My QEMU VM was seeing inexplicable I/O errors that I tracked down to
errors coming from the qcow2 virtual drive in the host system. The qcow2
file is a nocow file on my Btrfs drive, which QEMU opens with O_DIRECT.
Every once in awhile, pread() or pwrite() would return EEXIST, which
makes no sense. This turned out to be a bug in btrfs_get_extent().
Commit 8dff9c8534 ("Btrfs: deal with duplciates during extent_map
insertion in btrfs_get_extent") fixed a case in btrfs_get_extent() where
two threads race on adding the same extent map to an inode's extent map
tree. However, if the added em is merged with an adjacent em in the
extent tree, then we'll end up with an existing extent that is not
identical to but instead encompasses the extent we tried to add. When we
call merge_extent_mapping() to find the nonoverlapping part of the new
em, the arithmetic overflows because there is no such thing. We then end
up trying to add a bogus em to the em_tree, which results in a EEXIST
that can bubble all the way up to userspace.
Fix it by extending the identical extent map special case.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_map_block supports different types of mappings, which to a large
extent resemble block layer operations. But they don't always do, and
currently btrfs dangerously overlays it's own flag over the block layer
flags. This is just asking for a conflict, so introduce a different
map flags enum inside of btrfs instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from Chris Mason:
"Some fixes that Dave Sterba collected. We held off on these last week
because I was focused on the memory corruption testing"
* 'for-4.9-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix WARNING in btrfs_select_ref_head()
Btrfs: remove some no-op casts
btrfs: pass correct args to btrfs_async_run_delayed_refs()
btrfs: make file clone aware of fatal signals
btrfs: qgroup: Prevent qgroup->reserved from going subzero
Btrfs: kill BUG_ON in do_relocation
Remove the WRITE_* and READ_SYNC wrappers, and just use the flags
directly. Where applicable this also drops usage of the
bio_set_op_attrs wrapper.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
Now that we don't need the common flags to overflow outside the range
of a 32-bit type we can encode them the same way for both the bio and
request fields. This in addition allows us to place the operation
first (and make some room for more ops while we're at it) and to
stop having to shift around the operation values.
In addition this allows passing around only one value in the block layer
instead of two (and eventuall also in the file systems, but we can do
that later) and thus clean up a lot of code.
Last but not least this allows decreasing the size of the cmd_flags
field in struct request to 32-bits. Various functions passing this
value could also be updated, but I'd like to avoid the churn for now.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
In btrfs_truncate_inode_items()->btrfs_async_run_delayed_refs(), we
swap the arg2 and arg3 wrongly, fix this.
This bug just impacts asynchronous delayed refs handle when we truncate inodes.
In delayed_ref_async_start(), there is such codes:
trans = btrfs_join_transaction(async->root);
if (trans->transid > async->transid)
goto end;
ret = btrfs_run_delayed_refs(trans, async->root, async->count);
From this codes, we can see that this just influence whether can we handle
delayed refs or the number of delayed refs to handle, this may impact
performance, but will not result in missing delayed refs, all delayed refs will
be handled in btrfs_commit_transaction().
Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Reviewed-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While free'ing qgroup->reserved resources, we much check if
the page has not been invalidated by a truncate operation
by checking if the page is still dirty before reducing the
qgroup resources. Resources in such a case are free'd when
the entire extent is released by delayed_ref.
This fixes a double accounting while releasing resources
in case of truncating a file, reproduced by the following testcase.
SCRATCH_DEV=/dev/vdb
SCRATCH_MNT=/mnt
mkfs.btrfs -f $SCRATCH_DEV
mount -t btrfs $SCRATCH_DEV $SCRATCH_MNT
cd $SCRATCH_MNT
btrfs quota enable $SCRATCH_MNT
btrfs subvolume create a
btrfs qgroup limit 500m a $SCRATCH_MNT
sync
for c in {1..15}; do
dd if=/dev/zero bs=1M count=40 of=$SCRATCH_MNT/a/file;
done
sleep 10
sync
sleep 5
touch $SCRATCH_MNT/a/newfile
echo "Removing file"
rm $SCRATCH_MNT/a/file
Fixes: b9d0b38928 ("btrfs: Add handler for invalidate page")
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs updates from Chris Mason:
"This is a big variety of fixes and cleanups.
