This code was only used by the vfio-nvlink2 code, which itself had no
proper use. Drop this huge chunk of code build into every powernv
or generic build.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210326061311.1497642-3-hch@lst.de
The pnv_phb->initialized flag is an odd beast. It was added back in 2012 in
commit db1266c852 ("powerpc/powernv: Skip check on PE if necessary") to
allow devices to be enabled even if the device had not yet been assigned to
a PE. Allowing the device to be enabled before the PE is configured may
cause spurious EEH events since none of the IOMMU context has been setup.
I'm not entirely sure why this was ever necessary. My best guess is that it
was an workaround for a bug or some other undesireable behaviour from the
PCI core. Either way, it's unnecessary now since as of commit dc3d8f85bb
("powerpc/powernv/pci: Re-work bus PE configuration") we can guarantee that
the PE will be configured before the PCI core will allow drivers to bind to
the device.
It's also worth pointing out that the ->initialized flag is only set in
pnv_pci_ioda_create_dbgfs(). That function has its entire body wrapped
in #ifdef CONFIG_DEBUG_FS. As a result, for kernels built without debugfs
(i.e. petitboot) the other checks in pnv_pci_enable_device_hook() are
bypassed entirely.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200902013657.1753830-1-oohall@gmail.com
Previously iov->vfs_expanded was used for two purposes.
1) To work out how much we need to multiple the per-VF BAR size to figure
out the total space required for the IOV BAR.
2) To indicate that IOV is not usable with this device (vfs_expanded == 0).
We don't really need the field for either since the multiple in 1) is
always the number PEs supported by the PHB. Similarly, we don't really need
it in 2) either since the IOV data field will be NULL if we can't use IOV
with the device.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200722065715.1432738-16-oohall@gmail.com
Using single PE BARs to map an SR-IOV BAR is really a choice about what
strategy to use when mapping a BAR. It doesn't make much sense for this to
be a global setting since a device might have one large BAR which needs to
be mapped with single PE windows and another smaller BAR that can be mapped
with a regular segmented window. Make the segmented vs single decision a
per-BAR setting and clean up the logic that decides which mode to use.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200722065715.1432738-15-oohall@gmail.com
Remove the IODA2 PHB checks. We already assume IODA2 in several places so
there's not much point in wrapping most of the setup and teardown process
in an if block.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200722065715.1432738-12-oohall@gmail.com
Currently the iov->pe_num_map[] does one of two things depending on
whether single PE mode is being used or not. When it is, this contains an
array which maps a vf_index to the corresponding PE number. When single PE
mode is not being used this contains a scalar which is the base PE for the
set of enabled VFs (for for VFn is base + n).
The array was necessary because when calling pnv_ioda_alloc_pe() there is
no guarantee that the allocated PEs would be contigious. We can now
allocate contigious blocks of PEs so this is no longer an issue. This
allows us to drop the if (single_mode) {} .. else {} block scattered
through the SR-IOV code which is a nice clean up.
This also fixes a bug in pnv_pci_sriov_disable() which is the non-atomic
bitmap_clear() to manipulate the PE allocation map. Other users of the map
assume it will be accessed with atomic ops.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200722065715.1432738-11-oohall@gmail.com
Rework the PE allocation logic to allow allocating blocks of PEs rather
than individually. We'll use this to allocate contigious blocks of PEs for
the SR-IOVs.
This patch also adds code to pnv_ioda_alloc_pe() and pnv_ioda_reserve_pe() to
use the existing, but unused, phb->pe_alloc_mutex. Currently these functions
use atomic bit ops to release a currently allocated PE number. However,
the pnv_ioda_alloc_pe() wants to have exclusive access to the bit map while
scanning for hole large enough to accomodate the allocation size.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200722065715.1432738-10-oohall@gmail.com
No need for the multi-dimensional arrays, just use a bitmap.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200722065715.1432738-8-oohall@gmail.com
pci-ioda.c is getting a bit unwieldly due to the amount of stuff jammed in
there. The SR-IOV support can be extracted easily enough and is mostly
standalone, so move it into a separate file.
This patch also moves the PowerNV SR-IOV specific fields from pci_dn and
moves them into a platform specific structure. I'm not sure how they ended
up in there in the first place, but leaking platform specifics into common
code has proven to be a terrible idea so far so lets stop doing that.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200722065715.1432738-5-oohall@gmail.com
There's an optimisation in the PE setup which skips performing DMA
setup for a PE if we only have bridges in a PE. The assumption being
that only "real" devices will DMA to system memory, which is probably
fair. However, if we start off with only bridge devices in a PE then
add a non-bridge device the new device won't be able to use DMA because
we never configured it.
Fix this (admittedly pretty weird) edge case by tracking whether we've done
the DMA setup for the PE or not. If a non-bridge device is added to the PE
(via rescan or hotplug, or whatever) we can set up DMA on demand.
