This patch adds a multiple message send syscall and is the send
version of the existing recvmmsg syscall. This is heavily
based on the patch by Arnaldo that added recvmmsg.
I wrote a microbenchmark to test the performance gains of using
this new syscall:
http://ozlabs.org/~anton/junkcode/sendmmsg_test.c
The test was run on a ppc64 box with a 10 Gbit network card. The
benchmark can send both UDP and RAW ethernet packets.
64B UDP
batch pkts/sec
1 804570
2 872800 (+ 8 %)
4 916556 (+14 %)
8 939712 (+17 %)
16 952688 (+18 %)
32 956448 (+19 %)
64 964800 (+20 %)
64B raw socket
batch pkts/sec
1 1201449
2 1350028 (+12 %)
4 1461416 (+22 %)
8 1513080 (+26 %)
16 1541216 (+28 %)
32 1553440 (+29 %)
64 1557888 (+30 %)
We see a 20% improvement in throughput on UDP send and 30%
on raw socket send.
[ Add sparc syscall entries. -DaveM ]
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
It is frequently useful to sync a single file system, instead of all
mounted file systems via sync(2):
- On machines with many mounts, it is not at all uncommon for some of
them to hang (e.g. unresponsive NFS server). sync(2) will get stuck on
those and may never get to the one you do care about (e.g., /).
- Some applications write lots of data to the file system and then
want to make sure it is flushed to disk. Calling fsync(2) on each
file introduces unnecessary ordering constraints that result in a large
amount of sub-optimal writeback/flush/commit behavior by the file
system.
There are currently two ways (that I know of) to sync a single super_block:
- BLKFLSBUF ioctl on the block device: That also invalidates the bdev
mapping, which isn't usually desirable, and doesn't work for non-block
file systems.
- 'mount -o remount,rw' will call sync_filesystem as an artifact of the
current implemention. Relying on this little-known side effect for
something like data safety sounds foolish.
Both of these approaches require root privileges, which some applications
do not have (nor should they need?) given that sync(2) is an unprivileged
operation.
This patch introduces a new system call syncfs(2) that takes an fd and
syncs only the file system it references. Maybe someday we can
$ sync /some/path
and not get
sync: ignoring all arguments
The syscall is motivated by comments by Al and Christoph at the last LSF.
syncfs(2) seems like an appropriate name given statfs(2).
A similar ioctl was also proposed a while back, see
http://marc.info/?l=linux-fsdevel&m=127970513829285&w=2
Signed-off-by: Sage Weil <sage@newdream.net>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (62 commits)
posix-clocks: Check write permissions in posix syscalls
hrtimer: Remove empty hrtimer_init_hres_timer()
hrtimer: Update hrtimer->state documentation
hrtimer: Update base[CLOCK_BOOTTIME].offset correctly
timers: Export CLOCK_BOOTTIME via the posix timers interface
timers: Add CLOCK_BOOTTIME hrtimer base
time: Extend get_xtime_and_monotonic_offset() to also return sleep
time: Introduce get_monotonic_boottime and ktime_get_boottime
hrtimers: extend hrtimer base code to handle more then 2 clockids
ntp: Remove redundant and incorrect parameter check
mn10300: Switch do_timer() to xtimer_update()
posix clocks: Introduce dynamic clocks
posix-timers: Cleanup namespace
posix-timers: Add support for fd based clocks
x86: Add clock_adjtime for x86
posix-timers: Introduce a syscall for clock tuning.
time: Splitout compat timex accessors
ntp: Add ADJ_SETOFFSET mode bit
time: Introduce timekeeping_inject_offset
posix-timer: Update comment
...
Fix up new system-call-related conflicts in
arch/x86/ia32/ia32entry.S
arch/x86/include/asm/unistd_32.h
arch/x86/include/asm/unistd_64.h
arch/x86/kernel/syscall_table_32.S
(name_to_handle_at()/open_by_handle_at() vs clock_adjtime()), and some
due to movement of get_jiffies_64() in:
kernel/time.c
This patch add new syscalls to x86_64
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This patch adds the clock_adjtime system call to the x86 architecture.