Liu Bo continues to fixup fuzzer related problems, and some of Josef's
cleanups are prep for his bigger extent buffer changes (slated for
v4.10)"
* 'for-linus-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (39 commits)
Revert "btrfs: let btrfs_delete_unused_bgs() to clean relocated bgs"
Btrfs: remove unnecessary btrfs_mark_buffer_dirty in split_leaf
Btrfs: don't BUG() during drop snapshot
btrfs: fix btrfs_no_printk stub helper
Btrfs: memset to avoid stale content in btree leaf
btrfs: parent_start initialization cleanup
btrfs: Remove already completed TODO comment
btrfs: Do not reassign count in btrfs_run_delayed_refs
btrfs: fix a possible umount deadlock
Btrfs: fix memory leak in do_walk_down
btrfs: btrfs_debug should consume fs_info when DEBUG is not defined
btrfs: convert send's verbose_printk to btrfs_debug
btrfs: convert pr_* to btrfs_* where possible
btrfs: convert printk(KERN_* to use pr_* calls
btrfs: unsplit printed strings
btrfs: clean the old superblocks before freeing the device
Btrfs: kill BUG_ON in run_delayed_tree_ref
Btrfs: don't leak reloc root nodes on error
btrfs: squash lines for simple wrapper functions
Btrfs: improve check_node to avoid reading corrupted nodes
...
Pull more vfs updates from Al Viro:
">rename2() work from Miklos + current_time() from Deepa"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs: Replace current_fs_time() with current_time()
fs: Replace CURRENT_TIME_SEC with current_time() for inode timestamps
fs: Replace CURRENT_TIME with current_time() for inode timestamps
fs: proc: Delete inode time initializations in proc_alloc_inode()
vfs: Add current_time() api
vfs: add note about i_op->rename changes to porting
fs: rename "rename2" i_op to "rename"
vfs: remove unused i_op->rename
fs: make remaining filesystems use .rename2
libfs: support RENAME_NOREPLACE in simple_rename()
fs: support RENAME_NOREPLACE for local filesystems
ncpfs: fix unused variable warning
Pull vfs xattr updates from Al Viro:
"xattr stuff from Andreas
This completes the switch to xattr_handler ->get()/->set() from
->getxattr/->setxattr/->removexattr"
* 'work.xattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
vfs: Remove {get,set,remove}xattr inode operations
xattr: Stop calling {get,set,remove}xattr inode operations
vfs: Check for the IOP_XATTR flag in listxattr
xattr: Add __vfs_{get,set,remove}xattr helpers
libfs: Use IOP_XATTR flag for empty directory handling
vfs: Use IOP_XATTR flag for bad-inode handling
vfs: Add IOP_XATTR inode operations flag
vfs: Move xattr_resolve_name to the front of fs/xattr.c
ecryptfs: Switch to generic xattr handlers
sockfs: Get rid of getxattr iop
sockfs: getxattr: Fail with -EOPNOTSUPP for invalid attribute names
kernfs: Switch to generic xattr handlers
hfs: Switch to generic xattr handlers
jffs2: Remove jffs2_{get,set,remove}xattr macros
xattr: Remove unnecessary NULL attribute name check
Pull splice fixups from Al Viro:
"A couple of fixups for interaction of pipe-backed iov_iter with
O_DIRECT reads + constification of a couple of primitives in uio.h
missed by previous rounds.
Kudos to davej - his fuzzing has caught those bugs"
* 'work.splice_read' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
[btrfs] fix check_direct_IO() for non-iovec iterators
constify iov_iter_count() and iter_is_iovec()
fix ITER_PIPE interaction with direct_IO
Pull misc vfs updates from Al Viro:
"Assorted misc bits and pieces.