This also means the only remaining user of the old "DMA Weight" code is
the IODA1 DMA setup code that it was originally added for, which is good.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200722065715.1432738-3-oohall@gmail.com
Add a helper to go from a pci_bus structure to the pnv_phb that hosts
that bus. There's a lot of instances of the following pattern:
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
struct pnv_phb *phb = hose->private_data;
Without any other uses of the pci_controller inside the function. This
is hard to read since it requires you to memorise the contents of the
private data fields and kind of error prone since it involves blindly
assigning a void pointer. Add a helper to make it more concise and
explicit.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200722065715.1432738-1-oohall@gmail.com
Doing it once during boot rather than doing it on the fly and drop the janky
populated logic.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200417073508.30356-4-oohall@gmail.com
For each PHB we maintain a reverse-map that can be used to find the
PE that a BDFN is currently mapped to. Add a helper for doing this
lookup so we can check if a PE has been configured without looking
at pdn->pe_number.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200417073508.30356-2-oohall@gmail.com
It's pretty obsecure and confused me for a long time so I figured it's
worth documenting properly.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200414233502.758-1-oohall@gmail.com
The NVlink IOMMU group setup is only relevant to NVLink devices so move
it into the NPU containment zone. This let us remove some prototypes in
pci.h and staticfy some function definitions.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200406030745.24595-8-oohall@gmail.com
Move it in with the rest of the TCE wrangling rather than carting around
a static prototype in pci-ioda.c
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200406030745.24595-7-oohall@gmail.com
This is only used in pci-ioda.c so move it there and rename it to match.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200110070207.439-6-oohall@gmail.com
pnv_pci_dma_dev_setup() does nothing but call the phb->dma_dev_setup()
callback, if one exists. That callback is only set for normal PCIe PHBs so
we can remove the layer of indirection and use the ioda version in
the pci_controller_ops.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200110070207.439-5-oohall@gmail.com
We allocate only the first level of multilevel TCE tables for KVM
already (alloc_userspace_copy==true), and the rest is allocated on demand.
This is not enabled though for bare metal.
This removes the KVM limitation (implicit, via the alloc_userspace_copy
parameter) and always allocates just the first level. The on-demand
allocation of missing levels is already implemented.
As from now on DMA map might happen with disabled interrupts, this
allocates TCEs with GFP_ATOMIC; otherwise lockdep reports errors 1].
In practice just a single page is allocated there so chances for failure
are quite low.
To save time when creating a new clean table, this skips non-allocated
indirect TCE entries in pnv_tce_free just like we already do in
the VFIO IOMMU TCE driver.
This changes the default level number from 1 to 2 to reduce the amount
of memory required for the default 32bit DMA window at the boot time.
The default window size is up to 2GB which requires 4MB of TCEs which is
unlikely to be used entirely or at all as most devices these days are
64bit capable so by switching to 2 levels by default we save 4032KB of
RAM per a device.
While at this, add __GFP_NOWARN to alloc_pages_node() as the userspace
can trigger this path via VFIO, see the failure and try creating a table
again with different parameters which might succeed.
[1]:
===
BUG: sleeping function called from invalid context at mm/page_alloc.c:4596
in_atomic(): 1, irqs_disabled(): 1, pid: 1038, name: scsi_eh_1
2 locks held by scsi_eh_1/1038:
#0: 000000005efd659a (&host->eh_mutex){+.+.}, at: ata_eh_acquire+0x34/0x80
#1: 0000000006cf56a6 (&(&host->lock)->rlock){....}, at: ata_exec_internal_sg+0xb0/0x5c0
irq event stamp: 500
hardirqs last enabled at (499): [<c000000000cb8a74>] _raw_spin_unlock_irqrestore+0x94/0xd0
hardirqs last disabled at (500): [<c000000000cb85c4>] _raw_spin_lock_irqsave+0x44/0x120
softirqs last enabled at (0): [<c000000000101120>] copy_process.isra.4.part.5+0x640/0x1a80
softirqs last disabled at (0): [<0000000000000000>] 0x0
CPU: 73 PID: 1038 Comm: scsi_eh_1 Not tainted 5.2.0-rc6-le_nv2_aikATfstn1-p1 #634
