Store the effective mitigation of VMX in a status variable and use it to
report the VMX state in the l1tf sysfs file.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142322.433098358@linutronix.de
Writing 'off' to /sys/devices/system/cpu/smt/control offlines all SMT
siblings. Writing 'on' merily enables the abilify to online them, but does
not online them automatically.
Make 'on' more useful by onlining all offline siblings.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If the L1D flush module parameter is set to 'always' and the IA32_FLUSH_CMD
MSR is available, optimize the VMENTER code with the MSR save list.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The IA32_FLUSH_CMD MSR needs only to be written on VMENTER. Extend
add_atomic_switch_msr() with an entry_only parameter to allow storing the
MSR only in the guest (ENTRY) MSR array.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This allows to load a different number of MSRs depending on the context:
VMEXIT or VMENTER.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
.. to help find the MSR on either the guest or host MSR list.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There is no semantic change but this change allows an unbalanced amount of
MSRs to be loaded on VMEXIT and VMENTER, i.e. the number of MSRs to save or
restore on VMEXIT or VMENTER may be different.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add the logic for flushing L1D on VMENTER. The flush depends on the static
key being enabled and the new l1tf_flush_l1d flag being set.
The flags is set:
- Always, if the flush module parameter is 'always'
- Conditionally at:
- Entry to vcpu_run(), i.e. after executing user space
- From the sched_in notifier, i.e. when switching to a vCPU thread.
- From vmexit handlers which are considered unsafe, i.e. where
sensitive data can be brought into L1D:
- The emulator, which could be a good target for other speculative
execution-based threats,
- The MMU, which can bring host page tables in the L1 cache.
- External interrupts
- Nested operations that require the MMU (see above). That is
vmptrld, vmptrst, vmclear,vmwrite,vmread.
- When handling invept,invvpid
[ tglx: Split out from combo patch and reduced to a single flag ]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
336996-Speculative-Execution-Side-Channel-Mitigations.pdf defines a new MSR
(IA32_FLUSH_CMD aka 0x10B) which has similar write-only semantics to other
MSRs defined in the document.
The semantics of this MSR is to allow "finer granularity invalidation of
caching structures than existing mechanisms like WBINVD. It will writeback
and invalidate the L1 data cache, including all cachelines brought in by
preceding instructions, without invalidating all caches (eg. L2 or
LLC). Some processors may also invalidate the first level level instruction
cache on a L1D_FLUSH command. The L1 data and instruction caches may be
shared across the logical processors of a core."
Use it instead of the loop based L1 flush algorithm.
A copy of this document is available at
https://bugzilla.kernel.org/show_bug.cgi?id=199511
[ tglx: Avoid allocating pages when the MSR is available ]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
To mitigate the L1 Terminal Fault vulnerability it's required to flush L1D
on VMENTER to prevent rogue guests from snooping host memory.
CPUs will have a new control MSR via a microcode update to flush L1D with a
single MSR write, but in the absence of microcode a fallback to a software
based flush algorithm is required.
Add a software flush loop which is based on code from Intel.
[ tglx: Split out from combo patch ]
[ bpetkov: Polish the asm code ]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add a mitigation mode parameter "vmentry_l1d_flush" for CVE-2018-3620, aka
L1 terminal fault. The valid arguments are:
- "always" L1D cache flush on every VMENTER.
- "cond" Conditional L1D cache flush, explained below
- "never" Disable the L1D cache flush mitigation
"cond" is trying to avoid L1D cache flushes on VMENTER if the code executed
between VMEXIT and VMENTER is considered safe, i.e. is not bringing any
interesting information into L1D which might exploited.
[ tglx: Split out from a larger patch ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If the L1TF CPU bug is present we allow the KVM module to be loaded as the
major of users that use Linux and KVM have trusted guests and do not want a
broken setup.
Cloud vendors are the ones that are uncomfortable with CVE 2018-3620 and as
such they are the ones that should set nosmt to one.
Setting 'nosmt' means that the system administrator also needs to disable
SMT (Hyper-threading) in the BIOS, or via the 'nosmt' command line
parameter, or via the /sys/devices/system/cpu/smt/control. See commit
05736e4ac1 ("cpu/hotplug: Provide knobs to control SMT").
Other mitigations are to use task affinity, cpu sets, interrupt binding,
etc - anything to make sure that _only_ the same guests vCPUs are running
on sibling threads.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Due to the way Machine Check Exceptions work on X86 hyperthreads it's
required to boot up _all_ logical cores at least once in order to set the
CR4.MCE bit.
So instead of ignoring the sibling threads right away, let them boot up
once so they can configure themselves. After they came out of the initial
boot stage check whether its a "secondary" sibling and cancel the operation
which puts the CPU back into offline state.
Reported-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tony Luck <tony.luck@intel.com>
Dave Hansen reported, that it's outright dangerous to keep SMT siblings
disabled completely so they are stuck in the BIOS and wait for SIPI.