There are several single-topic branches left after this (rename2
series from Miklos, current_time series from Deepa Dinamani, xattr
series from Andreas, uaccess stuff from from me) and I'd prefer to
send those separately"
* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (39 commits)
proc: switch auxv to use of __mem_open()
hpfs: support FIEMAP
cifs: get rid of unused arguments of CIFSSMBWrite()
posix_acl: uapi header split
posix_acl: xattr representation cleanups
fs/aio.c: eliminate redundant loads in put_aio_ring_file
fs/internal.h: add const to ns_dentry_operations declaration
compat: remove compat_printk()
fs/buffer.c: make __getblk_slow() static
proc: unsigned file descriptors
fs/file: more unsigned file descriptors
fs: compat: remove redundant check of nr_segs
cachefiles: Fix attempt to read i_blocks after deleting file [ver #2]
cifs: don't use memcpy() to copy struct iov_iter
get rid of separate multipage fault-in primitives
fs: Avoid premature clearing of capabilities
fs: Give dentry to inode_change_ok() instead of inode
fuse: Propagate dentry down to inode_change_ok()
ceph: Propagate dentry down to inode_change_ok()
xfs: Propagate dentry down to inode_change_ok()
...
looking for duplicate ->iov_base makes sense only for
iovec-backed iterators; for kvec-backed ones it's pointless,
for bvec-backed ones it's pointless and broken on 32bit (we
walk through an array of struct bio_vec accessing them as if
they were struct iovec; works by accident on 64bit, but on
32bit it'll blow up) and for pipe-backed ones it's pointless
and ends up oopsing.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
These inode operations are no longer used; remove them.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
current_fs_time() uses struct super_block* as an argument.
As per Linus's suggestion, this is changed to take struct
inode* as a parameter instead. This is because the function
is primarily meant for vfs inode timestamps.
Also the function was renamed as per Arnd's suggestion.
Change all calls to current_fs_time() to use the new
current_time() function instead. current_fs_time() will be
deleted.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
For many printks, we want to know which file system issued the message.
This patch converts most pr_* calls to use the btrfs_* versions instead.
In some cases, this means adding plumbing to allow call sites access to
an fs_info pointer.
fs/btrfs/check-integrity.c is left alone for another day.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
CodingStyle chapter 2:
"[...] never break user-visible strings such as printk messages,
because that breaks the ability to grep for them."
This patch unsplits user-visible strings.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a lot of random ints in btrfs_fs_info that can be put into flags. This
is mostly equivalent with the exception of how we deal with quota going on or
off, now instead we set a flag when we are turning it on or off and deal with
that appropriately, rather than just having a pending state that the current
quota_enabled gets set to. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Extend btrfs_set_extent_delalloc() and extent_clear_unlock_delalloc()
parameters for both in-band dedupe and subpage sector size patchset.
This should reduce conflict of both patchset and the effort to rebase
them.
Cc: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
inode_change_ok() will be resposible for clearing capabilities and IMA
extended attributes and as such will need dentry. Give it as an argument
to inode_change_ok() instead of an inode. Also rename inode_change_ok()
to setattr_prepare() to better relect that it does also some
modifications in addition to checks.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Introduce the bio_flags() macro. Ensure that the second argument of
bio_set_op_attrs() only contains flags and no operation. This patch
does not change any functionality.
Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com>
Cc: Mike Christie <mchristi@redhat.com>
Cc: Chris Mason <clm@fb.com> (maintainer:BTRFS FILE SYSTEM)
Cc: Josef Bacik <jbacik@fb.com> (maintainer:BTRFS FILE SYSTEM)
Cc: Mike Snitzer <snitzer@redhat.com>
Cc: Hannes Reinecke <hare@suse.de>
Cc: Damien Le Moal <damien.lemoal@hgst.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
Pull btrfs fixes from Chris Mason:
"We've queued up a few different fixes in here. These range from
enospc corners to fsync and quota fixes, and a few targeted at error
handling for corrupt metadata/fuzzing"
* 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix lockdep warning on deadlock against an inode's log mutex
Btrfs: detect corruption when non-root leaf has zero item
Btrfs: check btree node's nritems
btrfs: don't create or leak aliased root while cleaning up orphans
Btrfs: fix em leak in find_first_block_group
btrfs: do not background blkdev_put()
Btrfs: clarify do_chunk_alloc()'s return value
btrfs: fix fsfreeze hang caused by delayed iputs deal
btrfs: update btrfs_space_info's bytes_may_use timely
btrfs: divide btrfs_update_reserved_bytes() into two functions
btrfs: use correct offset for reloc_inode in prealloc_file_extent_cluster()
btrfs: qgroup: Fix qgroup incorrectness caused by log replay
btrfs: relocation: Fix leaking qgroups numbers on data extents
btrfs: qgroup: Refactor btrfs_qgroup_insert_dirty_extent()
btrfs: waiting on qgroup rescan should not always be interruptible
btrfs: properly track when rescan worker is running
btrfs: flush_space: treat return value of do_chunk_alloc properly
Btrfs: add ASSERT for block group's memory leak
btrfs: backref: Fix soft lockup in __merge_refs function
Btrfs: fix memory leak of reloc_root
This patch can fix some false ENOSPC errors, below test script can
reproduce one false ENOSPC error:
#!/bin/bash
dd if=/dev/zero of=fs.img bs=$((1024*1024)) count=128
dev=$(losetup --show -f fs.img)
mkfs.btrfs -f -M $dev
mkdir /tmp/mntpoint
mount $dev /tmp/mntpoint
cd /tmp/mntpoint
xfs_io -f -c "falloc 0 $((64*1024*1024))" testfile
Above script will fail for ENOSPC reason, but indeed fs still has free
space to satisfy this request. Please see call graph:
btrfs_fallocate()
|-> btrfs_alloc_data_chunk_ondemand()
| bytes_may_use += 64M
|-> btrfs_prealloc_file_range()
|-> btrfs_reserve_extent()
|-> btrfs_add_reserved_bytes()
| alloc_type is RESERVE_ALLOC_NO_ACCOUNT, so it does not
| change bytes_may_use, and bytes_reserved += 64M. Now
| bytes_may_use + bytes_reserved == 128M, which is greater
| than btrfs_space_info's total_bytes, false enospc occurs.
| Note, the bytes_may_use decrease operation will be done in
| end of btrfs_fallocate(), which is too late.
Here is another simple case for buffered write:
CPU 1 | CPU 2
|
|-> cow_file_range() |-> __btrfs_buffered_write()
|-> btrfs_reserve_extent() | |
| | |
| | |
| ..... | |-> btrfs_check_data_free_space()
| |
| |
|-> extent_clear_unlock_delalloc() |
In CPU 1, btrfs_reserve_extent()->find_free_extent()->
btrfs_add_reserved_bytes() do not decrease bytes_may_use, the decrease
operation will be delayed to be done in extent_clear_unlock_delalloc().
Assume in this case, btrfs_reserve_extent() reserved 128MB data, CPU2's
btrfs_check_data_free_space() tries to reserve 100MB data space.
If
100MB > data_sinfo->total_bytes - data_sinfo->bytes_used -
data_sinfo->bytes_reserved - data_sinfo->bytes_pinned -
data_sinfo->bytes_readonly - data_sinfo->bytes_may_use
btrfs_check_data_free_space() will try to allcate new data chunk or call
btrfs_start_delalloc_roots(), or commit current transaction in order to
reserve some free space, obviously a lot of work. But indeed it's not
necessary as long as decreasing bytes_may_use timely, we still have
free space, decreasing 128M from bytes_may_use.
To fix this issue, this patch chooses to update bytes_may_use for both
data and metadata in btrfs_add_reserved_bytes(). For compress path, real
extent length may not be equal to file content length, so introduce a
ram_bytes argument for btrfs_reserve_extent(), find_free_extent() and
btrfs_add_reserved_bytes(), it's becasue bytes_may_use is increased by
file content length. Then compress path can update bytes_may_use
correctly. Also now we can discard RESERVE_ALLOC_NO_ACCOUNT, RESERVE_ALLOC
and RESERVE_FREE.
As we know, usually EXTENT_DO_ACCOUNTING is used for error path. In
run_delalloc_nocow(), for inode marked as NODATACOW or extent marked as
PREALLOC, we also need to update bytes_may_use, but can not pass
EXTENT_DO_ACCOUNTING, because it also clears metadata reservation, so
here we introduce EXTENT_CLEAR_DATA_RESV flag to indicate btrfs_clear_bit_hook()
to update btrfs_space_info's bytes_may_use.