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Acked-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20110201134419.968905083@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* 'writable_limits' of git://decibel.fi.muni.cz/~xslaby/linux:
unistd: add __NR_prlimit64 syscall numbers
rlimits: implement prlimit64 syscall
rlimits: switch more rlimit syscalls to do_prlimit
rlimits: redo do_setrlimit to more generic do_prlimit
rlimits: add rlimit64 structure
rlimits: do security check under task_lock
rlimits: allow setrlimit to non-current tasks
rlimits: split sys_setrlimit
rlimits: selinux, do rlimits changes under task_lock
rlimits: make sure ->rlim_max never grows in sys_setrlimit
rlimits: add task_struct to update_rlimit_cpu
rlimits: security, add task_struct to setrlimit
Fix up various system call number conflicts. We not only added fanotify
system calls in the meantime, but asm-generic/unistd.h added a wait4
along with a range of reserved per-architecture system calls.
This patch simply declares the new sys_fanotify_mark syscall
int fanotify_mark(int fanotify_fd, unsigned int flags, u64_mask,
int dfd const char *pathname)
Signed-off-by: Eric Paris <eparis@redhat.com>
This patch defines a new syscall fanotify_init() of the form:
int sys_fanotify_init(unsigned int flags, unsigned int event_f_flags,
unsigned int priority)
This syscall is used to create and fanotify group. This is very similar to
the inotify_init() syscall.
Signed-off-by: Eric Paris <eparis@redhat.com>
Add __NR_prlimit64 syscall numbers to asm-generic. Add them also to
asm-x86, both 32 and 64-bit.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Add generic implementations of the old and really old uname system calls.
Note that sh only implements sys_olduname but not sys_oldolduname, but I'm
not going to bother with another ifdef for that special case.
m32r implemented an old uname but never wired it up, so kill it, too.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On an architecture that supports 32-bit compat we need to override the
reported machine in uname with the 32-bit value. Instead of doing this
separately in every architecture introduce a COMPAT_UTS_MACHINE define in
<asm/compat.h> and apply it directly in sys_newuname().
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Meaning receive multiple messages, reducing the number of syscalls and
net stack entry/exit operations.
Next patches will introduce mechanisms where protocols that want to
optimize this operation will provide an unlocked_recvmsg operation.
This takes into account comments made by:
. Paul Moore: sock_recvmsg is called only for the first datagram,
sock_recvmsg_nosec is used for the rest.
. Caitlin Bestler: recvmmsg now has a struct timespec timeout, that
works in the same fashion as the ppoll one.
If the underlying protocol returns a datagram with MSG_OOB set, this
will make recvmmsg return right away with as many datagrams (+ the OOB
one) it has received so far.
. Rémi Denis-Courmont & Steven Whitehouse: If we receive N < vlen
datagrams and then recvmsg returns an error, recvmmsg will return
the successfully received datagrams, store the error and return it
in the next call.
This paves the way for a subsequent optimization, sk_prot->unlocked_recvmsg,
where we will be able to acquire the lock only at batch start and end, not at
every underlying recvmsg call.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Bye-bye Performance Counters, welcome Performance Events!
In the past few months the perfcounters subsystem has grown out its
initial role of counting hardware events, and has become (and is
becoming) a much broader generic event enumeration, reporting, logging,
monitoring, analysis facility.
Naming its core object 'perf_counter' and naming the subsystem
'perfcounters' has become more and more of a misnomer. With pending
code like hw-breakpoints support the 'counter' name is less and
less appropriate.
All in one, we've decided to rename the subsystem to 'performance
events' and to propagate this rename through all fields, variables
and API names. (in an ABI compatible fashion)
The word 'event' is also a bit shorter than 'counter' - which makes
it slightly more convenient to write/handle as well.
Thanks goes to Stephane Eranian who first observed this misnomer and
suggested a rename.
User-space tooling and ABI compatibility is not affected - this patch
should be function-invariant. (Also, defconfigs were not touched to
keep the size down.)