The reason is that Machine Check Exceptions are broadcasted to siblings and
the soft disabled sibling has CR4.MCE = 0. If a MCE is delivered to a
logical core with CR4.MCE = 0, it asserts IERR#, which shuts down or
reboots the machine. The MCE chapter in the SDM contains the following
blurb:
Because the logical processors within a physical package are tightly
coupled with respect to shared hardware resources, both logical
processors are notified of machine check errors that occur within a
given physical processor. If machine-check exceptions are enabled when
a fatal error is reported, all the logical processors within a physical
package are dispatched to the machine-check exception handler. If
machine-check exceptions are disabled, the logical processors enter the
shutdown state and assert the IERR# signal. When enabling machine-check
exceptions, the MCE flag in control register CR4 should be set for each
logical processor.
Reverting the commit which ignores siblings at enumeration time solves only
half of the problem. The core cpuhotplug logic needs to be adjusted as
well.
This thoughtful engineered mechanism also turns the boot process on all
Intel HT enabled systems into a MCE lottery. MCE is enabled on the boot CPU
before the secondary CPUs are brought up. Depending on the number of
physical cores the window in which this situation can happen is smaller or
larger. On a HSW-EX it's about 750ms:
MCE is enabled on the boot CPU:
[ 0.244017] mce: CPU supports 22 MCE banks
The corresponding sibling #72 boots:
[ 1.008005] .... node #0, CPUs: #72
That means if an MCE hits on physical core 0 (logical CPUs 0 and 72)
between these two points the machine is going to shutdown. At least it's a
known safe state.
It's obvious that the early boot can be hit by an MCE as well and then runs
into the same situation because MCEs are not yet enabled on the boot CPU.
But after enabling them on the boot CPU, it does not make any sense to
prevent the kernel from recovering.
Adjust the nosmt kernel parameter documentation as well.
Reverts: 2207def700 ("x86/apic: Ignore secondary threads if nosmt=force")
Reported-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tony Luck <tony.luck@intel.com>
Jan has noticed that pte_pfn and co. resp. pfn_pte are incorrect for
CONFIG_PAE because phys_addr_t is wider than unsigned long and so the
pte_val reps. shift left would get truncated. Fix this up by using proper
types.
Fixes: 6b28baca9b ("x86/speculation/l1tf: Protect PROT_NONE PTEs against speculation")
Reported-by: Jan Beulich <JBeulich@suse.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
The PAE 3-level paging code currently doesn't mitigate L1TF by flipping the
offset bits, and uses the high PTE word, thus bits 32-36 for type, 37-63 for
offset. The lower word is zeroed, thus systems with less than 4GB memory are
safe. With 4GB to 128GB the swap type selects the memory locations vulnerable
to L1TF; with even more memory, also the swap offfset influences the address.
This might be a problem with 32bit PAE guests running on large 64bit hosts.
By continuing to keep the whole swap entry in either high or low 32bit word of
PTE we would limit the swap size too much. Thus this patch uses the whole PAE
PTE with the same layout as the 64bit version does. The macros just become a
bit tricky since they assume the arch-dependent swp_entry_t to be 32bit.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
The TOPOEXT reenablement is a workaround for broken BIOSen which didn't
enable the CPUID bit. amd_get_topology_early(), however, relies on
that bit being set so that it can read out the CPUID leaf and set
smp_num_siblings properly.
Move the reenablement up to early_init_amd(). While at it, simplify
amd_get_topology_early().
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
336996-Speculative-Execution-Side-Channel-Mitigations.pdf defines a new MSR
(IA32_FLUSH_CMD) which is detected by CPUID.7.EDX[28]=1 bit being set.
This new MSR "gives software a way to invalidate structures with finer
granularity than other architectual methods like WBINVD."
A copy of this document is available at
https://bugzilla.kernel.org/show_bug.cgi?id=199511
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The previous patch has limited swap file size so that large offsets cannot
clear bits above MAX_PA/2 in the pte and interfere with L1TF mitigation.
It assumed that offsets are encoded starting with bit 12, same as pfn. But
on x86_64, offsets are encoded starting with bit 9.
Thus the limit can be raised by 3 bits. That means 16TB with 42bit MAX_PA
and 256TB with 46bit MAX_PA.
Fixes: 377eeaa8e1 ("x86/speculation/l1tf: Limit swap file size to MAX_PA/2")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
nosmt on the kernel command line merely prevents the onlining of the
secondary SMT siblings.
nosmt=force makes the APIC detection code ignore the secondary SMT siblings
completely, so they even do not show up as possible CPUs. That reduces the
amount of memory allocations for per cpu variables and saves other
resources from being allocated too large.
This is not fully equivalent to disabling SMT in the BIOS because the low
level SMT enabling in the BIOS can result in partitioning of resources
between the siblings, which is not undone by just ignoring them. Some CPUs
can use the full resources when their sibling is not onlined, but this is
depending on the CPU family and model and it's not well documented whether
this applies to all partitioned resources. That means depending on the
workload disabling SMT in the BIOS might result in better performance.