Meanwhile __btrfs_prealloc_file_range() will call
btrfs_free_reserved_data_space() internally for both sucessful and failed
path, btrfs_prealloc_file_range()'s callers does not need to call
btrfs_free_reserved_data_space() any more.
Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from Chris Mason:
"Some fixes for btrfs send/recv and fsync from Filipe and Robbie Ko.
Bonus points to Filipe for already having xfstests in place for many
of these"
* 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: remove unused function btrfs_add_delayed_qgroup_reserve()
Btrfs: improve performance on fsync against new inode after rename/unlink
Btrfs: be more precise on errors when getting an inode from disk
Btrfs: send, don't bug on inconsistent snapshots
Btrfs: send, avoid incorrect leaf accesses when sending utimes operations
Btrfs: send, fix invalid leaf accesses due to incorrect utimes operations
Btrfs: send, fix warning due to late freeing of orphan_dir_info structures
Btrfs: incremental send, fix premature rmdir operations
Btrfs: incremental send, fix invalid paths for rename operations
Btrfs: send, add missing error check for calls to path_loop()
Btrfs: send, fix failure to move directories with the same name around
Btrfs: add missing check for writeback errors on fsync
Since commit 63a4cc2486, bio->bi_rw contains flags in the lower
portion and the op code in the higher portions. This means that
old code that relies on manually setting bi_rw is most likely
going to be broken. Instead of letting that brokeness linger,
rename the member, to force old and out-of-tree code to break
at compile time instead of at runtime.
No intended functional changes in this commit.
Signed-off-by: Jens Axboe <axboe@fb.com>
Pull more btrfs updates from Chris Mason:
"This is part two of my btrfs pull, which is some cleanups and a batch
of fixes.
Most of the code here is from Jeff Mahoney, making the pointers we
pass around internally more consistent and less confusing overall. I
noticed a small problem right before I sent this out yesterday, so I
fixed it up and re-tested overnight"
* 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (40 commits)
Btrfs: fix __MAX_CSUM_ITEMS
btrfs: btrfs_abort_transaction, drop root parameter
btrfs: add btrfs_trans_handle->fs_info pointer
btrfs: btrfs_relocate_chunk pass extent_root to btrfs_end_transaction
btrfs: convert nodesize macros to static inlines
btrfs: introduce BTRFS_MAX_ITEM_SIZE
btrfs: cleanup, remove prototype for btrfs_find_root_ref
btrfs: copy_to_sk drop unused root parameter
btrfs: simpilify btrfs_subvol_inherit_props
btrfs: tests, use BTRFS_FS_STATE_DUMMY_FS_INFO instead of dummy root
btrfs: tests, require fs_info for root
btrfs: tests, move initialization into tests/
btrfs: btrfs_test_opt and friends should take a btrfs_fs_info
btrfs: prefix fsid to all trace events
btrfs: plumb fs_info into btrfs_work
btrfs: remove obsolete part of comment in statfs
btrfs: hide test-only member under ifdef
btrfs: Ratelimit "no csum found" info message
btrfs: Add ratelimit to btrfs printing
Btrfs: fix unexpected balance crash due to BUG_ON
...
With commit 56f23fdbb6 ("Btrfs: fix file/data loss caused by fsync after
rename and new inode") we got simple fix for a functional issue when the
following sequence of actions is done:
at transaction N
create file A at directory D
at transaction N + M (where M >= 1)
move/rename existing file A from directory D to directory E
create a new file named A at directory D
fsync the new file
power fail
The solution was to simply detect such scenario and fallback to a full
transaction commit when we detect it. However this turned out to had a
significant impact on throughput (and a bit on latency too) for benchmarks
using the dbench tool, which simulates real workloads from smbd (Samba)
servers. For example on a test vm (with a debug kernel):
Unpatched:
Throughput 19.1572 MB/sec 32 clients 32 procs max_latency=1005.229 ms
Patched:
Throughput 23.7015 MB/sec 32 clients 32 procs max_latency=809.206 ms
The patched results (this patch is applied) are similar to the results of
a kernel with the commit 56f23fdbb6 ("Btrfs: fix file/data loss caused
by fsync after rename and new inode") reverted.