This patch has been generated via the following script:
FILES=$(find * -type f | grep -vE 'oprofile|[^K]config')
sed -i \
-e 's/PERF_EVENT_/PERF_RECORD_/g' \
-e 's/PERF_COUNTER/PERF_EVENT/g' \
-e 's/perf_counter/perf_event/g' \
-e 's/nb_counters/nb_events/g' \
-e 's/swcounter/swevent/g' \
-e 's/tpcounter_event/tp_event/g' \
$FILES
for N in $(find . -name perf_counter.[ch]); do
M=$(echo $N | sed 's/perf_counter/perf_event/g')
mv $N $M
done
FILES=$(find . -name perf_event.*)
sed -i \
-e 's/COUNTER_MASK/REG_MASK/g' \
-e 's/COUNTER/EVENT/g' \
-e 's/\<event\>/event_id/g' \
-e 's/counter/event/g' \
-e 's/Counter/Event/g' \
$FILES
... to keep it as correct as possible. This script can also be
used by anyone who has pending perfcounters patches - it converts
a Linux kernel tree over to the new naming. We tried to time this
change to the point in time where the amount of pending patches
is the smallest: the end of the merge window.
Namespace clashes were fixed up in a preparatory patch - and some
stylistic fallout will be fixed up in a subsequent patch.
( NOTE: 'counters' are still the proper terminology when we deal
with hardware registers - and these sed scripts are a bit
over-eager in renaming them. I've undone some of that, but
in case there's something left where 'counter' would be
better than 'event' we can undo that on an individual basis
instead of touching an otherwise nicely automated patch. )
Suggested-by: Stephane Eranian <eranian@google.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Paul Mackerras <paulus@samba.org>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <linux-arch@vger.kernel.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Express the available number of syscalls in a standard way by defining
NR_syscalls.
The common way to define it is to place its definition in asm/unistd.h
However, the number of syscalls is defined using __NR_syscall_max in
x86-64 after building a dynamic header file "asm-offsets.h"
The source file that generates this header, asm-offsets-64.c includes
unistd.h, then if we want to express NR_syscalls from __NR_syscall_max
in unistd.h only after generating the dynamic header file, we need a
watchguard.
If unistd.h is included from asm-offsets-64.c, then we are generating
asm-offset.h which defines __NR_syscall_max. At this time, we don't
want to (we can't) define NR_syscalls, then we do nothing.
Otherwise we define NR_syscalls because we know asm-offsets.h has
been generated.
Signed-off-by: Jason Baron <jbaron@redhat.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: Jiaying Zhang <jiayingz@google.com>
Cc: Martin Bligh <mbligh@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Josh Stone <jistone@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anwin <hpa@zytor.com>
Cc: Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
LKML-Reference: <20090826160910.GB2658@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
This is necessary to avoid the conflict of syscall numbers.
Conflicts:
arch/x86/ia32/ia32entry.S
arch/x86/include/asm/unistd_32.h
arch/x86/include/asm/unistd_64.h
Fixes up the borked syscall numbers of perfcounters versus
preadv/pwritev as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Merge reason: we have gathered quite a few conflicts, need to merge upstream
Conflicts:
arch/powerpc/kernel/Makefile
arch/x86/ia32/ia32entry.S
arch/x86/include/asm/hardirq.h
arch/x86/include/asm/unistd_32.h
arch/x86/include/asm/unistd_64.h
arch/x86/kernel/cpu/common.c
arch/x86/kernel/irq.c
arch/x86/kernel/syscall_table_32.S
arch/x86/mm/iomap_32.c
include/linux/sched.h
kernel/Makefile
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds preadv and pwritev system calls. These syscalls are a
pretty straightforward combination of pread and readv (same for write).
They are quite useful for doing vectored I/O in threaded applications.
Using lseek+readv instead opens race windows you'll have to plug with
locking.
Other systems have such system calls too, for example NetBSD, check
here: http://www.daemon-systems.org/man/preadv.2.html
The application-visible interface provided by glibc should look like
this to be compatible to the existing implementations in the *BSD family:
ssize_t preadv(int d, const struct iovec *iov, int iovcnt, off_t offset);
ssize_t pwritev(int d, const struct iovec *iov, int iovcnt, off_t offset);
This prototype has one problem though: On 32bit archs is the (64bit)
offset argument unaligned, which the syscall ABI of several archs doesn't
allow to do. At least s390 needs a wrapper in glibc to handle this. As
we'll need a wrappers in glibc anyway I've decided to push problem to
glibc entriely and use a syscall prototype which works without
arch-specific wrappers inside the kernel: The offset argument is
explicitly splitted into two 32bit values.
