The __init attribute is meant to mark functions, use __initdata instead
for the data structure.
This fixes the following error when building with clang:
drivers/tty/serial/sh-sci.c:3247:15: error: '__section__' attribute only
applies to functions, methods, properties, and global variables
static struct __init plat_sci_port port_cfg;
Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Reviewed-by: Guenter Roeck <groeck@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Use the of_device_get_match_data() helper instead of open coding.
Note that when used with DT, there's always a valid match.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Simon Horman <horms+renesas@verge.net.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If a port has no dma channel defined in the device tree, then
don't attempt to allocate a dma channel for the port.
Also suppress the warning message concerning the failure to allocate
a dma channel. Continue to emit the warning message if a dma
channel is defined but cannot be allocated.
Signed-off-by: Andy Lowe <andy_lowe@mentor.com>
Signed-off-by: Eugeniu Rosca <erosca@de.adit-jv.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
HSCIF has facilities that allow changing the timeout after which an RX
interrupt is triggered even if the FIFO is not filled. This patch allows
changing the default (15 bits of silence) using the existing sysfs
attribute "rx_fifo_timeout".
Signed-off-by: Ulrich Hecht <ulrich.hecht+renesas@gmail.com>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Use more compact of_property_read_bool() call for a boolean property
instead of of_find_property() call in sci_parse_dt().
Signed-off-by: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The kstrtol() function returns -ERANGE as well as -EINVAL so these tests
are not enough. It's not a super serious bug, but my static checker
correctly complains that the "r" variable might be used uninitialized.
Fixes: 5d23188a47 ("serial: sh-sci: make RX FIFO parameters tunable via sysfs")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The commit below changed a function call from
dma_request_slave_channel_compat() to dma_request_slave_channel(), but
forgot to update the printed failure message.
Fixes: 219fb0c143 ("serial: sh-sci: Remove the platform data dma slave rx/tx channel IDs")
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
uart_register_driver call binds the driver to a specific device
node through tty_register_driver call. This should typically
happen during device probe call.
In a multiplatform scenario, it is possible that multiple serial
drivers are part of the kernel. Currently the driver registration fails
if multiple serial drivers with overlapping major/minor numbers are
included.
Signed-off-by: Sjoerd Simons <sjoerd.simons@collabora.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If DMA is enabled and used, a burst of old data may be seen on the
serial console during "poweroff" or "reboot". uart_flush_buffer()
clears the circular buffer, but sci_port.tx_dma_len is not reset.
This leads to a circular buffer overflow, dumping (UART_XMIT_SIZE -
sci_port.tx_dma_len) bytes.
To fix this, add a .flush_buffer() callback that resets
sci_port.tx_dma_len.
Inspired by commit 31ca2c63fd ("tty/serial: atmel: fix race
condition (TX+DMA)").
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If a UART has dedicated RTS/CTS pins, and hardware control flow is
disabled (or AUTORTS is not yet effective), changing any serial port
configuration deasserts RTS, as .set_termios() calls sci_init_pins().
To fix this, consider the current (AUTO)RTS state when (re)initializing
the pins. Note that for SCIFA/SCIFB, AUTORTS needs explicit
configuration of the RTS# pin function, while (H)SCIF handles this
automatically.
Fixes: d2b9775d79 ("serial: sh-sci: Correct pin initialization on (H)SCIF")
Fixes: e9d7a45a03 ("serial: sh-sci: Add pin initialization for SCIFA/SCIFB")
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When changing hardware control flow for a UART with dedicated RTS/CTS
pins, the new AUTORTS state is not immediately reflected in the
hardware, but only when RTS is raised. However, the serial core does
not call .set_mctrl() after .set_termios(), hence AUTORTS may only
become effective when the port is closed, and reopened later.
Note that this problem does not happen when manually using stty to
change CRTSCTS, as AUTORTS will work fine on next open.
To fix this, call .set_mctrl() from .set_termios() when dedicated
RTS/CTS pins are present, to refresh the AUTORTS or RTS state.
This is similar to what other drivers supporting AUTORTS do (e.g.
omap-serial).