Linus analysis of the Intel manual:
The intel optimization manual is not very clear on what the partitioning
rules are.
I find:
"In general, the buffers for staging instructions between major pipe
stages are partitioned. These buffers include µop queues after the
execution trace cache, the queues after the register rename stage, the
reorder buffer which stages instructions for retirement, and the load
and store buffers.
In the case of load and store buffers, partitioning also provided an
easier implementation to maintain memory ordering for each logical
processor and detect memory ordering violations"
but some of that partitioning may be relaxed if the HT thread is "not
active":
"In Intel microarchitecture code name Sandy Bridge, the micro-op queue
is statically partitioned to provide 28 entries for each logical
processor, irrespective of software executing in single thread or
multiple threads. If one logical processor is not active in Intel
microarchitecture code name Ivy Bridge, then a single thread executing
on that processor core can use the 56 entries in the micro-op queue"
but I do not know what "not active" means, and how dynamic it is. Some of
that partitioning may be entirely static and depend on the early BIOS
disabling of HT, and even if we park the cores, the resources will just be
wasted.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
To support force disabling of SMT it's required to know the number of
thread siblings early. amd_get_topology() cannot be called before the APIC
driver is selected, so split out the part which initializes
smp_num_siblings and invoke it from amd_early_init().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Old code used to check whether CPUID ext max level is >= 0x80000008 because
that last leaf contains the number of cores of the physical CPU. The three
functions called there now do not depend on that leaf anymore so the check
can go.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Make use of the new early detection function to initialize smp_num_siblings
on the boot cpu before the MP-Table or ACPI/MADT scan happens. That's
required for force disabling SMT.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
To support force disabling of SMT it's required to know the number of
thread siblings early. detect_extended_topology() cannot be called before
the APIC driver is selected, so split out the part which initializes
smp_num_siblings.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
To support force disabling of SMT it's required to know the number of
thread siblings early. detect_ht() cannot be called before the APIC driver
is selected, so split out the part which initializes smp_num_siblings.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Real 32bit AMD CPUs do not have SMT and the only value of the call was to
reach the magic printout which got removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
The value of this printout is dubious at best and there is no point in
having it in two different places along with convoluted ways to reach it.
Remove it completely.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Provide a command line and a sysfs knob to control SMT.
The command line options are:
'nosmt': Enumerate secondary threads, but do not online them
'nosmt=force': Ignore secondary threads completely during enumeration
via MP table and ACPI/MADT.
The sysfs control file has the following states (read/write):
'on': SMT is enabled. Secondary threads can be freely onlined
'off': SMT is disabled. Secondary threads, even if enumerated
cannot be onlined
'forceoff': SMT is permanentely disabled. Writes to the control
file are rejected.
'notsupported': SMT is not supported by the CPU
The command line option 'nosmt' sets the sysfs control to 'off'. This
can be changed to 'on' to reenable SMT during runtime.
The command line option 'nosmt=force' sets the sysfs control to
'forceoff'. This cannot be changed during runtime.
When SMT is 'on' and the control file is changed to 'off' then all online
secondary threads are offlined and attempts to online a secondary thread
later on are rejected.
When SMT is 'off' and the control file is changed to 'on' then secondary
threads can be onlined again. The 'off' -> 'on' transition does not
automatically online the secondary threads.
When the control file is set to 'forceoff', the behaviour is the same as
setting it to 'off', but the operation is irreversible and later writes to
the control file are rejected.
When the control status is 'notsupported' then writes to the control file
are rejected.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Split out the inner workings of do_cpu_down() to allow reuse of that
function for the upcoming SMT disabling mechanism.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
The asymmetry caused a warning to trigger if the bootup was stopped in state
CPUHP_AP_ONLINE_IDLE. The warning no longer triggers as kthread_park() can
now be invoked on already or still parked threads. But there is still no
reason to have this be asymmetric.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Provide information whether SMT is supoorted by the CPUs. Preparatory patch
for SMT control mechanism.
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
If the CPU is supporting SMT then the primary thread can be found by
checking the lower APIC ID bits for zero. smp_num_siblings is used to build
the mask for the APIC ID bits which need to be taken into account.
This uses the MPTABLE or ACPI/MADT supplied APIC ID, which can be different
than the initial APIC ID in CPUID. But according to AMD the lower bits have
to be consistent. Intel gave a tentative confirmation as well.
Preparatory patch to support disabling SMT at boot/runtime.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
The static key sched_smt_present is only updated at boot time when SMT
siblings have been detected. Booting with maxcpus=1 and bringing the
siblings online after boot rebuilds the scheduling domains correctly but
does not update the static key, so the SMT code is not enabled.
Let the key be updated in the scheduler CPU hotplug code to fix this.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
The pr_warn in l1tf_select_mitigation would have used the prior pr_fmt
which was defined as "Spectre V2 : ".
Move the function to be past SSBD and also define the pr_fmt.
