_cache_ra_unbounded+0x1a3/0x220
[1330.352172] filemap_fault+0x626/0xa20
[1330.352176] ? filemap_map_pages+0x18b/0x660
[1330.352184] __do_fault+0x36/0xf0
[1330.352189] __handle_mm_fault+0x1253/0x15f0
[1330.352203] handle_mm_fault+0x9e/0x260
[1330.352208] __get_user_pages+0x204/0x620
[1330.352212] ? get_user_pages_unlocked+0x69/0x340
[1330.352220] get_user_pages_unlocked+0xd3/0x340
[1330.352229] internal_get_user_pages_fast+0xbca/0xdc0
[1330.352246] iov_iter_get_pages+0x8d/0x3a0
[1330.352254] bio_iov_iter_get_pages+0x82/0x4a0
[1330.352259] ? lock_release+0x155/0x4a0
[1330.352266] iomap_dio_bio_actor+0x232/0x410
[1330.352275] iomap_apply+0x12a/0x4a0
[1330.352278] ? iomap_dio_rw+0x30/0x30
[1330.352292] __iomap_dio_rw+0x29f/0x5e0
[1330.352294] ? iomap_dio_rw+0x30/0x30
[1330.352306] btrfs_file_write_iter+0x238/0x480 [btrfs]
[1330.352339] new_sync_write+0x11f/0x1b0
[1330.352344] ? NF_HOOK_LIST.constprop.0.cold+0x31/0x3e
[1330.352354] vfs_write+0x292/0x3c0
[1330.352359] __x64_sys_pwrite64+0x90/0xc0
[1330.352365] do_syscall_64+0x3b/0xc0
[1330.352369] entry_SYSCALL_64_after_hwframe+0x44/0xae
[1330.352372] RIP: 0033:0x7f4b0a580986
[1330.352379] RSP: 002b:00007ffd34d75418 EFLAGS: 00000246 ORIG_RAX: 0000000000000012
[1330.352382] RAX: ffffffffffffffda RBX: 0000000000001000 RCX: 00007f4b0a580986
[1330.352383] RDX: 0000000000001000 RSI: 00007f4b0a3a4000 RDI: 0000000000000003
[1330.352385] RBP: 00007f4b0a3a4000 R08: 0000000000000003 R09: 0000000000000000
[1330.352386] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000003
[1330.352387] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
Unlike for reads, at btrfs_dio_iomap_begin() we return with the extent
range unlocked, but later when the page faults are triggered and we try
to read the extents, we end up btrfs_lock_and_flush_ordered_range() where
we find the ordered extent for our write, created by the iomap callback
btrfs_dio_iomap_begin(), and we wait for it to complete, which makes us
deadlock since we can't complete the ordered extent without reading the
pages (the iomap code only submits the bio after the pages are faulted
in).
Fix this by setting the nofault attribute of the given iov_iter and retry
the direct IO read/write if we get an -EFAULT error returned from iomap.
For reads, also disable page faults completely, this is because when we
read from a hole or a prealloc extent, we can still trigger page faults
due to the call to iov_iter_zero() done by iomap - at the moment, it is
oblivious to the value of the ->nofault attribute of an iov_iter.
We also need to keep track of the number of bytes written or read, and
pass it to iomap_dio_rw(), as well as use the new flag IOMAP_DIO_PARTIAL.
This depends on the iov_iter and iomap changes introduced in commit
c03098d4b9 ("Merge tag 'gfs2-v5.15-rc5-mmap-fault' of
git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2").
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch:
- Moves `include/linux/zstd.h` -> `include/linux/zstd_lib.h`
- Updates modified zstd headers to yearless copyright
- Adds a new API in `include/linux/zstd.h` that is functionally
equivalent to the in-use subset of the current API. Functions are
renamed to avoid symbol collisions with zstd, to make it clear it is
not the upstream zstd API, and to follow the kernel style guide.
- Updates all callers to use the new API.
There are no functional changes in this patch. Since there are no
functional change, I felt it was okay to update all the callers in a
single patch. Once the API is approved, the callers are mechanically
changed.
This patch is preparing for the 3rd patch in this series, which updates
zstd to version 1.4.10. Since the upstream zstd API is no longer exposed
to callers, the update can happen transparently.
Signed-off-by: Nick Terrell <terrelln@fb.com>
Tested By: Paul Jones <paul@pauljones.id.au>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64
Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
Functions gfs2_file_read_iter and gfs2_file_write_iter are both
accessing the user buffer to write to or read from while holding the
inode glock. In the most basic scenario, that buffer will not be
resident and it will be mapped to the same file. Accessing the buffer
will trigger a page fault, and gfs2 will deadlock trying to take the
same inode glock again while trying to handle that fault.
Fix that and similar, more complex scenarios by disabling page faults
while accessing user buffers. To make this work, introduce a small
amount of new infrastructure and fix some bugs that didn't trigger so
far, with page faults enabled.
-----BEGIN PGP SIGNATURE-----
iQJIBAABCAAyFiEEJZs3krPW0xkhLMTc1b+f6wMTZToFAmGBPisUHGFncnVlbmJh
QHJlZGhhdC5jb20ACgkQ1b+f6wMTZTpE6A/7BezUnGuNJxJrR8pC+vcLYA7xAgUU
6STQ6IN7w5UHRlSkNzZxZ2XPxW4uVQ4SxSEeaLqBsHZihepjcLNFZ/8MhQ6UPSD0
8noHOi7CoIcp6IuWQtCpxRM/xjjm2SlMt2XbVJZaiJcdzCV9gB6TU9EkBRq7Zm/X
9WFBbv1xZF0skn9ISCJvNtiiI+VyWKgMDUKxJUiTQjmJcklyyqHcVGmQi9BjqPz4
4s3F+WH6CoGbDKlmNk/6Y9wZ/2+sbvGswVscUxPwJVPoZWsR1xBBUdAeAmEMD1P4
BgE/Y1J8JXyVPYtyvZKq70XUhKdQkxB7RfX87YasOk9mY4Kjd5rIIGEykh+o2vC9
kDhCHvf2Mnw5I6Rum3B7UXyB1vemY+fECIHsXhgBnS+ztabRtcAdpCuWoqb43ymw
yEX1KwXyU4FpRYbrRvdZT42Fmh6ty8TW+N4swg8S2TrffirvgAi5yrcHZ4mPupYv
lyzvsCW7Wv8hPXn/twNObX+okRgJnsxcCdBXARdCnRXfA8tH23xmu88u8RA1Vdxh
nzTvv6Dx2EowwojuDWMx29Mw3fA2IqIfbOV+4FaRU7NZ2ZKtknL8yGl27qQUsMoJ
vYsHTmagasjQr+NDJ3vQRLCw+JQ6B1hENpdkmixFD9moo7X1ZFW3HBi/UL973Bv6
5CmgeXto8FRUFjI=
=WeNd
-----END PGP SIGNATURE-----
Merge tag 'gfs2-v5.15-rc5-mmap-fault' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2
Pull gfs2 mmap + page fault deadlocks fixes from Andreas Gruenbacher:
"Functions gfs2_file_read_iter and gfs2_file_write_iter are both
accessing the user buffer to write to or read from while holding the
inode glock.
In the most basic deadlock scenario, that buffer will not be resident
and it will be mapped to the same file. Accessing the buffer will
trigger a page fault, and gfs2 will deadlock trying to take the same
inode glock again while trying to handle that fault.