Reported-by: Baumann, Christoph (C.) <cbaumann@visteon.com>
Fixes: 33f50ffc25 ("serial: sh-sci: Fix support for hardware-assisted RTS/CTS")
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When the .set_termios() callback resets the UART, it first waits (busy
loops) until all characters in the transmit FIFO have been transmitted,
to prevent a port configuration change from impacting these characters.
However, if the UART has dedicated RTS/CTS hardware flow control
enabled, these characters may have been stuck in the FIFO due to CTS not
being asserted by the remote side.
- When a new user opens the port, .set_termios() is called while
transmission is still disabled, leading to an infinite loop:
NMI watchdog: BUG: soft lockup - CPU#0 stuck for 22s!
- When an active user changes port configuration without waiting for
the draining of the transmit FIFO, this may also block indefinitely,
until CTS is asserted by the remote side.
This has been observed with SCIFA (on r8a7740/armadillo), and SCIFB and
HSCIF (on r8a7791/koelsch).
To fix this, remove the code that waits for the draining of the transmit
FIFO.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch fixes an issue that kernel panic happens when DMA is enabled
and we press enter key while the kernel booting on the serial console.
* An interrupt may occur after sci_request_irq().
* DMA transfer area is initialized by setup_timer() in sci_request_dma()
and used in interrupt.
If an interrupt occurred between sci_request_irq() and setup_timer() in
sci_request_dma(), DMA transfer area has not been initialized yet.
So, this patch changes the order of sci_request_irq() and
sci_request_dma().
Fixes: 73a19e4c03 ("serial: sh-sci: Add DMA support.")
Signed-off-by: Takatoshi Akiyama <takatoshi.akiyama.kj@ps.hitachi-solutions.com>
[Shimoda changes the commit log]
Signed-off-by: Yoshihiro Shimoda <yoshihiro.shimoda.uh@renesas.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
1. Do not set the RX trigger level for software timeout devices on reset;
there is no timeout by default, and data will rot.
2. Do set the RX trigger level for hardware timeout devices when set
via sysfs attribute.
Fixes SCIFA-type serial consoles.
Signed-off-by: Ulrich Hecht <ulrich.hecht+renesas@gmail.com>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Allows tuning of the RX FIFO fill threshold and timeout. (The latter is
only applicable to SCIFA and SCIFB).
Signed-off-by: Ulrich Hecht <ulrich.hecht+renesas@gmail.com>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Implements support for FIFO fill thresholds greater than one with software
timeout.
This mechanism is not possible (or at least not useful) on SCIF family
hardware other than SCIFA and SCIFB because they do not support turning off
the DR hardware timeout interrupt separately from the RI interrupt.
Signed-off-by: Ulrich Hecht <ulrich.hecht+renesas@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Sets reasonable trigger defaults for the various SCIF variants.
Also corrects the FIFO size for SH7705-style ports.
Signed-off-by: Ulrich Hecht <ulrich.hecht+renesas@gmail.com>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
As the function header of sci_parse_dt() is split in an unusual way,
"git diff" gets confused when changes to the body of the function are
made, and attributes them to the wrong function.
Reformat the function header to fix this.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Simon Horman <horms+renesas@verge.net.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
SCI instances found in SH SoCs have different spacing between registers
depending on the SoC. The platform data contains a regshift field that
tells the driver by how many bits to shift the register offset to
compute its address. We can compute the regshift value automatically
based on the memory resource size, there's no need to pass the value
through platform data.
Fix the sh7750 SCI and sh7760 SIM port memory resources length to ensure
proper computation of the regshift value.
Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The field isn't set by any platform but is only used internally in the
driver to hold data parsed from DT. Move it to the sci_port structure.
Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The sh-sci driver implements manual break debouncing for a few SH
platforms by reading the value of the RX pin port register. This feature
is optional and the driver considers all negative or zero values of the
platform data port_reg field as invalid. As the four platforms that set
the field to a register address all use an address higher than
0x7fffffff, the driver will always consider the value as invalid and
never perform debouncing. The feature is unused, remove it.