Fixes: 17dbca1193 ("x86/speculation/l1tf: Add sysfs reporting for l1tf")
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
For the L1TF workaround its necessary to limit the swap file size to below
MAX_PA/2, so that the higher bits of the swap offset inverted never point
to valid memory.
Add a mechanism for the architecture to override the swap file size check
in swapfile.c and add a x86 specific max swapfile check function that
enforces that limit.
The check is only enabled if the CPU is vulnerable to L1TF.
In VMs with 42bit MAX_PA the typical limit is 2TB now, on a native system
with 46bit PA it is 32TB. The limit is only per individual swap file, so
it's always possible to exceed these limits with multiple swap files or
partitions.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
For L1TF PROT_NONE mappings are protected by inverting the PFN in the page
table entry. This sets the high bits in the CPU's address space, thus
making sure to point to not point an unmapped entry to valid cached memory.
Some server system BIOSes put the MMIO mappings high up in the physical
address space. If such an high mapping was mapped to unprivileged users
they could attack low memory by setting such a mapping to PROT_NONE. This
could happen through a special device driver which is not access
protected. Normal /dev/mem is of course access protected.
To avoid this forbid PROT_NONE mappings or mprotect for high MMIO mappings.
Valid page mappings are allowed because the system is then unsafe anyways.
It's not expected that users commonly use PROT_NONE on MMIO. But to
minimize any impact this is only enforced if the mapping actually refers to
a high MMIO address (defined as the MAX_PA-1 bit being set), and also skip
the check for root.
For mmaps this is straight forward and can be handled in vm_insert_pfn and
in remap_pfn_range().
For mprotect it's a bit trickier. At the point where the actual PTEs are
accessed a lot of state has been changed and it would be difficult to undo
on an error. Since this is a uncommon case use a separate early page talk
walk pass for MMIO PROT_NONE mappings that checks for this condition
early. For non MMIO and non PROT_NONE there are no changes.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
L1TF core kernel workarounds are cheap and normally always enabled, However
they still should be reported in sysfs if the system is vulnerable or
mitigated. Add the necessary CPU feature/bug bits.
- Extend the existing checks for Meltdowns to determine if the system is
vulnerable. All CPUs which are not vulnerable to Meltdown are also not
vulnerable to L1TF
- Check for 32bit non PAE and emit a warning as there is no practical way
for mitigation due to the limited physical address bits
- If the system has more than MAX_PA/2 physical memory the invert page
workarounds don't protect the system against the L1TF attack anymore,
because an inverted physical address will also point to valid
memory. Print a warning in this case and report that the system is
vulnerable.
Add a function which returns the PFN limit for the L1TF mitigation, which
will be used in follow up patches for sanity and range checks.
[ tglx: Renamed the CPU feature bit to L1TF_PTEINV ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
The L1TF workaround doesn't make any attempt to mitigate speculate accesses
to the first physical page for zeroed PTEs. Normally it only contains some
data from the early real mode BIOS.
It's not entirely clear that the first page is reserved in all
configurations, so add an extra reservation call to make sure it is really
reserved. In most configurations (e.g. with the standard reservations)
it's likely a nop.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
When PTEs are set to PROT_NONE the kernel just clears the Present bit and
preserves the PFN, which creates attack surface for L1TF speculation
speculation attacks.
This is important inside guests, because L1TF speculation bypasses physical
page remapping. While the host has its own migitations preventing leaking
data from other VMs into the guest, this would still risk leaking the wrong
page inside the current guest.
This uses the same technique as Linus' swap entry patch: while an entry is
is in PROTNONE state invert the complete PFN part part of it. This ensures
that the the highest bit will point to non existing memory.
The invert is done by pte/pmd_modify and pfn/pmd/pud_pte for PROTNONE and
pte/pmd/pud_pfn undo it.
This assume that no code path touches the PFN part of a PTE directly
without using these primitives.
This doesn't handle the case that MMIO is on the top of the CPU physical
memory. If such an MMIO region was exposed by an unpriviledged driver for
mmap it would be possible to attack some real memory. However this
situation is all rather unlikely.
For 32bit non PAE the inversion is not done because there are really not
enough bits to protect anything.
Q: Why does the guest need to be protected when the HyperVisor already has
L1TF mitigations?
A: Here's an example:
Physical pages 1 2 get mapped into a guest as
GPA 1 -> PA 2
GPA 2 -> PA 1
through EPT.
The L1TF speculation ignores the EPT remapping.
Now the guest kernel maps GPA 1 to process A and GPA 2 to process B, and
they belong to different users and should be isolated.
A sets the GPA 1 PA 2 PTE to PROT_NONE to bypass the EPT remapping and
gets read access to the underlying physical page. Which in this case
points to PA 2, so it can read process B's data, if it happened to be in
L1, so isolation inside the guest is broken.
There's nothing the hypervisor can do about this. This mitigation has to
be done in the guest itself.
[ tglx: Massaged changelog ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Dave Hansen <dave.hansen@intel.com>
With L1 terminal fault the CPU speculates into unmapped PTEs, and resulting
side effects allow to read the memory the PTE is pointing too, if its
values are still in the L1 cache.