Fix that and similar, more complex scenarios by disabling page faults
while accessing user buffers. To make this work, introduce a small
amount of new infrastructure and fix some bugs that didn't trigger so
far, with page faults enabled"
* tag 'gfs2-v5.15-rc5-mmap-fault' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2:
gfs2: Fix mmap + page fault deadlocks for direct I/O
iov_iter: Introduce nofault flag to disable page faults
gup: Introduce FOLL_NOFAULT flag to disable page faults
iomap: Add done_before argument to iomap_dio_rw
iomap: Support partial direct I/O on user copy failures
iomap: Fix iomap_dio_rw return value for user copies
gfs2: Fix mmap + page fault deadlocks for buffered I/O
gfs2: Eliminate ip->i_gh
gfs2: Move the inode glock locking to gfs2_file_buffered_write
gfs2: Introduce flag for glock holder auto-demotion
gfs2: Clean up function may_grant
gfs2: Add wrapper for iomap_file_buffered_write
iov_iter: Introduce fault_in_iov_iter_writeable
iov_iter: Turn iov_iter_fault_in_readable into fault_in_iov_iter_readable
gup: Turn fault_in_pages_{readable,writeable} into fault_in_{readable,writeable}
powerpc/kvm: Fix kvm_use_magic_page
iov_iter: Fix iov_iter_get_pages{,_alloc} page fault return value
The end goal of the current buffer overflow detection work[0] is to gain
full compile-time and run-time coverage of all detectable buffer overflows
seen via array indexing or memcpy(), memmove(), and memset(). The str*()
family of functions already have full coverage.
While much of the work for these changes have been on-going for many
releases (i.e. 0-element and 1-element array replacements, as well as
avoiding false positives and fixing discovered overflows[1]), this series
contains the foundational elements of several related buffer overflow
detection improvements by providing new common helpers and FORTIFY_SOURCE
changes needed to gain the introspection required for compiler visibility
into array sizes. Also included are a handful of already Acked instances
using the helpers (or related clean-ups), with many more waiting at the
ready to be taken via subsystem-specific trees[2]. The new helpers are:
- struct_group() for gaining struct member range introspection.
- memset_after() and memset_startat() for clearing to the end of structures.
- DECLARE_FLEX_ARRAY() for using flex arrays in unions or alone in structs.
Also included is the beginning of the refactoring of FORTIFY_SOURCE to
support memcpy() introspection, fix missing and regressed coverage under
GCC, and to prepare to fix the currently broken Clang support. Finishing
this work is part of the larger series[0], but depends on all the false
positives and buffer overflow bug fixes to have landed already and those
that depend on this series to land.
As part of the FORTIFY_SOURCE refactoring, a set of both a compile-time
and run-time tests are added for FORTIFY_SOURCE and the mem*()-family
functions respectively. The compile time tests have found a legitimate
(though corner-case) bug[6] already.
Please note that the appearance of "panic" and "BUG" in the
FORTIFY_SOURCE refactoring are the result of relocating existing code,
and no new use of those code-paths are expected nor desired.
Finally, there are two tree-wide conversions for 0-element arrays and
flexible array unions to gain sane compiler introspection coverage that
result in no known object code differences.
After this series (and the changes that have now landed via netdev
and usb), we are very close to finally being able to build with
-Warray-bounds and -Wzero-length-bounds. However, due corner cases in
GCC[3] and Clang[4], I have not included the last two patches that turn
on these options, as I don't want to introduce any known warnings to
the build. Hopefully these can be solved soon.
[0] https://lore.kernel.org/lkml/20210818060533.3569517-1-keescook@chromium.org/
[1] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=grep&q=FORTIFY_SOURCE
[2] https://lore.kernel.org/lkml/202108220107.3E26FE6C9C@keescook/
[3] https://lore.kernel.org/lkml/3ab153ec-2798-da4c-f7b1-81b0ac8b0c5b@roeck-us.net/
[4] https://bugs.llvm.org/show_bug.cgi?id=51682
[5] https://lore.kernel.org/lkml/202109051257.29B29745C0@keescook/
[6] https://lore.kernel.org/lkml/20211020200039.170424-1-keescook@chromium.org/
-----BEGIN PGP SIGNATURE-----
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmGAFWcWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJmKFD/45MJdnvW5MhIEeW5tc5UjfcIPS
ae+YvlEX/2ZwgSlTxocFVocE6hz7b6eCiX3dSAChPkPxsSfgeiuhjxsU+4ROnELR
04RqTA/rwT6JXfJcXbDPXfxDL4huUkgktAW3m1sT771AZspeap2GrSwFyttlTqKA
+kTiZ3lXJVFcw10uyhfp3Lk6eFJxdf5iOjuEou5kBOQfpNKEOduRL2K15hSowOwB
lARiAC+HbmN+E+npvDE7YqK4V7ZQ0/dtB0BlfqgTkn1spQz8N21kBAMpegV5vvIk
A+qGHc7q2oyk4M14TRTidQHGQ4juW1Kkvq3NV6KzwQIVD+mIfz0ESn3d4tnp28Hk
Y+OXTI1BRFlApQU9qGWv33gkNEozeyqMLDRLKhDYRSFPA9UKkpgXQRzeTzoLKyrQ
4B6n5NnUGcu7I6WWhpyZQcZLDsHGyy0vHzjQGs/NXtb1PzXJ5XIGuPdmx9pVMykk
IVKnqRcWyGWahfh3asOnoXvdhi1No4NSHQ/ZHfUM+SrIGYjBMaUisw66qm3Fe8ZU
lbO2CFkCsfGSoKNPHf0lUEGlkyxAiDolazOfflDNxdzzlZo2X1l/a7O/yoO4Pqul
cdL0eDjiNoQ2YR2TSYPnXq5KSL1RI0tlfS8pH8k1hVhZsQx0wpAQ+qki0S+fLePV
PdA9XB82G2tmqKc9cQ==
=9xbT
-----END PGP SIGNATURE-----
Merge tag 'overflow-v5.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull overflow updates from Kees Cook:
"The end goal of the current buffer overflow detection work[0] is to
gain full compile-time and run-time coverage of all detectable buffer
overflows seen via array indexing or memcpy(), memmove(), and
memset(). The str*() family of functions already have full coverage.
While much of the work for these changes have been on-going for many
releases (i.e. 0-element and 1-element array replacements, as well as
avoiding false positives and fixing discovered overflows[1]), this
series contains the foundational elements of several related buffer
overflow detection improvements by providing new common helpers and
FORTIFY_SOURCE changes needed to gain the introspection required for
compiler visibility into array sizes. Also included are a handful of
already Acked instances using the helpers (or related clean-ups), with
many more waiting at the ready to be taken via subsystem-specific
trees[2].
The new helpers are:
- struct_group() for gaining struct member range introspection
- memset_after() and memset_startat() for clearing to the end of
structures
- DECLARE_FLEX_ARRAY() for using flex arrays in unions or alone in
structs
Also included is the beginning of the refactoring of FORTIFY_SOURCE to
support memcpy() introspection, fix missing and regressed coverage
under GCC, and to prepare to fix the currently broken Clang support.
Finishing this work is part of the larger series[0], but depends on
all the false positives and buffer overflow bug fixes to have landed
already and those that depend on this series to land.
As part of the FORTIFY_SOURCE refactoring, a set of both a
compile-time and run-time tests are added for FORTIFY_SOURCE and the
mem*()-family functions respectively. The compile time tests have
found a legitimate (though corner-case) bug[6] already.
Please note that the appearance of "panic" and "BUG" in the
FORTIFY_SOURCE refactoring are the result of relocating existing code,
and no new use of those code-paths are expected nor desired.
Finally, there are two tree-wide conversions for 0-element arrays and
flexible array unions to gain sane compiler introspection coverage
that result in no known object code differences.
After this series (and the changes that have now landed via netdev and
usb), we are very close to finally being able to build with
-Warray-bounds and -Wzero-length-bounds.
