A bug in the family-model-stepping matching code caused the presence of
errata to go undetected when OSVW was not used. This causes hangs on
some K8 systems because the E400 workaround is not enabled.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1282141190-930137-1-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Exprot the AMD errata definitions, since they are needed by kvm_amd.ko
if that is built as a module. Doing "make allmodconfig" during
testing would have caught this.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1280336972-865982-1-git-send-email-hans.rosenfeld@amd.com>
Use the AMD errata checking framework instead of open-coding the test.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1280336972-865982-3-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Remove check_c1e_idle() and use the new AMD errata checking framework
instead.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1280336972-865982-2-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Errata are defined using the AMD_LEGACY_ERRATUM() or AMD_OSVW_ERRATUM()
macros. The latter is intended for newer errata that have an OSVW id
assigned, which it takes as first argument. Both take a variable number
of family-specific model-stepping ranges created by AMD_MODEL_RANGE().
Iff an erratum has an OSVW id, OSVW is available on the CPU, and the
OSVW id is known to the hardware, it is used to determine whether an
erratum is present. Otherwise, the model-stepping ranges are matched
against the current CPU to find out whether the erratum applies.
For certain special errata, the code using this framework might have to
conduct further checks to make sure an erratum is really (not) present.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1280336972-865982-1-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Extend support to future families, and in particular:
* extend direct mapping split of Tseg SMM area.
* extend K8 flavored alternatives (NOPS).
* rep movs* prefix is fast in ucode.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <20100602182921.GA21557@aftab>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Use NodeId MSR to get NodeId and number of nodes per processor.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20091216144355.GB28798@alberich.amd.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
When there are a large number of processors in a system, there
is an excessive amount of messages sent to the system console.
It's estimated that with 4096 processors in a system, and the
console baudrate set to 56K, the startup messages will take
about 84 minutes to clear the serial port.
This set of patches limits the number of repetitious messages
which contain no additional information. Much of this information
is obtainable from the /proc and /sysfs. Some of the messages
are also sent to the kernel log buffer as KERN_DEBUG messages so
dmesg can be used to examine more closely any details specific to
a problem.
The new cpu bootup sequence for system_state == SYSTEM_BOOTING:
Booting Node 0, Processors #1#2#3#4#5#6#7 Ok.
Booting Node 1, Processors #8#9#10#11#12#13#14#15 Ok.
...
Booting Node 3, Processors #56#57#58#59#60#61#62#63 Ok.
Brought up 64 CPUs
After the system is running, a single line boot message is displayed
when CPU's are hotplugged on:
Booting Node %d Processor %d APIC 0x%x
Status of the following lines:
CPU: Physical Processor ID: printed once (for boot cpu)
CPU: Processor Core ID: printed once (for boot cpu)
CPU: Hyper-Threading is disabled printed once (for boot cpu)
CPU: Thermal monitoring enabled printed once (for boot cpu)
CPU %d/0x%x -> Node %d: removed
CPU %d is now offline: only if system_state == RUNNING
Initializing CPU#%d: KERN_DEBUG
Signed-off-by: Mike Travis <travis@sgi.com>
LKML-Reference: <4B219E28.8080601@sgi.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
display_cacheinfo() doesn't display anything anymore and it is used to
detect CPU cache sizes. Rename it accordingly.
Signed-off-by: Borislav Petkov <petkovbb@gmail.com>
LKML-Reference: <20091121130145.GA31357@liondog.tnic>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
This trivial patch fixes one missing space in printk.
I already fixed it about half a year ago or more, but the change (in
arch/x86/kernel/cpu/smpboot.c at that time) didn't made into
mainline yet.
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
index 28e5f59..6c139ed 100644
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (22 commits)
x86: Fix code patching for paravirt-alternatives on 486
x86, msr: change msr-reg.o to obj-y, and export its symbols
x86: Use hard_smp_processor_id() to get apic id for AMD K8 cpus
x86, sched: Workaround broken sched domain creation for AMD Magny-Cours
x86, mcheck: Use correct cpumask for shared bank4
x86, cacheinfo: Fixup L3 cache information for AMD multi-node processors
x86: Fix CPU llc_shared_map information for AMD Magny-Cours
x86, msr: Fix msr-reg.S compilation with gas 2.16.1, on 32-bit too
x86: Move kernel_fpu_using to irq_fpu_usable in asm/i387.h
x86, msr: fix msr-reg.S compilation with gas 2.16.1
x86, msr: Export the register-setting MSR functions via /dev/*/msr
x86, msr: Create _on_cpu helpers for {rw,wr}msr_safe_regs()
x86, msr: Have the _safe MSR functions return -EIO, not -EFAULT
x86, msr: CFI annotations, cleanups for msr-reg.S
x86, asm: Make _ASM_EXTABLE() usable from assembly code
x86, asm: Add 32-bit versions of the combined CFI macros
x86, AMD: Disable wrongly set X86_FEATURE_LAHF_LM CPUID bit
x86, msr: Rewrite AMD rd/wrmsr variants
x86, msr: Add rd/wrmsr interfaces with preset registers
x86: add specific support for Intel Atom architecture
...