For swapped out pages Linux uses unmapped PTEs and stores a swap entry into
them.
To protect against L1TF it must be ensured that the swap entry is not
pointing to valid memory, which requires setting higher bits (between bit
36 and bit 45) that are inside the CPUs physical address space, but outside
any real memory.
To do this invert the offset to make sure the higher bits are always set,
as long as the swap file is not too big.
Note there is no workaround for 32bit !PAE, or on systems which have more
than MAX_PA/2 worth of memory. The later case is very unlikely to happen on
real systems.
[AK: updated description and minor tweaks by. Split out from the original
patch ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Dave Hansen <dave.hansen@intel.com>
If pages are swapped out, the swap entry is stored in the corresponding
PTE, which has the Present bit cleared. CPUs vulnerable to L1TF speculate
on PTE entries which have the present bit set and would treat the swap
entry as phsyical address (PFN). To mitigate that the upper bits of the PTE
must be set so the PTE points to non existent memory.
The swap entry stores the type and the offset of a swapped out page in the
PTE. type is stored in bit 9-13 and offset in bit 14-63. The hardware
ignores the bits beyond the phsyical address space limit, so to make the
mitigation effective its required to start 'offset' at the lowest possible
bit so that even large swap offsets do not reach into the physical address
space limit bits.
Move offset to bit 9-58 and type to bit 59-63 which are the bits that
hardware generally doesn't care about.
That, in turn, means that if you on desktop chip with only 40 bits of
physical addressing, now that the offset starts at bit 9, there needs to be
30 bits of offset actually *in use* until bit 39 ends up being set, which
means when inverted it will again point into existing memory.
So that's 4 terabyte of swap space (because the offset is counted in pages,
so 30 bits of offset is 42 bits of actual coverage). With bigger physical
addressing, that obviously grows further, until the limit of the offset is
hit (at 50 bits of offset - 62 bits of actual swap file coverage).
This is a preparatory change for the actual swap entry inversion to protect
against L1TF.
[ AK: Updated description and minor tweaks. Split into two parts ]
[ tglx: Massaged changelog ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Dave Hansen <dave.hansen@intel.com>
L1 Terminal Fault (L1TF) is a speculation related vulnerability. The CPU
speculates on PTE entries which do not have the PRESENT bit set, if the
content of the resulting physical address is available in the L1D cache.
The OS side mitigation makes sure that a !PRESENT PTE entry points to a
physical address outside the actually existing and cachable memory
space. This is achieved by inverting the upper bits of the PTE. Due to the
address space limitations this only works for 64bit and 32bit PAE kernels,
but not for 32bit non PAE.
This mitigation applies to both host and guest kernels, but in case of a
64bit host (hypervisor) and a 32bit PAE guest, inverting the upper bits of
the PAE address space (44bit) is not enough if the host has more than 43
bits of populated memory address space, because the speculation treats the
PTE content as a physical host address bypassing EPT.
The host (hypervisor) protects itself against the guest by flushing L1D as
needed, but pages inside the guest are not protected against attacks from
other processes inside the same guest.
For the guest the inverted PTE mask has to match the host to provide the
full protection for all pages the host could possibly map into the
guest. The hosts populated address space is not known to the guest, so the
mask must cover the possible maximal host address space, i.e. 52 bit.
On 32bit PAE the maximum PTE mask is currently set to 44 bit because that
is the limit imposed by 32bit unsigned long PFNs in the VMs. This limits
the mask to be below what the host could possible use for physical pages.
The L1TF PROT_NONE protection code uses the PTE masks to determine which
bits to invert to make sure the higher bits are set for unmapped entries to
prevent L1TF speculation attacks against EPT inside guests.
In order to invert all bits that could be used by the host, increase
__PHYSICAL_PAGE_SHIFT to 52 to match 64bit.
The real limit for a 32bit PAE kernel is still 44 bits because all Linux
PTEs are created from unsigned long PFNs, so they cannot be higher than 44
bits on a 32bit kernel. So these extra PFN bits should be never set. The
only users of this macro are using it to look at PTEs, so it's safe.