Debouncing could be implemented properly in the future using the pinctrl
and GPIO APIs if desired.
Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Only SH platforms still use platform data for the sh-sci, and none of
them declare DMA channels connected to the SCI. Remove the corresponding
platform data fields and simplify the driver accordingly.
Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The fifo size, overrun register and mask, sampling rate mask and error
mask all depend on the port type only and don't need to be computed at
runtime. Add them to the sci_port_parameters structure.
Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The driver modifies platform data for internal purpose only. Fix that
and make the platform data structure const.
Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Turn the regmap two-dimensional array to an array of port parameters and
store a pointer to the port parameters in the sci_port structure. This
will allow handling additional port type dependent parameters.
Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Even though most of its registers are 8-bit wide, the IRDA has two
16-bit registers that make it a 16-bit peripheral and not a 8-bit
peripheral with addresses shifted by one. Fix the registers offset in
the driver and the platform data regshift value.
Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The UPF_BOOT_AUTOCONF platform data flag is set by all platforms,
hardcode it.
The UPF_IOREMAP flag is set by a single SH platform and thus needs to be
kept. However, for ARM platforms, we can base the decision on whether an
OF node is present and bypass the platform data flags completely.
Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The Transmit Enable and Receive Enable bits are set in the scscr field
of all instances of the sh-sci platform data. Set them in the driver
directly to prepare for their removal from platform data.
Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When the call to kasprintf() returns a NULL pointer, function
sci_request_irq() frees the preallocated memory and returns 0 is
returned. Because 0 means no error, the caller of sci_request_irq()
will keep going, and the freed memory may be used or freed again. To
avoid the above issue, this patch assigns "-ENOMEM" to the return
variable ret.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=188691
Signed-off-by: Pan Bian <bianpan2016@163.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
While spin is already locked, serial output request causes the deadlock,
because serial output process also tries to lock the spin.
This patch removes serial output with spin locked.
Signed-off-by: Takatoshi Akiyama <takatoshi.akiyama.kj@ps.hitachi-solutions.com>
Signed-off-by: Takeshi Kihara <takeshi.kihara.df@renesas.com>
Signed-off-by: Simon Horman <horms+renesas@verge.net.au>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Wolfram Sang <wsa+renesas@sang-engineering.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Check for uart_ops structures that are only stored in the ops field of a
uart_port structure. This field is declared const, so uart_ops structures
that have this property can be declared as const also.
The semantic patch that makes this change is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@r disable optional_qualifier@
identifier i;
position p;
@@
static struct uart_ops i@p = { ... };
@ok@
identifier r.i;
struct uart_port e;
position p;
@@
e.ops = &i@p;
@bad@
position p != {r.p,ok.p};
identifier r.i;
struct uart_ops e;
@@
e@i@p
@depends on !bad disable optional_qualifier@
identifier r.i;
@@
static
+const
struct uart_ops i = { ... };
// </smpl>
Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Make sure the transmitter and receiver are stopped when shutting down
the port, and related interrupts are disabled.
Without this:
- New input data may be received into the RX FIFO, possibly
triggering a new RX DMA completion,
- Transfers will still be enabled on a subsequent startup of the UART,
before the UART's FIFOs have been reset, causing reading of stale
data.
Inspired by a patch in the BSP by Koji Matsuoka
<koji.matsuoka.xm@renesas.com>.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add the missing timeout bit definition for (H)SCIF.
Clear the timeout and overrun flag bits during UART reset, cfr. the
initialization flowchart in the datasheet.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Setting the FIFO reset bits is not sufficient to reset the RX FIFO.
After this the status register's RDF flag bit may still be set, causing
the reception of one stale byte of data.
To fix this, clear all status flag bits related to reception, error, and
break handling, cfr. the initialization flowchart in the datasheet.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
FIFO reset is done in sci_reset(), called from sci_set_termios(), while
sci_start_tx() and sci_start_rx() are called before, from sci_startup().
However, starting transfers before the UART's FIFOs have been reset may
cause reading of stale data.
Remove the calls to sci_start_tx() and sci_start_rx() from sci_startup()
to fix this.