Call Trace:
[c000003d064cef50] [c000000000c8e6c4] dump_stack+0xe8/0x164 (unreliable)
[c000003d064cefa0] [c00000000014ed78] ___might_sleep+0x2f8/0x310
[c000003d064cf020] [c0000000003ca084] __alloc_pages_nodemask+0x2a4/0x1560
[c000003d064cf220] [c0000000000c2530] pnv_alloc_tce_level.isra.0+0x90/0x130
[c000003d064cf290] [c0000000000c2888] pnv_tce+0x128/0x3b0
[c000003d064cf360] [c0000000000c2c00] pnv_tce_build+0xb0/0xf0
[c000003d064cf3c0] [c0000000000bbd9c] pnv_ioda2_tce_build+0x3c/0xb0
[c000003d064cf400] [c00000000004cfe0] ppc_iommu_map_sg+0x210/0x550
[c000003d064cf510] [c00000000004b7a4] dma_iommu_map_sg+0x74/0xb0
[c000003d064cf530] [c000000000863944] ata_qc_issue+0x134/0x470
[c000003d064cf5b0] [c000000000863ec4] ata_exec_internal_sg+0x244/0x5c0
[c000003d064cf700] [c0000000008642d0] ata_exec_internal+0x90/0xe0
[c000003d064cf780] [c0000000008650ac] ata_dev_read_id+0x2ec/0x640
[c000003d064cf8d0] [c000000000878e28] ata_eh_recover+0x948/0x16d0
[c000003d064cfa10] [c00000000087d760] sata_pmp_error_handler+0x480/0xbf0
[c000003d064cfbc0] [c000000000884624] ahci_error_handler+0x74/0xe0
[c000003d064cfbf0] [c000000000879fa8] ata_scsi_port_error_handler+0x2d8/0x7c0
[c000003d064cfca0] [c00000000087a544] ata_scsi_error+0xb4/0x100
[c000003d064cfd00] [c000000000802450] scsi_error_handler+0x120/0x510
[c000003d064cfdb0] [c000000000140c48] kthread+0x1b8/0x1c0
[c000003d064cfe20] [c00000000000bd8c] ret_from_kernel_thread+0x5c/0x70
ata1: SATA link up 6.0 Gbps (SStatus 133 SControl 300)
irq event stamp: 2305
========================================================
hardirqs last enabled at (2305): [<c00000000000e4c8>] fast_exc_return_irq+0x28/0x34
hardirqs last disabled at (2303): [<c000000000cb9fd0>] __do_softirq+0x4a0/0x654
WARNING: possible irq lock inversion dependency detected
5.2.0-rc6-le_nv2_aikATfstn1-p1 #634 Tainted: G W
softirqs last enabled at (2304): [<c000000000cba054>] __do_softirq+0x524/0x654
softirqs last disabled at (2297): [<c00000000010f278>] irq_exit+0x128/0x180
--------------------------------------------------------
swapper/0/0 just changed the state of lock:
0000000006cf56a6 (&(&host->lock)->rlock){-...}, at: ahci_single_level_irq_intr+0xac/0x120
but this lock took another, HARDIRQ-unsafe lock in the past:
(fs_reclaim){+.+.}
and interrupts could create inverse lock ordering between them.
other info that might help us debug this:
Possible interrupt unsafe locking scenario:
CPU0 CPU1
---- ----
lock(fs_reclaim);
local_irq_disable();
lock(&(&host->lock)->rlock);
lock(fs_reclaim);
<Interrupt>
lock(&(&host->lock)->rlock);
*** DEADLOCK ***
no locks held by swapper/0/0.
the shortest dependencies between 2nd lock and 1st lock:
-> (fs_reclaim){+.+.} ops: 167579 {
HARDIRQ-ON-W at:
lock_acquire+0xf8/0x2a0
fs_reclaim_acquire.part.23+0x44/0x60
kmem_cache_alloc_node_trace+0x80/0x590
alloc_desc+0x64/0x270
__irq_alloc_descs+0x2e4/0x3a0
irq_domain_alloc_descs+0xb0/0x150
irq_create_mapping+0x168/0x2c0
xics_smp_probe+0x2c/0x98
pnv_smp_probe+0x40/0x9c
smp_prepare_cpus+0x524/0x6c4
kernel_init_freeable+0x1b4/0x650
kernel_init+0x2c/0x148
ret_from_kernel_thread+0x5c/0x70
SOFTIRQ-ON-W at:
lock_acquire+0xf8/0x2a0
fs_reclaim_acquire.part.23+0x44/0x60
kmem_cache_alloc_node_trace+0x80/0x590
alloc_desc+0x64/0x270
__irq_alloc_descs+0x2e4/0x3a0
irq_domain_alloc_descs+0xb0/0x150
irq_create_mapping+0x168/0x2c0
xics_smp_probe+0x2c/0x98
pnv_smp_probe+0x40/0x9c
smp_prepare_cpus+0x524/0x6c4
kernel_init_freeable+0x1b4/0x650
kernel_init+0x2c/0x148
ret_from_kernel_thread+0x5c/0x70
INITIAL USE at:
lock_acquire+0xf8/0x2a0
fs_reclaim_acquire.part.23+0x44/0x60
kmem_cache_alloc_node_trace+0x80/0x590
alloc_desc+0x64/0x270
__irq_alloc_descs+0x2e4/0x3a0
irq_domain_alloc_descs+0xb0/0x150
irq_create_mapping+0x168/0x2c0
xics_smp_probe+0x2c/0x98
pnv_smp_probe+0x40/0x9c
smp_prepare_cpus+0x524/0x6c4
kernel_init_freeable+0x1b4/0x650
kernel_init+0x2c/0x148
ret_from_kernel_thread+0x5c/0x70
}
===
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190718051139.74787-4-aik@ozlabs.ru
These have been unused anywhere in the kernel tree ever since they've
been added to the kernel.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This function has never been used anywhere in the kernel tree since it
was added to the tree. We also now have proper PCIe P2P APIs in the core
kernel, and any new P2P support should be using those.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
At the moment the powernv platform registers an IOMMU group for each
PE. There is an exception though: an NVLink bridge which is attached
to the corresponding GPU's IOMMU group making it a master.