[ tglx: Massaged changelog ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAlslJkoQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpi3READZgtKEaixC4EMLNH/7WqVLC5XxsIpuV3N7
kxaV2KoJ/zJbBPqE+WIW/UasuTRkIFQpmXp3aYw879FZfCq1sN7K9yyzY2i7qvuG
l8WRPWFc2SMfMrXb3pctGiNyYhTIZrOOzPmKAwlNinyyr7tlan2Ha4z5XHOJon9O
uVk252kTlBqvTEX4nZKN2x6UiI9RaVegbOV6lthm3lQZF+25C6kN/8emdkhDIkjG
mOI8MaHp6iDbpIBWBziEpkvGxvxO4PAaESldyJH6Fg+uzmNEDEwp6jvFBmlCiQIE
wdt5Swsl2zKk8g/tBHeDSDK0inHnP5xho4tC68rDtLrgxyLeBuVjyLMItkYJdTqh
s8B5gdCs3SS41aXMk+w3BnLBIRRMrByGiY2Nx23Si6KZU8pT5sM0dGGOTGCma1dy
NNitIRbePyrajV2p/xqnMeiGvxqnCckRRYr0uV2KPJzqwwMoZvNsnS+XL2KqdgCY
ndK5Nda5oRb+yDDlPKlRvY8cKh1N8GWdoFIGbfrMIYJcGiUXBoX7UoA/DKKbnY2o
p+TE3t9RGz9UPwxHqSMTXRV+xs4X3lgWf4sA/ciGGPeuAgwdOoGJnfn4kY7AIPq8
LYXj8K4rx3cRA+l7Y4DCppPQEl8bxKXhFFccKsXToFITW+PNdCuM7FDugOHdzwQE
QlesAkLV+w==
=gyaY
-----END PGP SIGNATURE-----
Merge tag 'for-linus-20180616' of git://git.kernel.dk/linux-block
Pull block fixes from Jens Axboe:
"A collection of fixes that should go into -rc1. This contains:
- bsg_open vs bsg_unregister race fix (Anatoliy)
- NVMe pull request from Christoph, with fixes for regressions in
this window, FC connect/reconnect path code unification, and a
trace point addition.
- timeout fix (Christoph)
- remove a few unused functions (Christoph)
- blk-mq tag_set reinit fix (Roman)"
* tag 'for-linus-20180616' of git://git.kernel.dk/linux-block:
bsg: fix race of bsg_open and bsg_unregister
block: remov blk_queue_invalidate_tags
nvme-fabrics: fix and refine state checks in __nvmf_check_ready
nvme-fabrics: handle the admin-only case properly in nvmf_check_ready
nvme-fabrics: refactor queue ready check
blk-mq: remove blk_mq_tagset_iter
nvme: remove nvme_reinit_tagset
nvme-fc: fix nulling of queue data on reconnect
nvme-fc: remove reinit_request routine
blk-mq: don't time out requests again that are in the timeout handler
nvme-fc: change controllers first connect to use reconnect path
nvme: don't rely on the changed namespace list log
nvmet: free smart-log buffer after use
nvme-rdma: fix error flow during mapping request data
nvme: add bio remapping tracepoint
nvme: fix NULL pointer dereference in nvme_init_subsystem
blk-mq: reinit q->tag_set_list entry only after grace period
- can.rst: fix a footnote reference;
- crypto_engine.rst: Fix two parsing warnings;
- Fix a lot of broken references to Documentation/*;
- Improves the scripts/documentation-file-ref-check script,
in order to help detecting/fixing broken references,
preventing false-positives.
After this patch series, only 33 broken references to doc files are
detected by scripts/documentation-file-ref-check.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJbJC2aAAoJEAhfPr2O5OEVPmMP/2rN5m9LZ048oRWlg4hCwo73
4FpWqDg18hbWCMHXYHIN1UACIMUkIUfgLhF7WE3D/XqRMuxHoiE5u7DUdak7+VNt
wunpksKFJbgyfFMHRvykHcZV+jQFVbM7eFvXVPIvoSaAeGH6zx4imHTyeDn3x/nL
gdtBqM4bvEhmBjotBTRR4PB8+oPrT/HIT5npHepx3UnFFFAzDQGEZ/I67/el2G5C
pVmYdBXvr7iqrvUs6FilHLTEfe1quCI4UaKNfLHKrxXrTkiJQFOwugYuobZfNmxT
GwjWzfpNy9HMlKJFYipcByALxel1Mnpqz5mIxFQaCTygBuEsORCWzW5MoKIsIUJ0
KOoG76v0rUyMvLBRvaoao3CHYHdzxhQbtVV9DjyDuDksa2G5IoCAF1t6DyIOitRw
9plMnGckk+FJ/MXJKYWXHszFS8NhI0SF2zHe3s1DmRTD8P6oxkxvxBFz6iqqADmL
W6XHd8CcqJItaS9ctPen91TFuysN1HFpdzLLY+xwWmmKOcWC/jFjhTm8pj7xLQHM
5yuuEcefsajf+Xk4w2fSQmRfXnuq+oOlPuWpwSvEy+59cHGI0ms18P1nHy/yt3II
CJywwdx6fjwDon57RFKH7kkGd7px317zMqWdIv9gUj/qZAy9gcdLdvEQLhx9u0aV
4F+hLKFDFEpf58xqRT1R
=/ozx
-----END PGP SIGNATURE-----
Merge tag 'docs-broken-links' of git://linuxtv.org/mchehab/experimental
Pull documentation fixes from Mauro Carvalho Chehab:
"This solves a series of broken links for files under Documentation,
and improves a script meant to detect such broken links (see
scripts/documentation-file-ref-check).