Transfers are still started when needed:
- sci_start_rx() is called from sci_set_termios() after FIFO reset, if
the CREAD flag is set,
- sci_start_tx() is called from uart_change_speed() immediately
thereafter, if transmission is enabled.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add support for indicating the availability of dedicated lines for
RTS/CTS hardware flow control, using the standard "uart-has-rtscts" DT
property.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The existing support for hardware-assisted RTS/CTS is rudimentary and
doesn't work.
Add support for hardware-assisted RTS/CTS hardware flow control for the
(H)SCIF, SCIFA, and SCIFB variants.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Before, the driver relied on initialization by the boot loader, or by
implicit reset state.
Note that unlike on (H)SCIF, the RTS/CTS bits exist only if dedicated
RTS/CTS pins are available, which depends on the SoC and UART instance.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Correct pin initialization on (H)SCIF:
- RTS must be deasserted (it's active low),
- SCK must be an input, as it may be used as the optional external
clock input.
Initial pin configuration must always be done:
- Regardless of the presence of dedicated RTS and CTS pins: if the
register exists, the RTS/CTS bits exist, too,
- Regardless of hardware flow control being enabled or not: RTS must
be deasserted.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Replace open-coded variants of sci_getreg() by function calls, and drop
intermediate variables where appropriate.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Enhance the Renesas SCI UART driver to add support for GPIO-controlled
modem lines (CTS, DSR, DCD, RNG, RTS, DTR), using the serial_mctrl_gpio
helpers.
GPIO-controlled modem lines can be used when dedicated modem lines are
not available. Invalid configurations specifying both GPIO RTS/CTS and
dedicated RTS/CTS are rejected.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Documentation/serial/driver clearly states:
If the port does not support CTS, DCD or DSR, the driver should
indicate that the signal is permanently active.
Hence always set TIOCM_CTS, as we currently don't look at the CTS
hardware line state at all.
FWIW, this fixes the transmit path when hardware-assisted flow control
is enabled, and userspace enables CRTSCTS.
The receive path is still broken, as RTS is never asserted.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
As of commit 2eaa790989 ("earlycon: Use common framework for
earlycon declarations") it is no longer needer to specify both
EARLYCON_DECLARE() and OF_EARLYCON_DECLARE().
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add support for sparse variable sampling rates on SCIFA and SCIFB.
According to the datasheet, sampling rate 1/5 needs a small quirk to
avoid corrupting the first byte received.
This increases the range and accuracy of supported baud rates.
E.g. on r8a7791/koelsch:
- Supports now 134, 150, and standard 500000-4000000 bps,
- Perfect match for 134, 150, 500000, 1000000, 2000000, and 4000000
bps,
- Accuracy has increased for most standard bps values.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Replace the single sampling rate and special handling for HSCIF's
variable sampling rates by a bitmask and a custom iterator.
This prepares for the advent of SCIFA/SCIFB's sparse variable sampling
rates.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
On SCIx variants different from HSCIF, the bit rate is equal to the
sampling clock rate divided by half the sampling rate. Currently this is
handled by dividing the sampling rate by two, which was OK as it was
always even.
Replace halving the sampling rate by premultiplying the base clock
frequency by 2, to accommodate odd sampling rates on SCIFA/SCIFB later.
Replace the shift value in the BRG divider calculation by a
premultiplication of the base clock frequency too, for consistency.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
SCIFA and SCIFB have additional bit rate config bits in the Serial Mode
Register. Don't touch them when using the port as a serial console, as
we rely on the boot loader to have configured the serial port config.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
"earlyprintk" is architecture specific option.
General "earlycon" option support is much better.
Signed-off-by: Yoshinori Sato <ysato@users.sourceforge.jp>
[uli: preserve other SCSCR bits when asserting RE and TE]
Signed-off-by: Ulrich Hecht <ulrich.hecht+renesas@gmail.com>
[geert: rewording, #ifdef rework]
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The BSP team noticed that there is spin/mutex lock issue on sh-sci when
CPUFREQ is used. The issue is that the notifier function may call
mutex_lock() while the spinlock is held, which can lead to a BUG().