This change avoids the fallback to a transaction commit and instead makes
sure all the names of the conflicting inode (the one that had a name in a
past transaction that matches the name of the new file in the same parent
directory) are logged so that at log replay time we don't lose neither the
new file nor the old file, and the old file gets the name it was renamed
to.
This also ends up avoiding a full transaction commit for a similar case
that involves an unlink instead of a rename of the old file:
at transaction N
create file A at directory D
at transaction N + M (where M >= 1)
remove file A
create a new file named A at directory D
fsync the new file
power fail
Signed-off-by: Filipe Manana <fdmanana@suse.com>
When we attempt to read an inode from disk, we end up always returning an
-ESTALE error to the caller regardless of the actual failure reason, which
can be an out of memory problem (when allocating a path), some error found
when reading from the fs/subvolume btree (like a genuine IO error) or the
inode does not exists. So lets start returning the real error code to the
callers so that they don't treat all -ESTALE errors as meaning that the
inode does not exists (such as during orphan cleanup). This will also be
needed for a subsequent patch in the same series dealing with a special
fsync case.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Pull btrfs updates from Chris Mason:
"This pull is dedicated to Josef's enospc rework, which we've been
testing for a few releases now. It fixes some early enospc problems
and is dramatically faster.
This also includes an updated fix for the delalloc accounting that
happens after a fault in copy_from_user. My patch in v4.7 was almost
but not quite enough"
* 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix delalloc accounting after copy_from_user faults
Btrfs: avoid deadlocks during reservations in btrfs_truncate_block
Btrfs: use FLUSH_LIMIT for relocation in reserve_metadata_bytes
Btrfs: fill relocation block rsv after allocation
Btrfs: always use trans->block_rsv for orphans
Btrfs: change how we calculate the global block rsv
Btrfs: use root when checking need_async_flush
Btrfs: don't bother kicking async if there's nothing to reclaim
Btrfs: fix release reserved extents trace points
Btrfs: add fsid to some tracepoints
Btrfs: add tracepoints for flush events
Btrfs: fix delalloc reservation amount tracepoint
Btrfs: trace pinned extents
Btrfs: introduce ticketed enospc infrastructure
Btrfs: add tracepoint for adding block groups
Btrfs: warn_on for unaccounted spaces
Btrfs: change delayed reservation fallback behavior
Btrfs: always reserve metadata for delalloc extents
Btrfs: fix callers of btrfs_block_rsv_migrate
Btrfs: add bytes_readonly to the spaceinfo at once
Pull core block updates from Jens Axboe:
- the big change is the cleanup from Mike Christie, cleaning up our
uses of command types and modified flags. This is what will throw
some merge conflicts
- regression fix for the above for btrfs, from Vincent
- following up to the above, better packing of struct request from
Christoph
- a 2038 fix for blktrace from Arnd
- a few trivial/spelling fixes from Bart Van Assche
- a front merge check fix from Damien, which could cause issues on
SMR drives
- Atari partition fix from Gabriel
- convert cfq to highres timers, since jiffies isn't granular enough
for some devices these days. From Jan and Jeff
- CFQ priority boost fix idle classes, from me
- cleanup series from Ming, improving our bio/bvec iteration
- a direct issue fix for blk-mq from Omar
- fix for plug merging not involving the IO scheduler, like we do for
other types of merges. From Tahsin
- expose DAX type internally and through sysfs. From Toshi and Yigal
* 'for-4.8/core' of git://git.kernel.dk/linux-block: (76 commits)
block: Fix front merge check
block: do not merge requests without consulting with io scheduler
block: Fix spelling in a source code comment
block: expose QUEUE_FLAG_DAX in sysfs
block: add QUEUE_FLAG_DAX for devices to advertise their DAX support
Btrfs: fix comparison in __btrfs_map_block()
block: atari: Return early for unsupported sector size
Doc: block: Fix a typo in queue-sysfs.txt
cfq-iosched: Charge at least 1 jiffie instead of 1 ns
cfq-iosched: Fix regression in bonnie++ rewrite performance
cfq-iosched: Convert slice_resid from u64 to s64
block: Convert fifo_time from ulong to u64
blktrace: avoid using timespec
block/blk-cgroup.c: Declare local symbols static
block/bio-integrity.c: Add #include "blk.h"
block/partition-generic.c: Remove a set-but-not-used variable
block: bio: kill BIO_MAX_SIZE
cfq-iosched: temporarily boost queue priority for idle classes
block: drbd: avoid to use BIO_MAX_SIZE
block: bio: remove BIO_MAX_SECTORS
...