The changes on this series are:
- can.rst: fix a footnote reference;
- crypto_engine.rst: Fix two parsing warnings;
- Fix a lot of broken references to Documentation/*;
- improve the scripts/documentation-file-ref-check script, in order
to help detecting/fixing broken references, preventing
false-positives.
After this patch series, only 33 broken references to doc files are
detected by scripts/documentation-file-ref-check"
* tag 'docs-broken-links' of git://linuxtv.org/mchehab/experimental: (26 commits)
fix a series of Documentation/ broken file name references
Documentation: rstFlatTable.py: fix a broken reference
ABI: sysfs-devices-system-cpu: remove a broken reference
devicetree: fix a series of wrong file references
devicetree: fix name of pinctrl-bindings.txt
devicetree: fix some bindings file names
MAINTAINERS: fix location of DT npcm files
MAINTAINERS: fix location of some display DT bindings
kernel-parameters.txt: fix pointers to sound parameters
bindings: nvmem/zii: Fix location of nvmem.txt
docs: Fix more broken references
scripts/documentation-file-ref-check: check tools/*/Documentation
scripts/documentation-file-ref-check: get rid of false-positives
scripts/documentation-file-ref-check: hint: dash or underline
scripts/documentation-file-ref-check: add a fix logic for DT
scripts/documentation-file-ref-check: accept more wildcards at filenames
scripts/documentation-file-ref-check: fix help message
media: max2175: fix location of driver's companion documentation
media: v4l: fix broken video4linux docs locations
media: dvb: point to the location of the old README.dvb-usb file
...
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEq1nRK9aeMoq1VSgcnJ2qBz9kQNkFAlsielwACgkQnJ2qBz9k
QNlN0Af/Q82iP3EqrT3w+CT7w0gER2su+Df2riDpo0/XYRQLxuyW+kYtLsQwovvB
Q7Tt+WTSO5OIqoJxwGMmd6VO5ICblhP+uHVC6+JlWy17DgccjwFBE/sUopxPqJaK
9utwXZhqqOEoikNpDABcptNnWVILRl0yppkQrVV/pKkyZFp2F8vO4roUHFFYkJJt
/uXJfLDQx6pBLTwqfQBFyiz0dCSsvCHUVnlw7Hu5JfE6xPtkMlk6F/M0Y0rvyEOg
8KmH5jUX/BXKIijg+ycOzS3CCdvm0UhrtiH5YWy4qGaI8eczT31Epfl08Sk8pvkv
n2rnxNnJP5sjPPNQhXvHJqy9qRCB6g==
=bLjN
-----END PGP SIGNATURE-----
Merge tag 'fsnotify_for_v4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
Pull fsnotify updates from Jan Kara:
"fsnotify cleanups unifying handling of different watch types.
This is the shortened fsnotify series from Amir with the last five
patches pulled out. Amir has modified those patches to not change
struct inode but obviously it's too late for those to go into this
merge window"
* tag 'fsnotify_for_v4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
fsnotify: add fsnotify_add_inode_mark() wrappers
fanotify: generalize fanotify_should_send_event()
fsnotify: generalize send_to_group()
fsnotify: generalize iteration of marks by object type
fsnotify: introduce marks iteration helpers
fsnotify: remove redundant arguments to handle_event()
fsnotify: use type id to identify connector object type
- mark omapfb drivers as orphans in MAINTAINERS file (Tomi Valkeinen)
- add missing module license tags to omap/omapfb driver (Arnd Bergmann)
- add missing GPIOLIB dependendy to omap2/omapfb driver (Arnd Bergmann)
- convert savagefb, aty128fb & radeonfb drivers to use msleep & co.
(Jia-Ju Bai)
- allow COMPILE_TEST build for viafb driver (media part was reviewed by
media subsystem Maintainer)
- remove unused MERAM support from sh_mobile_lcdcfb and shmob-drm drivers
(drm parts were acked by shmob-drm driver Maintainer)
- remove unused auo_k190xfb drivers
- misc cleanups (Souptick Joarder, Wolfram Sang, Markus Elfring, Andy
Shevchenko, Colin Ian King)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCAAGBQJbIkf4AAoJEH4ztj+gR8IL6poP+gI3os4jd13ydS++4LtJCIoI
4ndhd6bjsVk53USAYP3lldQXSbbF1URN/FLvAAT/gDejd80z6UgSBDRuIcivxgRy
OdF9JjsAcrb1To26xV/sYNxcYuezzbHbb9bQMBEaKhjhN40V2vkHgs3xONPa0Uxe
AsJ077zkZryDPw90GgNBRmFQfRINqgIx3ta1XokVHRJBaiitSaVhz8lil5c1RQtK
z/gn+9eblK8JGQH7UcRrOsF8U1R2dHs1MEP3KCIkRGLyCXlOFP8nSkbZPQqeGuPL
WZjSLF/d6+C89CCXWCIjWO2zXofZd6jAlKxcTYIT3grV4DvFs8eUKxNhFTmPBMz1
xZsCtf1q/vLAwzlXhHwDOspk19+vjIUDyxBGh0TADJ2HIMDV6mUZ6VgfY0L5F0sc
0UmdHur/6EygorDhKof0Unf0BFyEPjcuOwwEqtvrP87Og/XSk/koYOsd7MNwtfAy
b3PeWbUczSfJwLtuVAo4HKQELpWJdOJDr5VHoiA/CeFNLRBirkzA26v4i4ZexFDU
i0/2Lb1WtKSCPWSIiZYQvACnQ22eyq2KpTnmNSF0cSQS5RzSo/kW1BLzCLD+0RJb
akijLC7eXBbdMDL6h3wnhy6ox8a4HrJ2VCqfEaQpLcqPPoptdgfEyXthJ5Zo5U9f
gBKKdU1Xdk25232Q9Dst
=DDf3
-----END PGP SIGNATURE-----
Merge tag 'fbdev-v4.18' of git://github.com/bzolnier/linux
Pull fbdev updates from Bartlomiej Zolnierkiewicz:
"There is nothing really major here, few small fixes, some cleanups and
dead drivers removal:
- mark omapfb drivers as orphans in MAINTAINERS file (Tomi Valkeinen)
- add missing module license tags to omap/omapfb driver (Arnd
Bergmann)
- add missing GPIOLIB dependendy to omap2/omapfb driver (Arnd
Bergmann)
- convert savagefb, aty128fb & radeonfb drivers to use msleep & co.