This may happen if CPUFREQ is changed while another CPU calls
clk_get_rate().
Taking the spinlock was added to the notifier function in commit
e552de2413 ("sh-sci: add platform device private data"), to
protect the list of serial ports against modification during traversal.
At that time the Common Clock Framework didn't exist yet, and
clk_get_rate() just returned clk->rate without taking a mutex.
Note that since commit d535a2305f ("serial: sh-sci: Require a
device per port mapping."), there's no longer a list of serial ports to
traverse, and taking the spinlock became superfluous.
To fix the issue, just remove the cpufreq notifier:
1. The notifier doesn't work correctly: all it does is update stored
clock rates; it does not update the divider in the hardware.
The divider will only be updated when calling sci_set_termios().
I believe this was broken back in 2004, when the old
drivers/char/sh-sci.c driver (where the notifier did update the
divider) was replaced by drivers/serial/sh-sci.c (where the
notifier just updated port->uartclk).
Cfr. full-history-linux commits 6f8deaef2e9675d9 ("[PATCH] sh: port
sh-sci driver to the new API") and 3f73fe878dc9210a ("[PATCH]
Remove old sh-sci driver").
2. On modern SoCs, the sh-sci parent clock rate is no longer related
to the CPU clock rate anyway, so using a cpufreq notifier is
futile.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Geert writes:
Summary:
- Clean up the naming of clocks in the sh-sci driver and its DT bindings,
- Add support for the optional external clock on (H)SCI(F), where this pin
can serve as a clock input,
- Add support for the optional clock sources for the Baud Rate
Generator for External Clock (BRG), as found on some SCIF variants
and on HSCIF.
All platforms that used to define an sci_fck clock have now switched to
the fck name. Remove the fallback code.
Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Acked-by: Simon Horman <horms+renesas@verge.net.au>
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add support for using the Baud Rate Generator for External Clock (BRG), as
found on some SCIF and HSCIF variants, to provide the sampling clock.
This can improve baud rate range and accuracy.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add support for using the SCIx clock pin "(H)SCK" as an external clock
input on (H)SCI(F), providing the sampling clock.
Note that this feature is not yet supported on the select SCIFA variants
that also have it (e.g. sh7723, sh7724, and r8a7740).
On (H)SCIF variants with an External Baud Rate Generator (BRG), the
BRG Clock Select Register must be configured for the external clock.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Refactor the clock and baud rate parameter code to ease adding support
for multiple sampling clock sources.
sci_scbrr_calc() now returns the bit rate error, so it can be compared
to the bit rate error using other sampling clock sources.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The "renesas,scif" compatible value is currently used for the SCIF
variant in all Renesas SoCs of the R-Car family. However, the variant
used in the R-Car family is not the common "SH-4(A)" variant, but a
derivative with added "Baud Rate Generator for External Clock" (BRG),
which is also present in sh7734.
Use the family-specific SCIF compatible values for R-Car Gen1, Gen2, and
Gen3 SoCs to differentiate. The "renesas,scif" compatible value can
still be used as a common denominator for SCIF variants with the
"SH-4(A)" register layout (i.e. ignoring the "Serial Extension Mode
Register" (SCEMR) and the new BRG-specific registers).
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The "renesas,scif" compatible value is currently used for the SCIF
variant in all Renesas SoCs of the R-Car and RZ families. However, the
variant used in the RZ family is not the common "SH-4(A)" variant, but
the "SH-2(A) with FIFO data count register" variant, as it has the
"Serial Extension Mode Register" (SCEMR), just like on sh7203, sh7263,
sh7264, and sh7269.
Use the (already documented) SoC-specific "renesas,scif-r7s72100"
compatible value to differentiate. The "renesas,scif" compatible value
can still be used as a common denominator for SCIF variants with the
"SH-4(A)" register layout (i.e. ignoring the SCEMR register).
Note that currently both variants are treated the same, but this may
change if support for the SCEMR register is ever added.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Store the encoded port and register types directly in of_device_id.data,
instead of using a pointer to a structure.