Now we have POWER9 systems with GPUs connected to each other directly
bypassing PCI. At the moment we do not control state of these links so
we have to put such interconnected GPUs to one IOMMU group which means
that the old scheme with one GPU as a master won't work - there will
be up to 3 GPUs in such group.
This introduces a npu_comp struct which represents a compound IOMMU
group made of multiple PEs - PCI PEs (for GPUs) and NPU PEs (for
NVLink bridges). This converts the existing NVLink1 code to use the
new scheme. >From now on, each PE must have a valid
iommu_table_group_ops which will either be called directly (for a
single PE group) or indirectly from a compound group handlers.
This moves IOMMU group registration for NVLink-connected GPUs to
npu-dma.c. For POWER8, this stores a new compound group pointer in the
PE (so a GPU is still a master); for POWER9 the new group pointer is
stored in an NPU (which is allocated per a PCI host controller).
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[mpe: Initialise npdev to NULL in pnv_try_setup_npu_table_group()]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
At the moment NPU IOMMU is manipulated directly from the IODA2 PCI
PE code; PCI PE acts as a master to NPU PE. Soon we will have compound
IOMMU groups with several PEs from several different PHB (such as
interconnected GPUs and NPUs) so there will be no single master but
a one big IOMMU group.
This makes a first step and converts an NPU PE with a set of extern
function to a table group.
This should cause no behavioral change. Note that
pnv_npu_release_ownership() has never been implemented.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When introduced, the NPU context init/destroy helpers called OPAL which
enabled/disabled PID (a userspace memory context ID) filtering in an NPU
per a GPU; this was a requirement for P9 DD1.0. However newer chip
revision added a PID wildcard support so there is no more need to
call OPAL every time a new context is initialized. Also, since the PID
wildcard support was added, skiboot does not clear wildcard entries
in the NPU so these remain in the hardware till the system reboot.
This moves LPID and wildcard programming to the PE setup code which
executes once during the booting process so NPU2 context init/destroy
won't need to do additional configuration.
This replaces the check for FW_FEATURE_OPAL with a check for npu!=NULL as
this is the way to tell if the NPU support is present and configured.
This moves pnv_npu2_init() declaration as pseries should be able to use it.
This keeps pnv_npu2_map_lpar() in powernv as pseries is not allowed to
call that. This exports pnv_npu2_map_lpar_dev() as following patches
will use it from the VFIO driver.
While at it, replace redundant list_for_each_entry_safe() with
a simpler list_for_each_entry().
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The powernv PCI code stores NPU data in the pnv_phb struct. The latter
is referenced by pci_controller::private_data. We are going to have NPU2
support in the pseries platform as well but it does not store any
private_data in in the pci_controller struct; and even if it did,
it would be a different data structure.
This makes npu a pointer and stores it one level higher in
the pci_controller struct.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
CONFIG_PCI_MSI was made mandatory by commit a311e738b6
("powerpc/powernv: Make PCI non-optional") so the #ifdef
checks around CONFIG_PCI_MSI here can be removed entirely.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Reviewed-by: Joel Stanley <joel@jms.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
fixup_phb() is never used, this removes it.
pick_m64_pe() and reserve_m64_pe() are always defined for all powernv
PHBs: they are initialized by pnv_ioda_parse_m64_window() which is
called unconditionally from pnv_pci_init_ioda_phb() which initializes
all known PHB types on powernv so we can open code them.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Merge in some commits we're sharing with the KVM tree.
I manually propagated the change from commit d3d4ffaae4
("powerpc/powernv/ioda2: Reduce upper limit for DMA window size") into
pci-ioda-tce.c.
Conflicts:
arch/powerpc/include/asm/cputable.h
arch/powerpc/platforms/powernv/pci-ioda.c
arch/powerpc/platforms/powernv/pci.h
At the moment we allocate the entire TCE table, twice (hardware part and
userspace translation cache). This normally works as we normally have
contigous memory and the guest will map entire RAM for 64bit DMA.