The patch sports the actual system call implementation and the windup in
the x86 system call tables. Other archs follow as separate patches.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: <linux-api@vger.kernel.org>
Cc: <linux-arch@vger.kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement performance counters for x86 Intel CPUs.
It's simplified right now: the PERFMON CPU feature is assumed,
which is available in Core2 and later Intel CPUs.
The design is flexible to be extended to more CPU types as well.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Introduce a new accept4() system call. The addition of this system call
matches analogous changes in 2.6.27 (dup3(), evenfd2(), signalfd4(),
inotify_init1(), epoll_create1(), pipe2()) which added new system calls
that differed from analogous traditional system calls in adding a flags
argument that can be used to access additional functionality.
The accept4() system call is exactly the same as accept(), except that
it adds a flags bit-mask argument. Two flags are initially implemented.
(Most of the new system calls in 2.6.27 also had both of these flags.)
SOCK_CLOEXEC causes the close-on-exec (FD_CLOEXEC) flag to be enabled
for the new file descriptor returned by accept4(). This is a useful
security feature to avoid leaking information in a multithreaded
program where one thread is doing an accept() at the same time as
another thread is doing a fork() plus exec(). More details here:
http://udrepper.livejournal.com/20407.html "Secure File Descriptor Handling",
Ulrich Drepper).
The other flag is SOCK_NONBLOCK, which causes the O_NONBLOCK flag
to be enabled on the new open file description created by accept4().
(This flag is merely a convenience, saving the use of additional calls
fcntl(F_GETFL) and fcntl (F_SETFL) to achieve the same result.
Here's a test program. Works on x86-32. Should work on x86-64, but
I (mtk) don't have a system to hand to test with.
It tests accept4() with each of the four possible combinations of
SOCK_CLOEXEC and SOCK_NONBLOCK set/clear in 'flags', and verifies
that the appropriate flags are set on the file descriptor/open file
description returned by accept4().
I tested Ulrich's patch in this thread by applying against 2.6.28-rc2,
and it passes according to my test program.
/* test_accept4.c
Copyright (C) 2008, Linux Foundation, written by Michael Kerrisk
<mtk.manpages@gmail.com>
Licensed under the GNU GPLv2 or later.
*/
#define _GNU_SOURCE
#include <unistd.h>
#include <sys/syscall.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdlib.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#define PORT_NUM 33333
#define die(msg) do { perror(msg); exit(EXIT_FAILURE); } while (0)
/**********************************************************************/
/* The following is what we need until glibc gets a wrapper for
accept4() */
/* Flags for socket(), socketpair(), accept4() */
#ifndef SOCK_CLOEXEC
#define SOCK_CLOEXEC O_CLOEXEC
#endif
#ifndef SOCK_NONBLOCK
#define SOCK_NONBLOCK O_NONBLOCK
#endif
#ifdef __x86_64__
#define SYS_accept4 288
#elif __i386__
#define USE_SOCKETCALL 1
#define SYS_ACCEPT4 18
#else
#error "Sorry -- don't know the syscall # on this architecture"
#endif
static int
accept4(int fd, struct sockaddr *sockaddr, socklen_t *addrlen, int flags)
{
printf("Calling accept4(): flags = %x", flags);
if (flags != 0) {
printf(" (");
if (flags & SOCK_CLOEXEC)
printf("SOCK_CLOEXEC");
if ((flags & SOCK_CLOEXEC) && (flags & SOCK_NONBLOCK))