However, due corner cases in GCC[3] and Clang[4], I have not included
the last two patches that turn on these options, as I don't want to
introduce any known warnings to the build. Hopefully these can be
solved soon"
Link: https://lore.kernel.org/lkml/20210818060533.3569517-1-keescook@chromium.org/ [0]
Link: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=grep&q=FORTIFY_SOURCE [1]
Link: https://lore.kernel.org/lkml/202108220107.3E26FE6C9C@keescook/ [2]
Link: https://lore.kernel.org/lkml/3ab153ec-2798-da4c-f7b1-81b0ac8b0c5b@roeck-us.net/ [3]
Link: https://bugs.llvm.org/show_bug.cgi?id=51682 [4]
Link: https://lore.kernel.org/lkml/202109051257.29B29745C0@keescook/ [5]
Link: https://lore.kernel.org/lkml/20211020200039.170424-1-keescook@chromium.org/ [6]
* tag 'overflow-v5.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (30 commits)
fortify: strlen: Avoid shadowing previous locals
compiler-gcc.h: Define __SANITIZE_ADDRESS__ under hwaddress sanitizer
treewide: Replace 0-element memcpy() destinations with flexible arrays
treewide: Replace open-coded flex arrays in unions
stddef: Introduce DECLARE_FLEX_ARRAY() helper
btrfs: Use memset_startat() to clear end of struct
string.h: Introduce memset_startat() for wiping trailing members and padding
xfrm: Use memset_after() to clear padding
string.h: Introduce memset_after() for wiping trailing members/padding
lib: Introduce CONFIG_MEMCPY_KUNIT_TEST
fortify: Add compile-time FORTIFY_SOURCE tests
fortify: Allow strlen() and strnlen() to pass compile-time known lengths
fortify: Prepare to improve strnlen() and strlen() warnings
fortify: Fix dropped strcpy() compile-time write overflow check
fortify: Explicitly disable Clang support
fortify: Move remaining fortify helpers into fortify-string.h
lib/string: Move helper functions out of string.c
compiler_types.h: Remove __compiletime_object_size()
cm4000_cs: Use struct_group() to zero struct cm4000_dev region
can: flexcan: Use struct_group() to zero struct flexcan_regs regions
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmF/7PAACgkQxWXV+ddt
WDtp6A//SbVYeuHWpsXkhBiOpJt2PpS1K8VY5LIJc3brua5EZm8IarlR57X9IqYu
89ZlWnuANrw4d5RRiIO+NYhc+DR6+ydxHesJG+I2B+o5OnR0Ynb06gLhsP1tSK6y
lYZORQFJZP051ODU/uEc8A0KZN7DySIUmqezAibfyxepF6oPEap0nFp17/B80tWp
sKdMp2TBN5ymZwsdSK1nZ7ws1ZL57HgkFDPqp8m8CuPTkneG4CtNol6yUpuPExpL
QzvQsqTygmiFoy0uNTG7Rg7IlKqEuhbR7lwfkmcBZCV66JmhFco5QhxN13QIn42s
+YSug52SMWc8YVHIEj16xtBgHEqZXWYey8d2ewhc0tDSGDm0HmXCNjcn1vYr0NJr
5bW/7/3bpkHYejasy1wDEK5P8Uo2xsgpRyAvuEReGoRi8ze66EohahvP3o7YJi/Q
o0pROXdCT89JbM/T4MTvN/5MUlCSM7rnexXZ39ldGNacPgn9FAUCPw6KtzKKyVRe
DF19nPOUXSg6SLECbVkRQUwcOjxOTFP+T0Jx61Um8bomFskYJJnmr4SD3pqlzgp7
NxV5ad0+r7zU0x9MADkyqboObo0ROAfD4hthcZiRN+0UIK+Gq5nATTD5ur6/nwsT
0PJGOXDPz7cmfqUdmvpA0ctRxbFEqpaz6sDh7nq/iUSmaGITcUM=
=HvYu
-----END PGP SIGNATURE-----
Merge tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"The updates this time are more under the hood and enhancing existing
features (subpage with compression and zoned namespaces).
Performance related:
- misc small inode logging improvements (+3% throughput, -11% latency
on sample dbench workload)
- more efficient directory logging: bulk item insertion, less tree
searches and locking
- speed up bulk insertion of items into a b-tree, which is used when
logging directories, when running delayed items for directories
(fsync and transaction commits) and when running the slow path
(full sync) of an fsync (bulk creation run time -4%, deletion -12%)
Core:
- continued subpage support
- make defragmentation work
- make compression write work
- zoned mode
- support ZNS (zoned namespaces), zone capacity is number of
usable blocks in each zone
- add dedicated block group (zoned) for relocation, to prevent
out of order writes in some cases
- greedy block group reclaim, pick the ones with least usable
space first
- preparatory work for send protocol updates
- error handling improvements
- cleanups and refactoring
Fixes:
- lockdep warnings
- in show_devname callback, on seeding device
- device delete on loop device due to conversions to workqueues
- fix deadlock between chunk allocation and chunk btree modifications
- fix tracking of missing device count and status"
* tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (140 commits)
btrfs: remove root argument from check_item_in_log()
btrfs: remove root argument from add_link()
btrfs: remove root argument from btrfs_unlink_inode()
btrfs: remove root argument from drop_one_dir_item()
btrfs: clear MISSING device status bit in btrfs_close_one_device
btrfs: call btrfs_check_rw_degradable only if there is a missing device
btrfs: send: prepare for v2 protocol
btrfs: fix comment about sector sizes supported in 64K systems
btrfs: update device path inode time instead of bd_inode
fs: export an inode_update_time helper
btrfs: fix deadlock when defragging transparent huge pages
btrfs: sysfs: convert scnprintf and snprintf to sysfs_emit
btrfs: make btrfs_super_block size match BTRFS_SUPER_INFO_SIZE
btrfs: update comments for chunk allocation -ENOSPC cases
btrfs: fix deadlock between chunk allocation and chunk btree modifications
btrfs: zoned: use greedy gc for auto reclaim
btrfs: check-integrity: stop storing the block device name in btrfsic_dev_state
btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls
btrfs: add a btrfs_get_dev_args_from_path helper
btrfs: handle device lookup with btrfs_dev_lookup_args
...
Commit ccaa66c8dd reinstated the kmap/kunmap that had been dropped in
commit 8c945d32e6 ("btrfs: compression: drop kmap/kunmap from lzo").
However, it seems to have done so incorrectly due to the change not
reverting cleanly, and lzo_decompress_bio() ended up not having a
matching "kunmap()" to the "kmap()" that was put back.
Also, any assert that the page pointer is not NULL should be before the
kmap() of said pointer, since otherwise you'd just oops in the kmap()
before the assert would even trigger.
I noticed this when trying to verify my btrfs merge, and things not
adding up. I'm doing this fixup before re-doing my merge, because this
commit needs to also be backported to 5.15 (after verification from the
btrfs people).