However if we have sparse RAM (one example is a memory device), then
we will allocate TCEs which will never be used as the guest only maps
actual memory for DMA. If it is a single level TCE table, there is nothing
we can really do but if it a multilevel table, we can skip allocating
TCEs we know we won't need.
This adds ability to allocate only first level, saving memory.
This changes iommu_table::free() to avoid allocating of an extra level;
iommu_table::set() will do this when needed.
This adds @alloc parameter to iommu_table::exchange() to tell the callback
if it can allocate an extra level; the flag is set to "false" for
the realmode KVM handlers of H_PUT_TCE hcalls and the callback returns
H_TOO_HARD.
This still requires the entire table to be counted in mm::locked_vm.
To be conservative, this only does on-demand allocation when
the usespace cache table is requested which is the case of VFIO.
The example math for a system replicating a powernv setup with NVLink2
in a guest:
16GB RAM mapped at 0x0
128GB GPU RAM window (16GB of actual RAM) mapped at 0x244000000000
the table to cover that all with 64K pages takes:
(((0x244000000000 + 0x2000000000) >> 16)*8)>>20 = 4556MB
If we allocate only necessary TCE levels, we will only need:
(((0x400000000 + 0x400000000) >> 16)*8)>>20 = 4MB (plus some for indirect
levels).
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We want to support sparse memory and therefore huge chunks of DMA windows
do not need to be mapped. If a DMA window big enough to require 2 or more
indirect levels, and a DMA window is used to map all RAM (which is
a default case for 64bit window), we can actually save some memory by
not allocation TCE for regions which we are not going to map anyway.
The hardware tables alreary support indirect levels but we also keep
host-physical-to-userspace translation array which is allocated by
vmalloc() and is a flat array which might use quite some memory.
This converts it_userspace from vmalloc'ed array to a multi level table.
As the format becomes platform dependend, this replaces the direct access
to it_usespace with a iommu_table_ops::useraddrptr hook which returns
a pointer to the userspace copy of a TCE; future extension will return
NULL if the level was not allocated.
This should not change non-KVM handling of TCE tables and it_userspace
will not be allocated for non-KVM tables.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Right now we have allocation code in pci-ioda.c and traversing code in
pci.c, let's keep them toghether. However both files are big enough
already so let's move this business to a new file.
While we at it, move the code which links IOMMU table groups to
IOMMU tables as it is not specific to any PNV PHB model.
These puts exported symbols from the new file together.
This fixes several warnings from checkpatch.pl like this:
"WARNING: Prefer 'unsigned int' to bare use of 'unsigned'".
As this is almost cut-n-paste, there should be no behavioral change.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Remove abandonned capi support for the Mellanox CX4.
This reverts commit 4361b03430.
Signed-off-by: Alastair D'Silva <alastair@d-silva.org>
Acked-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Remove abandonned capi support for the Mellanox CX4.
This reverts commit a2f67d5ee8.
Signed-off-by: Alastair D'Silva <alastair@d-silva.org>
Acked-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The NPU was already abstracted by opal as a virtual PHB for nvlink,
but it helps to be able to differentiate between a nvlink or opencapi
PHB, as it's not completely transparent to linux. In particular, PE
assignment differs and we'll also need the information in later
patches.
So rename existing PNV_PHB_NPU type to PNV_PHB_NPU_NVLINK and add a
new type PNV_PHB_NPU_OCAPI.
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Non-highlights:
- Five fixes for the >128T address space handling, both to fix bugs in our
implementation and to bring the semantics exactly into line with x86.
Highlights:
- Support for a new OPAL call on bare metal machines which gives us a true NMI
(ie. is not masked by MSR[EE]=0) for debugging etc.
- Support for Power9 DD2 in the CXL driver.
- Improvements to machine check handling so that uncorrectable errors can be
reported into the generic memory_failure() machinery.
- Some fixes and improvements for VPHN, which is used under PowerVM to notify
the Linux partition of topology changes.
- Plumbing to enable TM (transactional memory) without suspend on some Power9
processors (PPC_FEATURE2_HTM_NO_SUSPEND).
- Support for emulating vector loads form cache-inhibited memory, on some
Power9 revisions.
- Disable the fast-endian switch "syscall" by default (behind a CONFIG), we
believe it has never had any users.
- A major rework of the API drivers use when initiating and waiting for long
running operations performed by OPAL firmware, and changes to the
powernv_flash driver to use the new API.
- Several fixes for the handling of FP/VMX/VSX while processes are using
transactional memory.
- Optimisations of TLB range flushes when using the radix MMU on Power9.
- Improvements to the VAS facility used to access coprocessors on Power9, and
related improvements to the way the NX crypto driver handles requests.
- Implementation of PMEM_API and UACCESS_FLUSHCACHE for 64-bit.
