This patch adds basic template for Marvell OcteonTX2's
resource virtualization unit (RVU) admin function (AF)
driver. Just the driver registration and probe.
Signed-off-by: Sunil Goutham <sgoutham@marvell.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As the mvpp2 driver is growing, move this driver to a dedicated
directory and split it into several files.
Since this driver has a lot of register defines and structure
definitions, it can benefit from having all of this into a dedicated
header file, named mvpp2.h.
A good chunk of the mvpp2 code is dedicated to Header Parser handling, so
we introduce mvpp2_prs.h where all Header Parser definitions are located,
and mvpp2_prs.c containing the related code.
In the same way, mvpp2_cls.h and mvpp2_cls.c are created to contain
Classifier and RSS related code.
The former 'mvpp2.c' file is renamed 'mvpp2_main.c' so that we can keep
the driver binary named 'mvpp2'.
This commit is only about spliting the driver into multiple files and
doesn't introduce any new function, feature or fix besides removing
'static' keywords when needed.
Signed-off-by: Maxime Chevallier <maxime.chevallier@bootlin.com>
Tested-by: Antoine Tenart <antoine.tenart@bootlin.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Buffer manager (BM) is a dedicated hardware unit that can be used by all
ethernet ports of Armada XP and 38x SoC's. It allows to offload CPU on RX
path by sparing DRAM access on refilling buffer pool, hardware-based
filling of descriptor ring data and better memory utilization due to HW
arbitration for using 'short' pools for small packets.
Tests performed with A388 SoC working as a network bridge between two
packet generators showed increase of maximum processed 64B packets by
~20k (~555k packets with BM enabled vs ~535 packets without BM). Also
when pushing 1500B-packets with a line rate achieved, CPU load decreased
from around 25% without BM to 20% with BM.
BM comprise up to 4 buffer pointers' (BP) rings kept in DRAM, which
are called external BP pools - BPPE. Allocating and releasing buffer
pointers (BP) to/from BPPE is performed indirectly by write/read access
to a dedicated internal SRAM, where internal BP pools (BPPI) are placed.
BM hardware controls status of BPPE automatically, as well as assigning
proper buffers to RX descriptors. For more details please refer to
Functional Specification of Armada XP or 38x SoC.
In order to enable support for a separate hardware block, common for all
ports, a new driver has to be implemented ('mvneta_bm'). It provides
initialization sequence of address space, clocks, registers, SRAM,
empty pools' structures and also obtaining optional configuration
from DT (please refer to device tree binding documentation). mvneta_bm
exposes also a necessary API to mvneta driver, as well as a dedicated
structure with BM information (bm_priv), whose presence is used as a
flag notifying of BM usage by port. It has to be ensured that mvneta_bm
probe is executed prior to the ones in ports' driver. In case BM is not
used or its probe fails, mvneta falls back to use software buffer
management.
A sequence executed in mvneta_probe function is modified in order to have
an access to needed resources before possible port's BM initialization is
done. According to port-pools mapping provided by DT appropriate registers
are configured and the buffer pools are filled. RX path is modified
accordingly. Becaues the hardware allows a wide variety of configuration
options, following assumptions are made:
* using BM mechanisms can be selectively disabled/enabled basing
on DT configuration among the ports
* 'long' pool's single buffer size is tied to port's MTU
* using 'long' pool by port is obligatory and it cannot be shared
* using 'short' pool for smaller packets is optional
* one 'short' pool can be shared among all ports
This commit enables hardware buffer management operation cooperating with
existing mvneta driver. New device tree binding documentation is added and
the one of mvneta is updated accordingly.
[gregory.clement@free-electrons.com: removed the suspend/resume part]
Signed-off-by: Marcin Wojtas <mw@semihalf.com>
Signed-off-by: Gregory CLEMENT <gregory.clement@free-electrons.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit adds a new network driver for the network controller in Marvell
Armada 375 SoC.
Given the controller is very different from the ones in the other Marvell
SoCs that use the mv643xx_eth (Kirkwood, Orion, Discovery) and mvneta
(Armada 370/38x/XP) drivers, a new driver is needed.