Fixes: ccaa66c8dd ("Revert 'btrfs: compression: drop kmap/kunmap from lzo'")
Cc: David Sterba <dsterba@suse.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmF8L70QHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpo9YEAC17yEJ0xwwtUUwZW8avzss4vdcIreFdiZu
gaS+9Oi1bLxj0d2SjaZXJxjT9K+W2LftEsLuQ4oM6VHiLQkcEDbjJdVm3goftTt5
aOvVormDdKbWNcGSbgxA/OcyUT39DH7y17NRVdqYzQSpnrhCod/1tb2ssck0OoYb
VEyBKogMwYeYR55Z3I8yL5pNcEhR8TihZv3rL1iQ7DNpvh5I0I9naSEtGNC84aLP
s4nwRIG+TYll+mg0sfSB29KF7xkoFQO7X7s1rnC/on+gsFEzbJcgkJPDIWeVLnLm
ma8F1i+vJliCGaztyXoleAdg5QDiFmwTQwXRPAk2u8njJhcKi/RwIk2QYMZBZmEJ
bB5EJnlnEaWxjgpCD7JDrtKgIgpbbQHc5QVHRZccsu43UqvDqOZIlvZNYY+h3ivz
jT1zKuKDaTf8YWbfdOJwqm9e+qyR0AFm3rLMdHO58QEh1DBvSLIIdRCNE8wX7nFM
Wx/GmQEkPqNTIZwJOQJMygK+sIuFUDybt3oAH2pjX1zyMx7kTJkrXvj0dhSS/B5u
+gfMs3otWqxQ4P1qfnaUd9mYl8JabV7le2NHzhjdARm4NKFJEtcJe5BJBwiMbo0n
vodqt7aUIAXwMrZXnWZL+w8CobhJBp8I5XHUgng147gDBuCjYQjBQT334auAXxgz
MUCgbjBDqw==
=Vadi
-----END PGP SIGNATURE-----
Merge tag 'for-5.16/bdev-size-2021-10-29' of git://git.kernel.dk/linux-block
Pull bdev size cleanups from Jens Axboe:
"Clean up the bdev size handling with new bdev_nr_bytes() helper"
* tag 'for-5.16/bdev-size-2021-10-29' of git://git.kernel.dk/linux-block: (34 commits)
partitions/ibm: use bdev_nr_sectors instead of open coding it
partitions/efi: use bdev_nr_bytes instead of open coding it
block/ioctl: use bdev_nr_sectors and bdev_nr_bytes
block: cache inode size in bdev
udf: use sb_bdev_nr_blocks
reiserfs: use sb_bdev_nr_blocks
ntfs: use sb_bdev_nr_blocks
jfs: use sb_bdev_nr_blocks
ext4: use sb_bdev_nr_blocks
block: add a sb_bdev_nr_blocks helper
block: use bdev_nr_bytes instead of open coding it in blkdev_fallocate
squashfs: use bdev_nr_bytes instead of open coding it
reiserfs: use bdev_nr_bytes instead of open coding it
pstore/blk: use bdev_nr_bytes instead of open coding it
ntfs3: use bdev_nr_bytes instead of open coding it
nilfs2: use bdev_nr_bytes instead of open coding it
nfs/blocklayout: use bdev_nr_bytes instead of open coding it
jfs: use bdev_nr_bytes instead of open coding it
hfsplus: use bdev_nr_sectors instead of open coding it
hfs: use bdev_nr_sectors instead of open coding it
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmF8KDgQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpmQ2D/wO0nH3U+3+OZChi3XUwYck9Dev3o6BANCF
ClATiK/kivZY0xY1r8J4ixirZo2gcjIMpWSC3JGYZ5LdspfmYGLUbMjfZsaeU23i
lAKaX1IqfArmHN76k3IU1bKCg7B0/LFwC0q9QTFWTSwNSs8RK/EZLJ61U1hEXUb3
OfIpaMmvPiMaU7yuPqhcZK14m1cg1srrLM4rFB/PqsWWStF07pHq32WeArGDAU0e
Fe0YSnYD7qqA5Qc37KwqjCTmmxKX5YZf7etIcA6p3DNmwcuQrVNzKoCH/ZEDijaD
E2bS/BWbN1x96+rtoEZfBYEaNIrkmJzmW6+fJ53OITbJF3KqP6V66erhqNcFYCzC
mhFlRe7voXb/8AP7zQqSIhK529BUBM36sQ6nF7EiQcDrfLc1z39mq6eblUxbknIA
DDPISD5Tseik9N9x0bc7vINseKyHI1E90VAU/XKADcuGbzLvehPx+2p+Iq5ch5Ah
oa1G3RdlWWQOZxphJHWJhu1qMfo5+FP9dFZj1aoo7b8Kbc/CedyoQe71cpIE5wNh
Jj/EpWJnuyKXwuTic2VYGC+6ezM9O5DSdqCfP3YuZky95VESyvRCKJYMMgBYRVdC
/LuxhnBXIY2G8An7ZTnX0kLCCvLbapIwa0NyA98/xeOngO843coJ6wn8ZmE9LJNH
kMmpCygUrA==
=QWC+
-----END PGP SIGNATURE-----
Merge tag 'for-5.16/block-2021-10-29' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
- mq-deadline accounting improvements (Bart)
- blk-wbt timer fix (Andrea)
- Untangle the block layer includes (Christoph)
- Rework the poll support to be bio based, which will enable adding
support for polling for bio based drivers (Christoph)
- Block layer core support for multi-actuator drives (Damien)
- blk-crypto improvements (Eric)
- Batched tag allocation support (me)
- Request completion batching support (me)
- Plugging improvements (me)
- Shared tag set improvements (John)
- Concurrent queue quiesce support (Ming)
- Cache bdev in ->private_data for block devices (Pavel)
- bdev dio improvements (Pavel)
- Block device invalidation and block size improvements (Xie)
- Various cleanups, fixes, and improvements (Christoph, Jackie,
Masahira, Tejun, Yu, Pavel, Zheng, me)
* tag 'for-5.16/block-2021-10-29' of git://git.kernel.dk/linux-block: (174 commits)
blk-mq-debugfs: Show active requests per queue for shared tags
block: improve readability of blk_mq_end_request_batch()
virtio-blk: Use blk_validate_block_size() to validate block size
loop: Use blk_validate_block_size() to validate block size
nbd: Use blk_validate_block_size() to validate block size
block: Add a helper to validate the block size
block: re-flow blk_mq_rq_ctx_init()
block: prefetch request to be initialized
block: pass in blk_mq_tags to blk_mq_rq_ctx_init()
block: add rq_flags to struct blk_mq_alloc_data
block: add async version of bio_set_polled
block: kill DIO_MULTI_BIO
block: kill unused polling bits in __blkdev_direct_IO()
block: avoid extra iter advance with async iocb
block: Add independent access ranges support
blk-mq: don't issue request directly in case that current is to be blocked
sbitmap: silence data race warning
blk-cgroup: synchronize blkg creation against policy deactivation
block: refactor bio_iov_bvec_set()
block: add single bio async direct IO helper
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmF72q0ACgkQxWXV+ddt
WDvFOxAAkcryx2FP5aqaoMzBKfoCtMFHO3uAvm+rsMcglWe5kaXhBnHa2HPzoyEh
YqEx2TeXMTuA2I15bU8KV1RMhQzzRjC4NhdRqY6uaKAcKgON6sJlK5qsq2BnB+V3
nrue1jppM2Vv8wNzjMNeVETQNC7pmg29yQP/fvWaB36Yar2tyfyWDF11e42HR7cU
yLQUedg30WEayz3Mp6MTBF36h09WXQrZSs7Iwk1JMQbpxWcpn2CjXrO+vIZOMdvH
XZZsxBTNB8GJIaJlXssgsq3OP2wspK1lrVHNfi5PYtcZEaFrhkPaVB6enDfd41YV
zXwj1dnemCni9fh88gZprel9bLyB37dSVfIqq2Ly3hQbSAN4dmHIpxGwPSRIr+Hl
Bn3UfClHpAftbpd/Y77U7GgcYnkuRo3Bd4mGTF3ZuPDLVrf/QX5BlfGa2dmJYoml
NfBit7Ha4UrxLW6C8RC6fyEbLQxpNYFY55Ra0Tj0BBO/uhWiqtQGZwC/qbyPKfzN
YZFcPR6iTILoCHXNan3iZIuLeASMT0djgAtunXXf/BuFnxGfnOuqL3bKt2vojh3+
rsqpeIxSP/VklKv4JcP3axeLmUK6cA8/9dV2ES0M0Fc0o341jfh+AoVw0GleFeus
gXlDFPRJeE8yyXmjKyW4shctOczqoeMIq3umebXPP9R4jd/LU/g=
=YWGa
-----END PGP SIGNATURE-----
Merge tag 'for-5.15-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Last minute fixes for crash on 32bit architectures when compression is
in use. It's a regression introduced in 5.15-rc and I'd really like
not let this into the final release, fixes via stable trees would add
unnecessary delay.