Thanks to:
Alexey Kardashevskiy, Alistair Popple, Allen Pais, Andrew Donnellan, Aneesh
Kumar K.V, Arnd Bergmann, Balbir Singh, Benjamin Herrenschmidt, Breno Leitao,
Christophe Leroy, Christophe Lombard, Cyril Bur, Frederic Barrat, Gautham R.
Shenoy, Geert Uytterhoeven, Guilherme G. Piccoli, Gustavo Romero, Haren
Myneni, Joel Stanley, Kamalesh Babulal, Kautuk Consul, Markus Elfring, Masami
Hiramatsu, Michael Bringmann, Michael Neuling, Michal Suchanek, Naveen N. Rao,
Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Pedro Miraglia Franco de
Carvalho, Philippe Bergheaud, Sandipan Das, Seth Forshee, Shriya, Stephen
Rothwell, Stewart Smith, Sukadev Bhattiprolu, Tyrel Datwyler, Vaibhav Jain,
Vaidyanathan Srinivasan, William A. Kennington III.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJaDXGuAAoJEFHr6jzI4aWAEqwP/0TA35KFAK6wqfkCf67z4q+O
I+5piI4eDV4jdCakfoIN1JfjhQRULNePSoCHTccan30mu/bm30p69xtOLL2/h5xH
Mhz/eDBAOo0lrT20nyZfYMW3FnM66wnNf++qJ0O+8L052r4WOB02J0k1uM1ST01D
5Lb5mUoxRLRzCgKRYAYWJifn+IFPUB9NMsvMTym94krAFlIjIzMEQXhDoln+jJMr
QmY5f1BTA/fLfXobn0zwoc/C1oa2PUtxd+rxbwGrLoZ6G843mMqUi90SMr5ybhXp
RzepnBTj4by3vOsnk/X1mANyaZfLsunp75FwnjHdPzKrAS/TuPp8D/iSxxE/PzEq
cLwJFBnFXSgQMefDErXxhHSDz2dAg5r14rsTpDcq2Ko8TPV4rPsuSfmbd9Txekb0
yWHsjoJUBBMl2QcWqIHl+AlV8j1RklF6solcTBcGnH1CZJMfa05VKXV7xGEvOHa0
RJ+/xPyR9KjoB/SUp++9Vmx/M6SwQYFOJlr3Zpg9LNtR8WpoPYu1E6eO+u1Hhzny
eJqaNstH+i+VdY9eqszkAsEBh8o9M/+b+7Wx7TetvU+v368CbXtgFYs9qy2oZjPF
t9sY/BHaHZ8eZ7I00an77a0fVV5B1PVASUtIz5CqkwGpMvX6Z6W2K/XUUFI61kuu
E06HS6Ht8UPJAzrAPUMl
=Rq81
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"A bit of a small release, I suspect in part due to me travelling for
KS. But my backlog of patches to review is smaller than usual, so I
think in part folks just didn't send as much this cycle.
Non-highlights:
- Five fixes for the >128T address space handling, both to fix bugs
in our implementation and to bring the semantics exactly into line
with x86.
Highlights:
- Support for a new OPAL call on bare metal machines which gives us a
true NMI (ie. is not masked by MSR[EE]=0) for debugging etc.
- Support for Power9 DD2 in the CXL driver.
- Improvements to machine check handling so that uncorrectable errors
can be reported into the generic memory_failure() machinery.
- Some fixes and improvements for VPHN, which is used under PowerVM
to notify the Linux partition of topology changes.
- Plumbing to enable TM (transactional memory) without suspend on
some Power9 processors (PPC_FEATURE2_HTM_NO_SUSPEND).
- Support for emulating vector loads form cache-inhibited memory, on
some Power9 revisions.
- Disable the fast-endian switch "syscall" by default (behind a
CONFIG), we believe it has never had any users.
- A major rework of the API drivers use when initiating and waiting
for long running operations performed by OPAL firmware, and changes
to the powernv_flash driver to use the new API.
- Several fixes for the handling of FP/VMX/VSX while processes are
using transactional memory.
- Optimisations of TLB range flushes when using the radix MMU on
Power9.
- Improvements to the VAS facility used to access coprocessors on
Power9, and related improvements to the way the NX crypto driver
handles requests.
- Implementation of PMEM_API and UACCESS_FLUSHCACHE for 64-bit.
Thanks to: Alexey Kardashevskiy, Alistair Popple, Allen Pais, Andrew
Donnellan, Aneesh Kumar K.V, Arnd Bergmann, Balbir Singh, Benjamin
Herrenschmidt, Breno Leitao, Christophe Leroy, Christophe Lombard,
Cyril Bur, Frederic Barrat, Gautham R. Shenoy, Geert Uytterhoeven,
Guilherme G. Piccoli, Gustavo Romero, Haren Myneni, Joel Stanley,
Kamalesh Babulal, Kautuk Consul, Markus Elfring, Masami Hiramatsu,
Michael Bringmann, Michael Neuling, Michal Suchanek, Naveen N. Rao,
Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Pedro Miraglia
Franco de Carvalho, Philippe Bergheaud, Sandipan Das, Seth Forshee,
Shriya, Stephen Rothwell, Stewart Smith, Sukadev Bhattiprolu, Tyrel
Datwyler, Vaibhav Jain, Vaidyanathan Srinivasan, and William A.