Signed-off-by: Marcin Wojtas <mw@semihalf.com>
[Ezequiel: coding style cleanup]
Signed-off-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch converts the Marvell MV643XX ethernet driver to use the
Marvell Orion MDIO driver. As a result, PowerPC and ARM platforms
registering the Marvell MV643XX ethernet driver are also updated to
register a Marvell Orion MDIO driver. This driver voluntarily overlaps
with the Marvell Ethernet shared registers because it will use a subset
of this shared register (shared_base + 0x4 to shared_base + 0x84). The
Ethernet driver is also updated to look up for a PHY device using the
Orion MDIO bus driver.
For ARM and PowerPC we register a single instance of the "mvmdio" driver
in the system like it used to be done with the use of the "shared_smi"
platform_data cookie on ARM.
Note that it is safe to register the mvmdio driver only for the "ge00"
instance of the driver because this "ge00" interface is guaranteed to
always be explicitely registered by consumers of
arch/arm/plat-orion/common.c and other instances (ge01, ge10 and ge11)
were all pointing their shared_smi to ge00. For PowerPC the in-tree
Device Tree Source files mention only one MV643XX ethernet MAC instance
so the MDIO bus driver is registered only when id == 0.
Signed-off-by: Florian Fainelli <florian@openwrt.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch contains a new network driver for the network unit of the
ARM Marvell Armada 370 and the Armada XP. Both SoCs use the PJ4B
processor, a Marvell-developed ARM core that implements the ARMv7
instruction set.
Compared to previous ARM Marvell SoCs (Kirkwood, Orion, Discovery),
the network unit in Armada 370 and Armada XP is highly different. This
is the reason why this new 'mvneta' driver is needed, while the older
ARM Marvell SoCs use the 'mv643xx_eth' driver.
Here is an overview of the most important hardware changes that
require a new, specific, driver for the network unit of Armada 370/XP:
- The new network unit has a completely different design and layout
for the RX and TX descriptors. They are now organized as a simple
array (each RX and TX queue has base address and size of this
array) rather than a linked list as in the old SoCs.
- The new network unit has a different RXQ and TXQ management: this
management is done using special read/write counter registers,
while in the Old SocS, it was done using the Ownership bit in RX
and TX descriptors.
- The new network unit has different interrupt registers
- The new network unit way of cleaning of interrupts is not done by
writing to the cause register, but by updating per-queue counters
- The new network unit has different GMAC registers (link, speed,
duplex configuration) and different WRR registers.
- The new network unit has lots of new units like PnC (Parser and
Classifier), PMT, BM (Memory Buffer Management), xPON, and more.
The driver proposed in the current patch only handles the basic
features. Additional hardware features will progressively be supported
as needed.
This code has originally been written by Rami Rosen
<rosenr@marvell.com>, and then reviewed and cleaned up by Thomas
Petazzoni <thomas.petazzoni@free-electrons.com>.
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Acked-by: David S. Miller <davem@davemloft.net>
This patch adds a separate driver for the MDIO interface of the
Marvell Ethernet controllers. There are two reasons to have a separate
driver rather than including it inside the MAC driver itself:
*) The MDIO interface is shared by all Ethernet ports, so a driver
must guarantee non-concurrent accesses to this MDIO interface. The
most logical way is to have a separate driver that handles this
single MDIO interface, used by all Ethernet ports.
*) The MDIO interface is the same between the existing mv643xx_eth
driver and the new mvneta driver. Even though it is for now only
used by the mvneta driver, it will in the future be used by the
mv643xx_eth driver as well.
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Acked-by: David S. Miller <davem@davemloft.net>
Move the Marvell Ethernet drivers into drivers/net/ethernet/marvell/
and make the necessary Kconfig and Makefile changes.
CC: Sachin Sanap <ssanap@marvell.com>
CC: Zhangfei Gao <zgao6@marvell.com>
CC: Philip Rakity <prakity@marvell.com>
CC: Mark Brown <markb@marvell.com>
CC: Lennert Buytenhek <buytenh@marvell.com>
CC: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>