(Jia-Ju Bai)
- allow COMPILE_TEST build for viafb driver (media part was reviewed
by media subsystem Maintainer)
- remove unused MERAM support from sh_mobile_lcdcfb and shmob-drm
drivers (drm parts were acked by shmob-drm driver Maintainer)
- remove unused auo_k190xfb drivers
- misc cleanups (Souptick Joarder, Wolfram Sang, Markus Elfring, Andy
Shevchenko, Colin Ian King)"
* tag 'fbdev-v4.18' of git://github.com/bzolnier/linux: (26 commits)
fb_omap2: add gpiolib dependency
video/omap: add module license tags
MAINTAINERS: make omapfb orphan
video: fbdev: pxafb: match_string() conversion fixup
video: fbdev: nvidia: fix spelling mistake: "scaleing" -> "scaling"
video: fbdev: fix spelling mistake: "frambuffer" -> "framebuffer"
video: fbdev: pxafb: Convert to use match_string() helper
video: fbdev: via: allow COMPILE_TEST build
video: fbdev: remove unused sh_mobile_meram driver
drm: shmobile: remove unused MERAM support
video: fbdev: sh_mobile_lcdcfb: remove unused MERAM support
video: fbdev: remove unused auo_k190xfb drivers
video: omap: Improve a size determination in omapfb_do_probe()
video: sm501fb: Improve a size determination in sm501fb_probe()
video: fbdev-MMP: Improve a size determination in path_init()
video: fbdev-MMP: Delete an error message for a failed memory allocation in two functions
video: auo_k190x: Delete an error message for a failed memory allocation in auok190x_common_probe()
video: sh_mobile_lcdcfb: Delete an error message for a failed memory allocation in two functions
video: sh_mobile_meram: Delete an error message for a failed memory allocation in sh_mobile_meram_probe()
video: fbdev: sh_mobile_meram: Drop SUPERH platform dependency
...
Pull AFS updates from Al Viro:
"Assorted AFS stuff - ended up in vfs.git since most of that consists
of David's AFS-related followups to Christoph's procfs series"
* 'afs-proc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
afs: Optimise callback breaking by not repeating volume lookup
afs: Display manually added cells in dynamic root mount
afs: Enable IPv6 DNS lookups
afs: Show all of a server's addresses in /proc/fs/afs/servers
afs: Handle CONFIG_PROC_FS=n
proc: Make inline name size calculation automatic
afs: Implement network namespacing
afs: Mark afs_net::ws_cell as __rcu and set using rcu functions
afs: Fix a Sparse warning in xdr_decode_AFSFetchStatus()
proc: Add a way to make network proc files writable
afs: Rearrange fs/afs/proc.c to remove remaining predeclarations.
afs: Rearrange fs/afs/proc.c to move the show routines up
afs: Rearrange fs/afs/proc.c by moving fops and open functions down
afs: Move /proc management functions to the end of the file
Pull compat updates from Al Viro:
"Some biarch patches - getting rid of assorted (mis)uses of
compat_alloc_user_space().
Not much in that area this cycle..."
* 'work.compat' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
orangefs: simplify compat ioctl handling
signalfd: lift sigmask copyin and size checks to callers of do_signalfd4()
vmsplice(): lift importing iovec into vmsplice(2) and compat counterpart
Pull aio fixes from Al Viro:
"Assorted AIO followups and fixes"
* 'work.aio' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
eventpoll: switch to ->poll_mask
aio: only return events requested in poll_mask() for IOCB_CMD_POLL
eventfd: only return events requested in poll_mask()
aio: mark __aio_sigset::sigmask const