Kennington III"
* tag 'powerpc-4.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (151 commits)
powerpc/64s: Fix Power9 DD2.0 workarounds by adding DD2.1 feature
powerpc/64s: Fix masking of SRR1 bits on instruction fault
powerpc/64s: mm_context.addr_limit is only used on hash
powerpc/64s/radix: Fix 128TB-512TB virtual address boundary case allocation
powerpc/64s/hash: Allow MAP_FIXED allocations to cross 128TB boundary
powerpc/64s/hash: Fix fork() with 512TB process address space
powerpc/64s/hash: Fix 128TB-512TB virtual address boundary case allocation
powerpc/64s/hash: Fix 512T hint detection to use >= 128T
powerpc: Fix DABR match on hash based systems
powerpc/signal: Properly handle return value from uprobe_deny_signal()
powerpc/fadump: use kstrtoint to handle sysfs store
powerpc/lib: Implement UACCESS_FLUSHCACHE API
powerpc/lib: Implement PMEM API
powerpc/powernv/npu: Don't explicitly flush nmmu tlb
powerpc/powernv/npu: Use flush_all_mm() instead of flush_tlb_mm()
powerpc/powernv/idle: Round up latency and residency values
powerpc/kprobes: refactor kprobe_lookup_name for safer string operations
powerpc/kprobes: Blacklist emulate_update_regs() from kprobes
powerpc/kprobes: Do not disable interrupts for optprobes and kprobes_on_ftrace
powerpc/kprobes: Disable preemption before invoking probe handler for optprobes
...
The nest mmu required an explicit flush as a tlbi would not flush it in the
same way as the core. However an alternate firmware fix exists which should
eliminate the need for this flush, so instead add a device-tree property
(ibm,nmmu-flush) on the NVLink2 PHB to enable it only if required.
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Remove the post_init callback which is only used
by powernv, we can just call it explicitly from
the powernv code.
This partially kills the ability to "disable" eeh at
runtime via debugfs as this was calling that same
callback again, but this is both unused and broken
in several ways. If we want to revive it, we need
to create a dedicated enable/disable callback on the
backend that does the right thing.
Let the bulk of eeh initialize normally at
core_initcall() like it does on pseries by removing
the hack in eeh_init() that delays it.
Instead we make sure our eeh->probe cleanly bails
out of the PEs haven't been created yet and we force
a re-probe where we used to call eeh_init() again.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
P9 has support for PCI peer-to-peer, enabling a device to write in the
MMIO space of another device directly, without interrupting the CPU.
This patch adds support for it on powernv, by adding a new API to be
called by drivers. The pnv_pci_set_p2p(...) call configures an
'initiator', i.e the device which will issue the MMIO operation, and a
'target', i.e. the device on the receiving side.
P9 really only supports MMIO stores for the time being but that's
expected to change in the future, so the API allows to define both
load and store operations.
/* PCI p2p descriptor */
#define OPAL_PCI_P2P_ENABLE 0x1
#define OPAL_PCI_P2P_LOAD 0x2
#define OPAL_PCI_P2P_STORE 0x4
int pnv_pci_set_p2p(struct pci_dev *initiator, struct pci_dev *target,
u64 desc)
It uses a new OPAL call, as the configuration magic is done on the
PHBs by skiboot.
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Russell Currey <ruscur@russell.cc>
[mpe: Drop unrelated OPAL calls, s/uint64_t/u64/, minor formatting]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Diagnostic data for PHBs currently works by allocated a fixed-sized buffer.
This is simple, but either wastes memory (though only a few kilobytes) or
in the case of PHB4 isn't enough to fit the whole data blob.
For machines that don't describe the diagnostic data size in the device
tree, use the hardcoded buffer size as before. For those that do, only
allocate exactly what's needed.
In the special case of P7IOC (which has two types of diag data), the larger
should be specified in the device tree.
Signed-off-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Dumping the PE State Tables (PEST) can be highly verbose if a number of PEs
are affected, especially in the case where the whole PHB is frozen and 512
lines get printed. Check for duplicates when dumping the PEST to reduce
useless output.