Otherwise, system with apci id lifting will have wrong apicid in
/proc/cpuinfo.
and use that in srat_detect_node().
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
LKML-Reference: <4A998CCA.1040407@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Construct entire NodeID and use it as cpu_llc_id. Thus internal node
siblings are stored in llc_shared_map.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
fbd8b1819e turns off the bit for
/proc/cpuinfo. However, a proper/full fix would be to additionally
turn off the bit in the CPUID output so that future callers get
correct CPU features info.
Do that by basically reversing what the BIOS wrongfully does at boot.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <1251705011-18636-3-git-send-email-petkovbb@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Due to an erratum with certain AMD Athlon 64 processors, the
BIOS may need to force enable the LAHF_LM capability.
Unfortunately, in at least one case, the BIOS does this even
for processors that do not support the functionality.
Add a specific check that will clear the feature bit for
processors known not to support the LAHF/SAHF instructions.
Signed-off-by: Kevin Winchester <kjwinchester@gmail.com>
Acked-by: Borislav Petkov <petkovbb@googlemail.com>
LKML-Reference: <4A80A5AD.2000209@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If we've logically disabled apics, don't probe the PCI space for the
AMD extended APIC ID.
[ Impact: prevent boot crash under Xen. ]
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Reported-by: Bastian Blank <bastian@waldi.eu.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
No code changes except printk levels (although some of the K6
mtrr code might be clearer if there were a few as would
splitting out some of the intel cache code).
Signed-off-by: Alan Cox <alan@linux.intel.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This counts when building sched domains in case NUMA information
is not available.
( See cpu_coregroup_mask() which uses llc_shared_map which in turn is
created based on cpu_llc_id. )
Currently Linux builds domains as follows:
(example from a dual socket quad-core system)
CPU0 attaching sched-domain:
domain 0: span 0-7 level CPU
groups: 0 1 2 3 4 5 6 7
...
CPU7 attaching sched-domain:
domain 0: span 0-7 level CPU
groups: 7 0 1 2 3 4 5 6
Ever since that is borked for multi-core AMD CPU systems.
This patch fixes that and now we get a proper:
CPU0 attaching sched-domain:
domain 0: span 0-3 level MC
groups: 0 1 2 3
domain 1: span 0-7 level CPU
groups: 0-3 4-7
...
CPU7 attaching sched-domain:
domain 0: span 4-7 level MC
groups: 7 4 5 6
domain 1: span 0-7 level CPU
groups: 4-7 0-3
This allows scheduler to assign tasks to cores on different sockets
(i.e. that don't share last level cache) for performance reasons.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20090619085909.GJ5218@alberich.amd.com>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Clear TS in irq_ts_save() when in an atomic section
x86: Detect use of extended APIC ID for AMD CPUs
x86: memtest: remove 64-bit division
x86, UV: Fix macros for multiple coherency domains
x86: Fix non-lazy GS handling in sys_vm86()
x86: Add quirk for reboot stalls on a Dell Optiplex 360
x86: Fix UV BAU activation descriptor init
Booting a 32-bit kernel on Magny-Cours results in the following panic:
...
Using APIC driver default
...
Overriding APIC driver with bigsmp
...
Getting VERSION: 80050010
Getting VERSION: 80050010
Getting ID: 10000000
Getting ID: ef000000
Getting LVT0: 700
Getting LVT1: 10000
Kernel panic - not syncing: Boot APIC ID in local APIC unexpected (16 vs 0)
Pid: 1, comm: swapper Not tainted 2.6.30-rcX #2
Call Trace:
[<c05194da>] ? panic+0x38/0xd3
[<c0743102>] ? native_smp_prepare_cpus+0x259/0x31f
[<c073b19d>] ? kernel_init+0x3e/0x141
[<c073b15f>] ? kernel_init+0x0/0x141
[<c020325f>] ? kernel_thread_helper+0x7/0x10
The reason is that default_get_apic_id handled extension of local APIC
ID field just in case of XAPIC.
Thus for this AMD CPU, default_get_apic_id() returns 0 and
bigsmp_get_apic_id() returns 16 which leads to the respective kernel
panic.
This patch introduces a Linux specific feature flag to indicate
support for extended APIC id (8 bits instead of 4 bits width) and sets
the flag on AMD CPUs if applicable.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: <stable@kernel.org>
LKML-Reference: <20090608135509.GA12431@alberich.amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
should not call that if apic is disabled.
[ Impact: fix crash on certain UP configs ]
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
LKML-Reference: <4A09CCBB.2000306@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: debuggability and micro-optimization
Putting whatever is possible into the (final) .rodata section increases
the likelihood of catching memory corruption bugs early, and reduces
false cache line sharing.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
LKML-Reference: <49B90961.76E4.0078.0@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup and code size reduction on 64-bit
This code is only applied to Intel Pentium and AMD K7 32-bit cpus.