This saves memory and simplifies the source code, especially when adding
more compatible entries later.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add register definitions for the Baud Rate Generator for External Clock
(BRG), as found in some SCIF and in HSCIF, including a new regtype for
the "SH-4(A)"-derived SCIF variant with BRG.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The maximum baud rate depends on the sampling rate.
HSCIF has a variable sampling rate and sets s->sampling_rate to zero,
hence use the minimum sampling rate of 8.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
For low bit rates, the for-loop that reduces the divider returned by
sci_scbrr_calc() and picks the clock select value may terminate without
finding suitable values, leading to out-of-range divider and clock
select values.
sci_baud_calc_hscif() doesn't suffer from this problem, as it correctly
uses clamp().
Since there are only two relevant differences between HSCIF and other
variants w.r.t. bit rate configuration (fixed vs. variable sample rate,
and an additional factor of two), sci_scbrr_calc() and
sci_baud_calc_hscif() can be merged, fixing the issue with out-of-range
values.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When assuming D = 0.5 and F = 0, maximizing the receive margin M is
equivalent to maximizing the sample rate N.
Hence there's no need to calculate the receive margin, as we can obtain
the same result by iterating over all possible sample rates in reverse
order, and skipping parameter sets that don't provide a lower bit rate
error.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The algorithm to find the best parameters for the requested bit rate
calculates the relative bit rate error, using "(br * scrate) / 1000".
For small "br * scrate", this has two problems:
- The quotient may be zero, leading to a division by zero error,
- This may introduce a large rounding error.
Switch from relative to absolute bit rate error calculation to fix this.
The default baud rate generator values can be removed, as there will
always be one set of values that gives the smallest absolute error.
Print the best set of values when debugging.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If bps >= 1048576, the multiplication of the predivider and "bps" will
overflow, and both br and err will contain bogus values.
Skip the current and all higher clock select predividers when overflow
is detected. Simplify the calculations using intermediates while we're
at it.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Move the -1 offset of br to the assignment to *brr, so br cannot become
negative anymore, and update the clamp() call. Now all unsigned values
in sci_baud_calc_hscif() can become unsigned.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Blindly writing the default configuration value into the SCSCR register
may change the clock selection bits, breaking the serial console if the
current driver settings differ from the default settings.
Keep the current clock selection bits to prevent this from happening
on e.g. r8a7791/koelsch when support for the BRG will be added.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
As F is assumed to be zero in the receive margin formula, frame_len is
not used. Remove it, together with the sci_baud_calc_frame_len() helper
function.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
As no platform defines an interface clock the SCI driver always falls
back to a clock named "peripheral_clk".
- On SH platforms that clock is the base clock for the SCI functional
clock and has the same frequency,
- On ARM platforms that clock doesn't exist, and clk_get() will return
the default clock for the device.
We can thus make the functional clock mandatory and drop the interface
clock.
EPROBE_DEFER is handled for clocks that may be referenced from DT (i.e.
"fck", and the deprecated "sci_ick").
Cc: devicetree@vger.kernel.org
Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Acked-by: Simon Horman <horms+renesas@verge.net.au>
[geert: Handle EPROBE_DEFER, reformat description, break long comment line]
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Rob Herring <robh@kernel.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch fixes an issue that the "length" of scatterlist should be
set using sg_dma_len(). Otherwise, a dmaengine driver cannot work
correctly if CONFIG_NEED_SG_DMA_LENGTH=y.
Fixes: 7b39d90184 (serial: sh-sci: Fix NULL pointer dereference if HIGHMEM is enabled)
Signed-off-by: Yoshihiro Shimoda <yoshihiro.shimoda.uh@renesas.com>
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Simon Horman <horms+renesas@verge.net.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add support for obtaining DMA channel information from the device tree.
This requires switching from the legacy sh_dmae_slave structures with
hardcoded channel numbers and the corresponding filter function to:
1. dma_request_slave_channel_compat(),
- On legacy platforms, dma_request_slave_channel_compat() uses
the passed DMA channel numbers that originate from platform
device data,
- On DT-based platforms, dma_request_slave_channel_compat() will
retrieve the information from DT.