printf(" ");
if (flags & SOCK_NONBLOCK)
printf("SOCK_NONBLOCK");
printf(")");
}
printf("\n");
#if USE_SOCKETCALL
long args[6];
args[0] = fd;
args[1] = (long) sockaddr;
args[2] = (long) addrlen;
args[3] = flags;
return syscall(SYS_socketcall, SYS_ACCEPT4, args);
#else
return syscall(SYS_accept4, fd, sockaddr, addrlen, flags);
#endif
}
/**********************************************************************/
static int
do_test(int lfd, struct sockaddr_in *conn_addr,
int closeonexec_flag, int nonblock_flag)
{
int connfd, acceptfd;
int fdf, flf, fdf_pass, flf_pass;
struct sockaddr_in claddr;
socklen_t addrlen;
printf("=======================================\n");
connfd = socket(AF_INET, SOCK_STREAM, 0);
if (connfd == -1)
die("socket");
if (connect(connfd, (struct sockaddr *) conn_addr,
sizeof(struct sockaddr_in)) == -1)
die("connect");
addrlen = sizeof(struct sockaddr_in);
acceptfd = accept4(lfd, (struct sockaddr *) &claddr, &addrlen,
closeonexec_flag | nonblock_flag);
if (acceptfd == -1) {
perror("accept4()");
close(connfd);
return 0;
}
fdf = fcntl(acceptfd, F_GETFD);
if (fdf == -1)
die("fcntl:F_GETFD");
fdf_pass = ((fdf & FD_CLOEXEC) != 0) ==
((closeonexec_flag & SOCK_CLOEXEC) != 0);
printf("Close-on-exec flag is %sset (%s); ",
(fdf & FD_CLOEXEC) ? "" : "not ",
fdf_pass ? "OK" : "failed");
flf = fcntl(acceptfd, F_GETFL);
if (flf == -1)
die("fcntl:F_GETFD");
flf_pass = ((flf & O_NONBLOCK) != 0) ==
((nonblock_flag & SOCK_NONBLOCK) !=0);
printf("nonblock flag is %sset (%s)\n",
(flf & O_NONBLOCK) ? "" : "not ",
flf_pass ? "OK" : "failed");
close(acceptfd);
close(connfd);
printf("Test result: %s\n", (fdf_pass && flf_pass) ? "PASS" : "FAIL");
return fdf_pass && flf_pass;
}
static int
create_listening_socket(int port_num)
{
struct sockaddr_in svaddr;
int lfd;
int optval;
memset(&svaddr, 0, sizeof(struct sockaddr_in));
svaddr.sin_family = AF_INET;
svaddr.sin_addr.s_addr = htonl(INADDR_ANY);
svaddr.sin_port = htons(port_num);
lfd = socket(AF_INET, SOCK_STREAM, 0);
if (lfd == -1)
die("socket");
optval = 1;
if (setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR, &optval,
sizeof(optval)) == -1)
die("setsockopt");
if (bind(lfd, (struct sockaddr *) &svaddr,
sizeof(struct sockaddr_in)) == -1)
die("bind");
if (listen(lfd, 5) == -1)
die("listen");
return lfd;
}
int
main(int argc, char *argv[])
{
struct sockaddr_in conn_addr;
int lfd;
int port_num;
int passed;
passed = 1;
port_num = (argc > 1) ? atoi(argv[1]) : PORT_NUM;
memset(&conn_addr, 0, sizeof(struct sockaddr_in));
conn_addr.sin_family = AF_INET;
conn_addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
conn_addr.sin_port = htons(port_num);
lfd = create_listening_socket(port_num);
if (!do_test(lfd, &conn_addr, 0, 0))
passed = 0;
if (!do_test(lfd, &conn_addr, SOCK_CLOEXEC, 0))
passed = 0;
if (!do_test(lfd, &conn_addr, 0, SOCK_NONBLOCK))
passed = 0;
if (!do_test(lfd, &conn_addr, SOCK_CLOEXEC, SOCK_NONBLOCK))
passed = 0;
close(lfd);
exit(passed ? EXIT_SUCCESS : EXIT_FAILURE);
}
[mtk.manpages@gmail.com: rewrote changelog, updated test program]
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Tested-by: Michael Kerrisk <mtk.manpages@gmail.com>
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: <linux-api@vger.kernel.org>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change header guards named "ASM_X86__*" to "_ASM_X86_*" since:
a. the double underscore is ugly and pointless.
b. no leading underscore violates namespace constraints.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>