The problem is on 32bit architectures with highmem enabled, the pages
for compression may need to be kmapped, while the patches removed that
as we don't use GFP_HIGHMEM allocations anymore. The pages that don't
come from local allocation still may be from highmem. Despite being on
32bit there's enough such ARM machines in use so it's not a marginal
issue.
I did full reverts of the patches one by one instead of a huge one.
There's one exception for the "lzo" revert as there was an
intermediate patch touching the same code to make it compatible with
subpage. I can't revert that one too, so the revert in lzo.c is
manual. Qu Wenruo has worked on that with me and verified the changes"
* tag 'for-5.15-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
Revert "btrfs: compression: drop kmap/kunmap from lzo"
Revert "btrfs: compression: drop kmap/kunmap from zlib"
Revert "btrfs: compression: drop kmap/kunmap from zstd"
Revert "btrfs: compression: drop kmap/kunmap from generic helpers"
This reverts commit 8c945d32e6.
The kmaps in compression code are still needed and cause crashes on
32bit machines (ARM, x86). Reproducible eg. by running fstest btrfs/004
with enabled LZO or ZSTD compression.
The revert does not apply cleanly due to changes in a6e66e6f8c
("btrfs: rework lzo_decompress_bio() to make it subpage compatible")
that reworked the page iteration so the revert is done to be equivalent
to the original code.
Link: https://lore.kernel.org/all/CAJCQCtT+OuemovPO7GZk8Y8=qtOObr0XTDp8jh4OHD6y84AFxw@mail.gmail.com/
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=214839
Tested-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This reverts commit bbaf9715f3.
The kmaps in compression code are still needed and cause crashes on
32bit machines (ARM, x86). Reproducible eg. by running fstest btrfs/004
with enabled LZO or ZSTD compression.
Example stacktrace with ZSTD on a 32bit ARM machine:
Unable to handle kernel NULL pointer dereference at virtual address 00000000
pgd = c4159ed3
[00000000] *pgd=00000000
Internal error: Oops: 5 [#1] PREEMPT SMP ARM
Modules linked in:
CPU: 0 PID: 210 Comm: kworker/u2:3 Not tainted 5.14.0-rc79+ #12
Hardware name: Allwinner sun4i/sun5i Families
Workqueue: btrfs-delalloc btrfs_work_helper
PC is at mmiocpy+0x48/0x330
LR is at ZSTD_compressStream_generic+0x15c/0x28c
(mmiocpy) from [<c0629648>] (ZSTD_compressStream_generic+0x15c/0x28c)
(ZSTD_compressStream_generic) from [<c06297dc>] (ZSTD_compressStream+0x64/0xa0)
(ZSTD_compressStream) from [<c049444c>] (zstd_compress_pages+0x170/0x488)
(zstd_compress_pages) from [<c0496798>] (btrfs_compress_pages+0x124/0x12c)
(btrfs_compress_pages) from [<c043c068>] (compress_file_range+0x3c0/0x834)
(compress_file_range) from [<c043c4ec>] (async_cow_start+0x10/0x28)
(async_cow_start) from [<c0475c3c>] (btrfs_work_helper+0x100/0x230)
(btrfs_work_helper) from [<c014ef68>] (process_one_work+0x1b4/0x418)
(process_one_work) from [<c014f210>] (worker_thread+0x44/0x524)
(worker_thread) from [<c0156aa4>] (kthread+0x180/0x1b0)
(kthread) from [<c0100150>]
Link: https://lore.kernel.org/all/CAJCQCtT+OuemovPO7GZk8Y8=qtOObr0XTDp8jh4OHD6y84AFxw@mail.gmail.com/
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=214839
Signed-off-by: David Sterba <dsterba@suse.com>
The root argument passed to check_item_in_log() always matches the root
of the given directory, so it can be eliminated.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The root argument for tree-log.c:add_link() always matches the root of the
given directory and the given inode, so it can eliminated.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The root argument passed to btrfs_unlink_inode() and its callee,
__btrfs_unlink_inode(), always matches the root of the given directory and
the given inode. So remove the argument and make __btrfs_unlink_inode()
use the root of the directory.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The root argument for drop_one_dir_item() always matches the root of the
given directory inode, since each log tree is associated to one and only
one subvolume/root, so remove the argument.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reported bug: https://github.com/kdave/btrfs-progs/issues/389
There's a problem with scrub reporting aborted status but returning
error code 0, on a filesystem with missing and readded device.
Roughly these steps:
- mkfs -d raid1 dev1 dev2
- fill with data
- unmount
- make dev1 disappear
- mount -o degraded
- copy more data
- make dev1 appear again
Running scrub afterwards reports that the command was aborted, but the
system log message says the exit code was 0.
It seems that the cause of the error is decrementing
fs_devices->missing_devices but not clearing device->dev_state. Every
time we umount filesystem, it would call close_ctree, And it would
eventually involve btrfs_close_one_device to close the device, but it
only decrements fs_devices->missing_devices but does not clear the
device BTRFS_DEV_STATE_MISSING bit. Worse, this bug will cause Integer
Overflow, because every time umount, fs_devices->missing_devices will
decrease. If fs_devices->missing_devices value hit 0, it would overflow.
With added debugging:
loop1: detected capacity change from 0 to 20971520
BTRFS: device fsid 56ad51f1-5523-463b-8547-c19486c51ebb devid 1 transid 21 /dev/loop1 scanned by systemd-udevd (2311)
loop2: detected capacity change from 0 to 20971520
BTRFS: device fsid 56ad51f1-5523-463b-8547-c19486c51ebb devid 2 transid 17 /dev/loop2 scanned by systemd-udevd (2313)
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): using free space tree
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): using free space tree
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 0
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): using free space tree
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 18446744073709551615
BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 18446744073709551615
If fs_devices->missing_devices is 0, next time it would be 18446744073709551615
After apply this patch, the fs_devices->missing_devices seems to be
right:
$ truncate -s 10g test1
$ truncate -s 10g test2
$ losetup /dev/loop1 test1
$ losetup /dev/loop2 test2
$ mkfs.btrfs -draid1 -mraid1 /dev/loop1 /dev/loop2 -f
$ losetup -d /dev/loop2
$ mount -o degraded /dev/loop1 /mnt/1
$ umount /mnt/1
$ mount -o degraded /dev/loop1 /mnt/1
$ umount /mnt/1
$ mount -o degraded /dev/loop1 /mnt/1
$ umount /mnt/1
$ dmesg
loop1: detected capacity change from 0 to 20971520
loop2: detected capacity change from 0 to 20971520
BTRFS: device fsid 15aa1203-98d3-4a66-bcae-ca82f629c2cd devid 1 transid 5 /dev/loop1 scanned by mkfs.btrfs (1863)
BTRFS: device fsid 15aa1203-98d3-4a66-bcae-ca82f629c2cd devid 2 transid 5 /dev/loop2 scanned by mkfs.btrfs (1863)
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): disk space caching is enabled
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1
BTRFS info (device loop1): checking UUID tree
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): disk space caching is enabled
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): disk space caching is enabled
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Li Zhang <zhanglikernel@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In open_ctree() in btrfs_check_rw_degradable() [1], we check each block
group individually if at least the minimum number of devices is available
for that profile. If all the devices are available, then we don't have to
check degradable.