2. and the generic dmaengine_slave_config() configuration method,
which requires filling in DMA register ports and slave bus widths.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Occasionally, DMA transaction completes _after_ DMA engine is stopped.
Verify if the transaction has not finished before forcing the engine to
stop and push the data
Signed-off-by: Muhammad Hamza Farooq <mfarooq@visteon.com>
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When DMA packet completion and timer expiry take place at the same time,
do not terminate the DMA engine, leading by submission of new
descriptors, as the DMA communication hasn't necessarily stopped here.
Signed-off-by: Muhammad Hamza Farooq <mfarooq@visteon.com>
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
dmaengine_submit() will not start the DMA operation, it merely adds
it to the pending queue. If the queue is no longer running, it won't be
restarted until dma_async_issue_pending() is called.
Signed-off-by: Muhammad Hamza Farooq <mfarooq@visteon.com>
[geert: Add more description]
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Since the DMA engine is not stopped everytime rx_timer_fn is called, the
interrupts have to be redirected back to CPU only when incomplete DMA
transaction is handled
Signed-off-by: Muhammad Hamza Farooq <mfarooq@visteon.com>
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This prevents DMA timer timeout that can trigger after the port has
been closed.
Signed-off-by: Aleksandar Mitev <amitev@visteon.com>
[geert: Move del_timer_sync() outside spinlock to avoid circular locking
dependency between rx_timer_fn() and del_timer_sync()]
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There's no need to call sci_start_rx() from sci_request_dma() when DMA
setup fails, as sci_startup() will call sci_start_rx() anyway.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
For DMA receive requests, the driver is only notified by DMA completion
after the whole DMA request has been transferred. If less data is
received, it will stay stuck until more data arrives. The driver
handles this by setting up a timer handler from the receive interrupt,
after reception of the first character.
Unlike SCIFA and SCIFB, SCIF and HSCIF don't issue receive interrupts on
reception of individual characters if a receive DMA request is in
progress, so the timer is never set up.
To fix receive DMA on SCIF and HSCIF, submit the receive DMA request
from the receive interrupt handler instead.
In some sense this is similar to the SCIFA/SCIFB behavior, where the
RDRQE (Rx Data Transfer Request Enable) bit is also set from the receive
interrupt handler.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The receive DMA workqueue function work_fn_rx() handles two things:
1. Reception of a full buffer on completion of a receive DMA request,
2. Reception of a partial buffer on receive DMA time-out.
The workqueue is kicked by both the receive DMA completion handler, and
by a timer to handle DMA time-out.
As there are always two receive DMA requests active, it's possible that
the receive DMA completion handler is called a second time before the
workqueue function runs.
As the time-out handler re-enables the receive interrupt, an interrupt
may come in before time-out has been fully handled.
Move part 1 into the receive DMA completion handler, and move part 2
into the receive DMA time-out handler, to fix these race conditions.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This allows to:
- Remove forward declarations of static functions,
- Coalesce two sections protected by #ifdef CONFIG_SERIAL_SH_SCI_DMA,
- Avoid shuffling functions around in the near future,
- Avoid adding forward declarations in the near future.
No functional changes.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
On receive DMA time-out, avoid calling sci_dma_rx_push() if no data was
transferred by the timed out DMA request.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If CONFIG_SERIAL_SH_SCI_DMA is enabled, the driver doesn't enable TIE
on SCIF or HSCIF. However, this driver may call sci_tx_interrupt()
in sci_er_interrupt(). After that, the driver cannot care of the
interrupt, and then "irq 109: nobody cared" happens on r8a7791/koelsch
board. This patch fixes the issue.
Signed-off-by: Yoshihiro Shimoda <yoshihiro.shimoda.uh@renesas.com>
[geert] Keep kicking tx when using PIO
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The error handler calls sci_rx_interrupt() to drain the receive FIFO if
an error condition happens.
However, if DMA is enabled on SCIFA or SCIFB, this will call
disable_irq_nosync() twice. Due to this imbalance, the receive interrupt
will never be re-enabled, and reception stops forever.
To fix this, restrict draining the FIFO to PIO mode, and just call
sci_receive_chars() directly.