Move those checks to intel_init()/amd_init() for 32-bit
so 64-bit will not build this code.
Also change to use cpu_index check to see if we need to emit warning.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <49B377D2.8030108@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: reward non-stop TSCs with good TSC-based clocksources, etc.
Add support for CPUID_0x80000007_Bit8 on Intel CPUs as well. This bit means
that the TSC is invariant with C/P/T states and always runs at constant
frequency.
With Intel CPUs, we have 3 classes
* CPUs where TSC runs at constant rate and does not stop n C-states
* CPUs where TSC runs at constant rate, but will stop in deep C-states
* CPUs where TSC rate will vary based on P/T-states and TSC will stop in deep
C-states.
To cover these 3, one feature bit (CONSTANT_TSC) is not enough. So, add a
second bit (NONSTOP_TSC). CONSTANT_TSC indicates that the TSC runs at
constant frequency irrespective of P/T-states, and NONSTOP_TSC indicates
that TSC does not stop in deep C-states.
CPUID_0x8000000_Bit8 indicates both these feature bit can be set.
We still have CONSTANT_TSC _set_ and NONSTOP_TSC _not_set_ on some older Intel
CPUs, based on model checks. We can use TSC on such CPUs for time, as long as
those CPUs do not support/enter deep C-states.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
1. make 32bit have early_init_amd_mc and amd_detect_cmp
2. seperate init_amd_k5/k6/k7 ...
v2: fix compiling for !CONFIG_SMP
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
1. add c_x86_vendor into cpu_dev
2. change cpu_devs to static
3. check c_x86_vendor before put that cpu_dev into array
4. remove alignment for 64bit
5. order the sequence in cpu_devs according to link sequence...
so could put intel at first, then amd...
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Krzysztof Helt found MTRR is not detected on k6-2
root cause:
we moved mtrr_bp_init() early for mtrr trimming,
and in early_detect we only read the CPU capability from cpuid,
so some cpu doesn't have that bit in cpuid.
So we need to add early_init_xxxx to preset those bit before mtrr_bp_init
for those earlier cpus.
this patch is for v2.6.27
Reported-by: Krzysztof Helt <krzysztof.h1@wp.pl>
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It's not used anywhere outside its single referencing file.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
"Form follows function". Code is now where it belongs to.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
C1E on AMD machines is like C3 but without control from the OS. Up to
now we disabled the local apic timer for those machines as it stops
when the CPU goes into C1E. This excludes those machines from high
resolution timers / dynamic ticks, which hurts especially X2 based
laptops.
The current boot time C1E detection has another, more serious flaw
as well: some BIOSes do not enable C1E until the ACPI processor module
is loaded. This causes systems to stop working after that point.
To work nicely with C1E enabled machines we use a separate idle
function, which checks on idle entry whether C1E was enabled in the
Interrupt Pending Message MSR. This allows us to do timer broadcasting
for C1E and covers the late enablement of C1E as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Simplify code: no need to do a cpuid(1) again. The cpuinfo structure
has all necessary information already.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Rename the "MSR_K8_ENABLE_C1E" MSR to INT_PENDING_MSG, which is the
name in the data sheet as well. Move the C1E mask to the header file.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch implements PCI extended configuration space access for
AMD's Barcelona CPUs. It extends the method using CF8/CFC IO
addresses. An x86 capability bit has been introduced that is set for
CPUs supporting PCI extended config space accesses.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There are no users for the function amd_init_cpu() defined in
arch/x86/kernel/cpu/amd.c. This patch removes this routine.
This patch was build-tested using defconfigs for i386 and x86_64,
and a few randconfig instances. Runtime tests were performed by
booting 32- and 64-bit x86 boxen up to the shell prompt.
Signed-off-by: Dmitri Vorobiev <dmitri.vorobiev@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Replace the hardcoded list of initialization functions for each CPU
vendor by a list in an ELF section, which is read at initialization in
arch/x86/kernel/cpu/cpu.c to fill the cpu_devs[] array. The ELF
section, named .x86cpuvendor.init, is reclaimed after boot, and
contains entries of type "struct cpu_vendor_dev" which associates a
vendor number with a pointer to a "struct cpu_dev" structure.
This first modification allows to remove all the VENDOR_init_cpu()
functions.
This patch also removes the hardcoded calls to early_init_amd() and
early_init_intel(). Instead, we add a "c_early_init" member to the
cpu_dev structure, which is then called if not NULL by the generic CPU
initialization code. Unfortunately, in early_cpu_detect(), this_cpu is
not yet set, so we have to use the cpu_devs[] array directly.
This patch is part of the Linux Tiny project, and is needed for
further patch that will allow to disable compilation of unused CPU
support code.
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>