[1]
open_ctree()
::
3559 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
Also before calling btrfs_check_rw_degradable() in open_ctee() at the
line number shown below [2] we call btrfs_read_chunk_tree() and down to
add_missing_dev() to record number of missing devices.
[2]
open_ctree()
::
3454 ret = btrfs_read_chunk_tree(fs_info);
btrfs_read_chunk_tree()
read_one_chunk() / read_one_dev()
add_missing_dev()
So, check if there is any missing device before btrfs_check_rw_degradable()
in open_ctree().
Also, with this the mount command could save ~16ms.[3] in the most
common case, that is no device is missing.
[3]
1) * 16934.96 us | btrfs_check_rw_degradable [btrfs]();
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is preparatory work for send protocol update to version 2 and
higher.
We have many pending protocol update requests but still don't have the
basic protocol rev in place, the first thing that must happen is to do
the actual versioning support.
The protocol version is u32 and is a new member in the send ioctl
struct. Validity of the version field is backed by a new flag bit. Old
kernels would fail when a higher version is requested. Version protocol
0 will pick the highest supported version, BTRFS_SEND_STREAM_VERSION,
that's also exported in sysfs.
The version is still unchanged and will be increased once we have new
incompatible commands or stream updates.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 95ea0486b2 ("btrfs: allow read-write for 4K sectorsize on 64K
page size systems") added write support for 4K sectorsize on a 64K
systems. Fix the now stale comments.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Christoph pointed out that I'm updating bdev->bd_inode for the device
time when we remove block devices from a btrfs file system, however this
isn't actually exposed to anything. The inode we want to update is the
one that's associated with the path to the device, usually on devtmpfs,
so that blkid notices the difference.
We still don't want to do the blkdev_open, so use kern_path() to get the
path to the given device and do the update time on that inode.
Fixes: 8f96a5bfa1 ("btrfs: update the bdev time directly when closing")
Reported-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Attempting to defragment a Btrfs file containing a transparent huge page
immediately deadlocks with the following stack trace:
#0 context_switch (kernel/sched/core.c:4940:2)
#1 __schedule (kernel/sched/core.c:6287:8)
#2 schedule (kernel/sched/core.c:6366:3)
#3 io_schedule (kernel/sched/core.c:8389:2)
#4 wait_on_page_bit_common (mm/filemap.c:1356:4)
#5 __lock_page (mm/filemap.c:1648:2)
#6 lock_page (./include/linux/pagemap.h:625:3)
#7 pagecache_get_page (mm/filemap.c:1910:4)
#8 find_or_create_page (./include/linux/pagemap.h:420:9)
#9 defrag_prepare_one_page (fs/btrfs/ioctl.c:1068:9)
#10 defrag_one_range (fs/btrfs/ioctl.c:1326:14)
#11 defrag_one_cluster (fs/btrfs/ioctl.c:1421:9)
#12 btrfs_defrag_file (fs/btrfs/ioctl.c:1523:9)
#13 btrfs_ioctl_defrag (fs/btrfs/ioctl.c:3117:9)
#14 btrfs_ioctl (fs/btrfs/ioctl.c:4872:10)
#15 vfs_ioctl (fs/ioctl.c:51:10)
#16 __do_sys_ioctl (fs/ioctl.c:874:11)
#17 __se_sys_ioctl (fs/ioctl.c:860:1)
#18 __x64_sys_ioctl (fs/ioctl.c:860:1)
#19 do_syscall_x64 (arch/x86/entry/common.c:50:14)
#20 do_syscall_64 (arch/x86/entry/common.c:80:7)
#21 entry_SYSCALL_64+0x7c/0x15b (arch/x86/entry/entry_64.S:113)
A huge page is represented by a compound page, which consists of a
struct page for each PAGE_SIZE page within the huge page. The first
struct page is the "head page", and the remaining are "tail pages".
Defragmentation attempts to lock each page in the range. However,
lock_page() on a tail page actually locks the corresponding head page.
So, if defragmentation tries to lock more than one struct page in a
compound page, it tries to lock the same head page twice and deadlocks
with itself.
Ideally, we should be able to defragment transparent huge pages.
However, THP for filesystems is currently read-only, so a lot of code is
not ready to use huge pages for I/O. For now, let's just return
ETXTBUSY.
This can be reproduced with the following on a kernel with
CONFIG_READ_ONLY_THP_FOR_FS=y:
$ cat create_thp_file.c
#include <fcntl.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
static const char zeroes[1024 * 1024];
static const size_t FILE_SIZE = 2 * 1024 * 1024;
int main(int argc, char **argv)
{
if (argc != 2) {
fprintf(stderr, "usage: %s PATH\n", argv[0]);
return EXIT_FAILURE;
}
int fd = creat(argv[1], 0777);
if (fd == -1) {
perror("creat");
return EXIT_FAILURE;
}
size_t written = 0;
while (written < FILE_SIZE) {
ssize_t ret = write(fd, zeroes,
sizeof(zeroes) < FILE_SIZE - written ?
sizeof(zeroes) : FILE_SIZE - written);
if (ret < 0) {
perror("write");
return EXIT_FAILURE;
}
written += ret;
}
close(fd);
fd = open(argv[1], O_RDONLY);
if (fd == -1) {
perror("open");
return EXIT_FAILURE;
}
/*
* Reserve some address space so that we can align the file mapping to
* the huge page size.
*/
void *placeholder_map = mmap(NULL, FILE_SIZE * 2, PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (placeholder_map == MAP_FAILED) {
perror("mmap (placeholder)");
return EXIT_FAILURE;
}
void *aligned_address =
(void *)(((uintptr_t)placeholder_map + FILE_SIZE - 1) & ~(FILE_SIZE - 1));
void *map = mmap(aligned_address, FILE_SIZE, PROT_READ | PROT_EXEC,
MAP_SHARED | MAP_FIXED, fd, 0);
if (map == MAP_FAILED) {
perror("mmap");
return EXIT_FAILURE;
}
if (madvise(map, FILE_SIZE, MADV_HUGEPAGE) < 0) {
perror("madvise");
return EXIT_FAILURE;
}
char *line = NULL;
size_t line_capacity = 0;
FILE *smaps_file = fopen("/proc/self/smaps", "r");
if (!smaps_file) {
perror("fopen");
return EXIT_FAILURE;
}
for (;;) {
for (size_t off = 0; off < FILE_SIZE; off += 4096)
((volatile char *)map)[off];
ssize_t ret;
bool this_mapping = false;
while ((ret = getline(&line, &line_capacity, smaps_file)) > 0) {
unsigned long start, end, huge;
if (sscanf(line, "%lx-%lx", &start, &end) == 2) {
this_mapping = (start <= (uintptr_t)map &&
(uintptr_t)map < end);
} else if (this_mapping &&
sscanf(line, "FilePmdMapped: %ld", &huge) == 1 &&
huge > 0) {
return EXIT_SUCCESS;
}
}
sleep(6);
rewind(smaps_file);
fflush(smaps_file);
}
}
$ ./create_thp_file huge
$ btrfs fi defrag -czstd ./huge
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 2efc459d06 ("sysfs: Add sysfs_emit and sysfs_emit_at to format
sysfs out") merged in 5.10 introduced two new functions sysfs_emit() and
sysfs_emit_at() which are aware of the PAGE_SIZE limit of the output
buffer.
Use the above two new functions instead of scnprintf() and snprintf()
in various sysfs show().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's a common practice to avoid use sizeof(struct btrfs_super_block)
(3531), but to use BTRFS_SUPER_INFO_SIZE (4096).
The problem is that, sizeof(struct btrfs_super_block) doesn't match
BTRFS_SUPER_INFO_SIZE from the very beginning.