Inspired by a patch from Yoshihiro Shimoda
<yoshihiro.shimoda.uh@renesas.com>.
Reported-by: Yoshihiro Shimoda <yoshihiro.shimoda.uh@renesas.com>
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch fixes an issue that this driver causes a NULL pointer
dereference in the following conditions:
- CONFIG_HIGHMEM and CONFIG_SERIAL_SH_SCI_DMA are enabled
- This driver runs on the sci_dma_rx_push()
This issue was caused by virt_to_page(buf) in the sci_request_dma()
because this driver didn't check if the "buf" was valid or not. So,
this patch uses the "buf" from dma_alloc_coherent() as is, not page.
This patch also fixes a WARNING issue in sci_rx_dma_release():
WARNING: CPU: 0 PID: 1328 at lib/dma-debug.c:1125 check_unmap+0x444/0x848()
rcar-dmac e6700000.dma-controller: DMA-API: device driver frees DMA memory with different CPU address [device address=0x000000006dd89000] [size=64 bytes] [cpu alloc address=0x000000016189c000] [cpu free address=0x0000000080000000]
WARNING: CPU: 1 PID: 1 at drivers/base/dma-mapping.c:334 dma_common_free_remap+0x48/0x6c()
trying to free invalid coherent area: (null)
Signed-off-by: Yoshihiro Shimoda <yoshihiro.shimoda.uh@renesas.com>
[geert] Rebased
[geert] Reworded
[geert] Dropped .rx_chunk, as it's always identical to .rx_buf[0]
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There's no need to keep all buffer and DMA pointers on the stack.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Switch from using tty_buffer_request_room() and looping over
tty_insert_flip_char() to tty_insert_flip_string().
Keep track of buffer overruns in the icount structure, like
serial_core.c does.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Currently sci_dma_rx_push() has to find the active scatterlist itself,
but in some cases the caller already knows.
Hence let the caller pass the scatterlist, and introduce a helper to
find the active DMA request while we're at it.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
During serial port shutdown, the DMA receive worker function may still
be called after the receive DMA cleanup function has been called.
Fix this race condition between work_fn_rx() and sci_rx_dma_release() by
acquiring the port's spinlock in sci_rx_dma_release().
This requires releasing the spinlock in work_fn_rx() before calling (any
function that may call) sci_rx_dma_release().
Terminate all active receive DMA descriptors to release them, and to
make sure no more completions come in.
Do the same in sci_tx_dma_release() for symmetry, although the serial
upper layer will no longer submit more data at this point of time.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There is a problem when the sci_dma_rx_complete() is processed
before cancel process of work_fn_rx() completes by rx_timer_fn().
This patch locks work_fn_rx().
Signed-off-by: Kazuya Mizuguchi <kazuya.mizuguchi.ks@renesas.com>
Signed-off-by: Yoshihiro Kaneko <ykaneko0929@gmail.com>
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Resubmission of DMA descriptors is explicitly forbidden by the DMA
engine API.
Hence pass DMA_CTRL_ACK to dmaengine_prep_slave_sg(), and prepare a new
DMA descriptor instead of reusing the old one.
Remove sci_port.desc_rx[], as there's no longer a need to access the
active descriptor.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Simplify the error handling in sci_submit_rx() by
- Moving it to the end of the function,
- Just calling dmaengine_terminate_all() instead of calling
async_tx_ack() for all already submitted descriptors.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
As dmaengine_prep_slave_sg() is called with the DMA_CTRL_ACK flag set
for DMA transmit requests, there's no need to explicitly acknowledge DMA
transmit requests in the DMA transmit completion callback.
Hence remove the call to async_tx_ack(), and remove the now unused
dma_async_tx_descriptor pointer in the sci_port structure.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Convert the SCI driver from the SHDMAE-specific partial DMA transfer
handling to the generic dmaengine residual data framework.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Replace open-coded
- calls to dma_async_tx_descriptor.tx_submit() by calls to the
dmaengine_submit() helper,
- dma_cookie_t comparisons by calls to dma_submit_error().
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>