For example:
PE[0f8] A/B: 9700002600000000 80000080d00000f8
PE[0f9] A/B: 8000000000000000 0000000000000000
PE[..0fe] A/B: as above
PE[0ff] A/B: 8440002b00000000 0000000000000000
instead of:
PE[0f8] A/B: 9700002600000000 80000080d00000f8
PE[0f9] A/B: 8000000000000000 0000000000000000
PE[0fa] A/B: 8000000000000000 0000000000000000
PE[0fb] A/B: 8000000000000000 0000000000000000
PE[0fc] A/B: 8000000000000000 0000000000000000
PE[0fd] A/B: 8000000000000000 0000000000000000
PE[0fe] A/B: 8000000000000000 0000000000000000
PE[0ff] A/B: 8440002b00000000 0000000000000000
and you can imagine how much worse it can get for 512 PEs.
Signed-off-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Commit 616badd2fb ("powerpc/powernv: Use OPAL call for TCE kill on
NVLink2") forced all TCE kills to go via the OPAL call for
NVLink2. However the PHB3 implementation of TCE kill was still being
called directly from some functions which in some circumstances caused
a machine check.
This patch adds an equivalent IODA2 version of the function which uses
the correct invalidation method depending on PHB model and changes all
external callers to use it instead.
Fixes: 616badd2fb ("powerpc/powernv: Use OPAL call for TCE kill on NVLink2")
Cc: stable@vger.kernel.org # v4.11+
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Nvlink2 supports address translation services (ATS) allowing devices
to request address translations from an mmu known as the nest MMU
which is setup to walk the CPU page tables.
To access this functionality certain firmware calls are required to
setup and manage hardware context tables in the nvlink processing unit
(NPU). The NPU also manages forwarding of TLB invalidates (known as
address translation shootdowns/ATSDs) to attached devices.
This patch exports several methods to allow device drivers to register
a process id (PASID/PID) in the hardware tables and to receive
notification of when a device should stop issuing address translation
requests (ATRs). It also adds a fault handler to allow device drivers
to demand fault pages in.
Signed-off-by: Alistair Popple <alistair@popple.id.au>
[mpe: Fix up comment formatting, use flush_tlb_mm()]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add detection of NPU2 PHBs. NPU2/NVLink2 has a different register
layout for the TCE kill register therefore TCE invalidation should be
done via the OPAL call rather than using the register directly as it
is for PHB3 and NVLink1. This changes TCE invalidation to use the OPAL
call in the case of a NPU2 PHB model.
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The dma-mapping core and the implementations do not change the DMA
attributes passed by pointer. Thus the pointer can point to const data.
However the attributes do not have to be a bitfield. Instead unsigned
long will do fine:
1. This is just simpler. Both in terms of reading the code and setting
attributes. Instead of initializing local attributes on the stack
and passing pointer to it to dma_set_attr(), just set the bits.
2. It brings safeness and checking for const correctness because the
attributes are passed by value.
Semantic patches for this change (at least most of them):
virtual patch
virtual context
@r@
identifier f, attrs;
@@
f(...,
- struct dma_attrs *attrs
+ unsigned long attrs
, ...)
{
...
}
@@
identifier r.f;
@@
f(...,
- NULL
+ 0
)
and
// Options: --all-includes
virtual patch
virtual context
@r@
identifier f, attrs;
type t;
@@
t f(..., struct dma_attrs *attrs);
@@
identifier r.f;
@@
f(...,
- NULL
+ 0
)
Link: http://lkml.kernel.org/r/1468399300-5399-2-git-send-email-k.kozlowski@samsung.com
Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no>
Acked-by: Mark Salter <msalter@redhat.com> [c6x]
Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> [cris]
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> [drm]
Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com>
Acked-by: Joerg Roedel <jroedel@suse.de> [iommu]
Acked-by: Fabien Dessenne <fabien.dessenne@st.com> [bdisp]
Reviewed-by: Marek Szyprowski <m.szyprowski@samsung.com> [vb2-core]
Acked-by: David Vrabel <david.vrabel@citrix.com> [xen]
Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> [xen swiotlb]
Acked-by: Joerg Roedel <jroedel@suse.de> [iommu]
Acked-by: Richard Kuo <rkuo@codeaurora.org> [hexagon]
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [s390]
Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> [avr32]
Acked-by: Vineet Gupta <vgupta@synopsys.com> [arc]
Acked-by: Robin Murphy <robin.murphy@arm.com> [arm64 and dma-iommu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's architected, always in a known place, so there is no need
to keep a separate pointer to it, we use the existing "regs",
and we complement it with a real mode variant.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
# Conflicts:
# arch/powerpc/platforms/powernv/pci-ioda.c
# arch/powerpc/platforms/powernv/pci.h
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The TCE invalidation functions are fairly implementation specific,
and while the IODA specs more/less describe the register, in practice
various implementation workarounds may be required. So name the
functions after the target PHB.
Note today and for the foreseeable future, there's a 1:1 relationship
between an IODA version and a PHB implementation. There exist another
variant of IODA1 (Torrent) but we never supported in with OPAL and
never will.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>