Furthermore, for all call sites except selftests, we always allocate
BTRFS_SUPER_INFO_SIZE space for super block, there isn't any real reason
to use the smaller value, and it doesn't really save any space.
So let's get rid of such confusing behavior, and unify those two values.
This modification also adds a new static_assert() to verify the size,
and moves the BTRFS_SUPER_INFO_* macros to the definition of
btrfs_super_block for the static_assert().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Update the comments at btrfs_chunk_alloc() and do_chunk_alloc() that
describe which cases can lead to a failure to allocate metadata and system
space despite having previously reserved space. This adds one more reason
that I previously forgot to mention.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When a task is doing some modification to the chunk btree and it is not in
the context of a chunk allocation or a chunk removal, it can deadlock with
another task that is currently allocating a new data or metadata chunk.
These contexts are the following:
* When relocating a system chunk, when we need to COW the extent buffers
that belong to the chunk btree;
* When adding a new device (ioctl), where we need to add a new device item
to the chunk btree;
* When removing a device (ioctl), where we need to remove a device item
from the chunk btree;
* When resizing a device (ioctl), where we need to update a device item in
the chunk btree and may need to relocate a system chunk that lies beyond
the new device size when shrinking a device.
The problem happens due to a sequence of steps like the following:
1) Task A starts a data or metadata chunk allocation and it locks the
chunk mutex;
2) Task B is relocating a system chunk, and when it needs to COW an extent
buffer of the chunk btree, it has locked both that extent buffer as
well as its parent extent buffer;
3) Since there is not enough available system space, either because none
of the existing system block groups have enough free space or because
the only one with enough free space is in RO mode due to the relocation,
task B triggers a new system chunk allocation. It blocks when trying to
acquire the chunk mutex, currently held by task A;
4) Task A enters btrfs_chunk_alloc_add_chunk_item(), in order to insert
the new chunk item into the chunk btree and update the existing device
items there. But in order to do that, it has to lock the extent buffer
that task B locked at step 2, or its parent extent buffer, but task B
is waiting on the chunk mutex, which is currently locked by task A,
therefore resulting in a deadlock.
One example report when the deadlock happens with system chunk relocation:
INFO: task kworker/u9:5:546 blocked for more than 143 seconds.
Not tainted 5.15.0-rc3+ #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u9:5 state:D stack:25936 pid: 546 ppid: 2 flags:0x00004000
Workqueue: events_unbound btrfs_async_reclaim_metadata_space
Call Trace:
context_switch kernel/sched/core.c:4940 [inline]
__schedule+0xcd9/0x2530 kernel/sched/core.c:6287
schedule+0xd3/0x270 kernel/sched/core.c:6366
rwsem_down_read_slowpath+0x4ee/0x9d0 kernel/locking/rwsem.c:993
__down_read_common kernel/locking/rwsem.c:1214 [inline]
__down_read kernel/locking/rwsem.c:1223 [inline]
down_read_nested+0xe6/0x440 kernel/locking/rwsem.c:1590
__btrfs_tree_read_lock+0x31/0x350 fs/btrfs/locking.c:47
btrfs_tree_read_lock fs/btrfs/locking.c:54 [inline]
btrfs_read_lock_root_node+0x8a/0x320 fs/btrfs/locking.c:191
btrfs_search_slot_get_root fs/btrfs/ctree.c:1623 [inline]
btrfs_search_slot+0x13b4/0x2140 fs/btrfs/ctree.c:1728
btrfs_update_device+0x11f/0x500 fs/btrfs/volumes.c:2794
btrfs_chunk_alloc_add_chunk_item+0x34d/0xea0 fs/btrfs/volumes.c:5504
do_chunk_alloc fs/btrfs/block-group.c:3408 [inline]
btrfs_chunk_alloc+0x84d/0xf50 fs/btrfs/block-group.c:3653
flush_space+0x54e/0xd80 fs/btrfs/space-info.c:670
btrfs_async_reclaim_metadata_space+0x396/0xa90 fs/btrfs/space-info.c:953
process_one_work+0x9df/0x16d0 kernel/workqueue.c:2297
worker_thread+0x90/0xed0 kernel/workqueue.c:2444
kthread+0x3e5/0x4d0 kernel/kthread.c:319
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295
INFO: task syz-executor:9107 blocked for more than 143 seconds.
Not tainted 5.15.0-rc3+ #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:syz-executor state:D stack:23200 pid: 9107 ppid: 7792 flags:0x00004004
Call Trace:
context_switch kernel/sched/core.c:4940 [inline]
__schedule+0xcd9/0x2530 kernel/sched/core.c:6287
schedule+0xd3/0x270 kernel/sched/core.c:6366
schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425
__mutex_lock_common kernel/locking/mutex.c:669 [inline]
__mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729
btrfs_chunk_alloc+0x31a/0xf50 fs/btrfs/block-group.c:3631
find_free_extent_update_loop fs/btrfs/extent-tree.c:3986 [inline]
find_free_extent+0x25cb/0x3a30 fs/btrfs/extent-tree.c:4335
btrfs_reserve_extent+0x1f1/0x500 fs/btrfs/extent-tree.c:4415
btrfs_alloc_tree_block+0x203/0x1120 fs/btrfs/extent-tree.c:4813
__btrfs_cow_block+0x412/0x1620 fs/btrfs/ctree.c:415
btrfs_cow_block+0x2f6/0x8c0 fs/btrfs/ctree.c:570
btrfs_search_slot+0x1094/0x2140 fs/btrfs/ctree.c:1768
relocate_tree_block fs/btrfs/relocation.c:2694 [inline]
relocate_tree_blocks+0xf73/0x1770 fs/btrfs/relocation.c:2757
relocate_block_group+0x47e/0xc70 fs/btrfs/relocation.c:3673
btrfs_relocate_block_group+0x48a/0xc60 fs/btrfs/relocation.c:4070
btrfs_relocate_chunk+0x96/0x280 fs/btrfs/volumes.c:3181
__btrfs_balance fs/btrfs/volumes.c:3911 [inline]
btrfs_balance+0x1f03/0x3cd0 fs/btrfs/volumes.c:4301
btrfs_ioctl_balance+0x61e/0x800 fs/btrfs/ioctl.c:4137
btrfs_ioctl+0x39ea/0x7b70 fs/btrfs/ioctl.c:4949
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
So fix this by making sure that whenever we try to modify the chunk btree
and we are neither in a chunk allocation context nor in a chunk remove
context, we reserve system space before modifying the chunk btree.
Reported-by: Hao Sun <sunhao.th@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CACkBjsax51i4mu6C0C3vJqQN3NR_iVuucoeG3U1HXjrgzn5FFQ@mail.gmail.com/
Fixes: 79bd37120b ("btrfs: rework chunk allocation to avoid exhaustion of the system chunk array")
CC: stable@vger.kernel.org # 5.14+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently auto reclaim of unusable zones reclaims the block-groups in
the order they have been added to the reclaim list.
Change this to a greedy algorithm by sorting the list so we have the
block-groups with the least amount of valid bytes reclaimed first.
Note: we can't splice the block groups from reclaim_bgs to let the sort
happen outside of the lock. The block groups can be still in use by
other parts eg. via bg_list and we must hold unused_bgs_lock while
processing them.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ write note and comment why we can't splice the list ]
Signed-off-by: David Sterba <dsterba@suse.com>
Just use the %pg format specifier in all the debug printks previously
using it. Note that both bdevname and the %pg specifier never print
a pathname, so the kbasename call wasn't needed to start with.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
[ adjust messages and indentation ]
Signed-off-by: David Sterba <dsterba@suse.com>
For device removal and replace we call btrfs_find_device_by_devspec,
which if we give it a device path and nothing else will call
btrfs_get_dev_args_from_path, which opens the block device and reads the
super block and then looks up our device based on that.
However at this point we're holding the sb write "lock", so reading the
block device pulls in the dependency of ->open_mutex, which produces the
following lockdep splat
======================================================
WARNING: possible circular locking dependency detected
5.14.0-rc2+ #405 Not tainted
------------------------------------------------------
losetup/11576 is trying to acquire lock:
ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0
but task is already holding lock:
ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #4 (&lo->lo_mutex){+.+.}-{3:3}:
__mutex_lock+0x7d/0x750
lo_open+0x28/0x60 [loop]
blkdev_get_whole+0x25/0xf0
blkdev_get_by_dev.part.0+0x168/0x3c0
blkdev_open+0xd2/0xe0
do_dentry_open+0x161/0x390
path_openat+0x3cc/0xa20
do_filp_open+0x96/0x120
do_sys_openat2+0x7b/0x130
__x64_sys_openat+0x46/0x70
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #3 (&disk->open_mutex){+.+.}-{3:3}:
__mutex_lock+0x7d/0x750
blkdev_get_by_dev.part.0+0x56/0x3c0
blkdev_get_by_path+0x98/0xa0
btrfs_get_bdev_and_sb+0x1b/0xb0
btrfs_find_device_by_devspec+0x12b/0x1c0
btrfs_rm_device+0x127/0x610
btrfs_ioctl+0x2a31/0x2e70
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #2 (sb_writers#12){.+.+}-{0:0}:
lo_write_bvec+0xc2/0x240 [loop]
loop_process_work+0x238/0xd00 [loop]
process_one_work+0x26b/0x560
worker_thread+0x55/0x3c0
kthread+0x140/0x160
ret_from_fork+0x1f/0x30
-> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}:
process_one_work+0x245/0x560
worker_thread+0x55/0x3c0
kthread+0x140/0x160
ret_from_fork+0x1f/0x30
-> #0 ((wq_completion)loop0){+.+.}-{0:0}:
__lock_acquire+0x10ea/0x1d90
lock_acquire+0xb5/0x2b0
flush_workqueue+0x91/0x5e0
drain_workqueue+0xa0/0x110
destroy_workqueue+0x36/0x250
__loop_clr_fd+0x9a/0x660 [loop]
block_ioctl+0x3f/0x50
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
other info that might help us debug this:
Chain exists of:
(wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&lo->lo_mutex);
lock(&disk->open_mutex);
lock(&lo->lo_mutex);
lock((wq_completion)loop0);
*** DEADLOCK ***
1 lock held by losetup/11576:
#0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop]
stack backtrace:
CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:
dump_stack_lvl+0x57/0x72
check_noncircular+0xcf/0xf0
? stack_trace_save+0x3b/0x50
__lock_acquire+0x10ea/0x1d90
lock_acquire+0xb5/0x2b0
? flush_workqueue+0x67/0x5e0
? lockdep_init_map_type+0x47/0x220
flush_workqueue+0x91/0x5e0
? flush_workqueue+0x67/0x5e0
? verify_cpu+0xf0/0x100
drain_workqueue+0xa0/0x110
destroy_workqueue+0x36/0x250
__loop_clr_fd+0x9a/0x660 [loop]
? blkdev_ioctl+0x8d/0x2a0
block_ioctl+0x3f/0x50
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f31b02404cb
Instead what we want to do is populate our device lookup args before we
grab any locks, and then pass these args into btrfs_rm_device(). From
there we can find the device and do the appropriate removal.
Suggested-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are going to want to populate our device lookup args outside of any
locks and then do the actual device lookup later, so add a helper to do
this work and make btrfs_find_device_by_devspec() use this helper for
now.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a lot of device lookup functions that all do something slightly
different. Clean this up by adding a struct to hold the different
lookup criteria, and then pass this around to btrfs_find_device() so it
can do the proper matching based on the lookup criteria.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a subtle case where if we're removing the seed device from a
file system we need to free its private copy of the fs_devices. However
we do not need to call close_fs_devices(), because at this point there
are no devices left to close as we've closed the last one. The only
thing that close_fs_devices() does is decrement ->opened, which should
be 1. We want to avoid calling close_fs_devices() here because it has a
lockdep_assert_held(&uuid_mutex), and we are going to stop holding the
uuid_mutex in this path.
So simply decrement the ->opened counter like we should, and then clean
up like normal. Also add a comment explaining what we're doing here as
I initially removed this code erroneously.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A bug was was checking a wrong device count before we delete the struct
btrfs_fs_devices in btrfs_rm_device(). To avoid future confusion and
easy reference add a comment about the various device counts that we have
in the struct btrfs_fs_devices.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For both sprout and seed fsids,
btrfs_fs_devices::num_devices provides device count including missing
btrfs_fs_devices::open_devices provides device count excluding missing
We create a dummy struct btrfs_device for the missing device, so
num_devices != open_devices when there is a missing device.
In btrfs_rm_devices() we wrongly check for %cur_devices->open_devices
before freeing the seed fs_devices. Instead we should check for
%cur_devices->num_devices.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At replay_dir_deletes(), if find_dir_range() returns an error we break out
of the main while loop and then assign a value of 0 (success) to the 'ret'
variable, resulting in completely ignoring that an error happened. Fix
that by jumping to the 'out' label when find_dir_range() returns an error
(negative value).
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The member btrfs_bio::logical is only initialized by two call sites:
- btrfs_repair_one_sector()
No corresponding site to utilize it.
- btrfs_submit_direct()
The corresponding site to utilize it is btrfs_check_read_dio_bio().
However for btrfs_check_read_dio_bio(), we can grab the file_offset from
btrfs_dio_private::file_offset directly.
Thus it turns out we don't really need that btrfs_bio::logical member at
all.
For btrfs_bio, the logical bytenr can be fetched from its
bio->bi_iter.bi_sector directly.
So let's just remove the member to save 8 bytes for structure btrfs_bio.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The naming of "logical_offset" can be confused with logical bytenr of
the dio range.
In fact it's file offset, and the naming "file_offset" is already widely
used in all other sites.
Just do the rename to avoid confusion.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Using local kmaps slightly reduces the chances to stray writes, and
the bvec interface cleans up the code a little bit.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_update_block_group() accounts for the number of bytes allocated or
freed. Argument @alloc specifies whether the call is for alloc or free.
Convert the argument @alloc type from int to bool.
Reviewed-by: Su Yue <l@damenly.su>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that real_root is only used in ref-verify core gate it behind
CONFIG_BTRFS_FS_REF_VERIFY ifdef. This shrinks the size of pending
delayed refs by 8 bytes per ref, of which we can have many at any one
time depending on intensity of the workload. Also change the comment
about the member as it no longer deals with qgroups.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of checking whether qgroup processing for a dealyed ref has to
happen in the core of delayed ref, simply pull the check at init time of
respective delayed ref structures. This eliminates the final use of
real_root in delayed-ref core paving the way to making this member
optional.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In order to make 'real_root' used only in ref-verify it's required to
have the necessary context to perform the same checks that this member
is used for. So add 'mod_root' which will contain the root on behalf of
which a delayed ref was created and a 'skip_group' parameter which
will contain callsite-specific override of skip_qgroup.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The real_root field is going to be used only by ref-verify tool so limit
its use outside of it. Blocks belonging to the chunk root will always
have it as an owner so the check is equivalent.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Both data and metadata delayed ref structures have fields named
root/ref_root respectively. Those are somewhat cryptic and don't really
convey the real meaning. In fact those roots are really the original
owners of the respective block (i.e in case of a snapshot a data delayed
ref will contain the original root that owns the given block). Rename
those fields accordingly and adjust comments.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>