__btrfs_abort_transaction doesn't use its root parameter except to
obtain an fs_info pointer. We can obtain that from trans->root->fs_info
for now and from trans->fs_info in a later patch.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have a dummy fs_info associated with each test that
uses a root, we don't need the DUMMY_ROOT bit anymore. This lets
us make choices without needing an actual root like in e.g.
btrfs_find_create_tree_block.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_test_opt and friends only use the root pointer to access
the fs_info. Let's pass the fs_info directly in preparation to
eliminate similar patterns all over btrfs.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Extract cow_file_range() new parameters for both in-band dedupe and
subpage sector size patchset.
This should make conflict of both patchset to minimal, and reduce the
effort needed to rebase them.
Cc: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
One can use btrfs-corrupt-block to hit BUG_ON() in merge_bio(),
thus this aims to stop anyone to panic the whole system by using
their btrfs.
Since the error in merge_bio can only come from __btrfs_map_block()
when chunk tree mapping has something insane and __btrfs_map_block()
has already had printed the reason, we can just return errors in
merge_bio.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
BTRFS is using a variety of slab caches to satisfy internal needs.
Those slab caches are always allocated with the SLAB_RECLAIM_ACCOUNT,
meaning allocations from the caches are going to be accounted as
SReclaimable. At the same time btrfs is not registering any shrinkers
whatsoever, thus preventing memory from the slabs to be shrunk. This
means those caches are not in fact reclaimable.
To fix this remove the SLAB_RECLAIM_ACCOUNT on all caches apart from the
inode cache, since this one is being freed by the generic VFS super_block
shrinker. Also set the transaction related caches as SLAB_TEMPORARY,
to better document the lifetime of the objects (it just translates
to SLAB_RECLAIM_ACCOUNT).
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The code flow in btrfs_new_inode allows for btrfs_evict_inode to be
called with not fully initialised inode (e.g. ->root member not
being set). This can happen when btrfs_set_inode_index in
btrfs_new_inode fails, which in turn would call iput for the newly
allocated inode. This in turn leads to vfs calling into btrfs_evict_inode.
This leads to null pointer dereference. To handle this situation check whether
the passed inode has root set and just free it in case it doesn't.
Signed-off-by: Nikolay Borisov <kernel@kyup.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
So btrfs_block_rsv_migrate just unconditionally calls block_rsv_migrate_bytes.
Not only this but it unconditionally changes the size of the block_rsv. This
isn't a bug strictly speaking, but it makes truncate block rsv's look funny
because every time we migrate bytes over its size grows, even though we only
want it to be a specific size. So collapse this into one function that takes an
update_size argument and make truncate and evict not update the size for
consistency sake. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes part 2 from Chris Mason:
"This has one patch from Omar to bring iterate_shared back to btrfs.
We have a tree of work we queue up for directory items and it doesn't
lend itself well to shared access. While we're cleaning it up, Omar
has changed things to use an exclusive lock when there are delayed
items"
* 'for-linus-4.7-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix ->iterate_shared() by upgrading i_rwsem for delayed nodes
Pull btrfs fixes from Chris Mason:
"I have a two part pull this time because one of the patches Dave
Sterba collected needed to be against v4.7-rc2 or higher (we used
rc4). I try to make my for-linus-xx branch testable on top of the
last major so we can hand fixes to people on the list more easily, so
I've split this pull in two.
This first part has some fixes and two performance improvements that
we've been testing for some time.
Josef's two performance fixes are most notable. The transid tracking
patch makes a big improvement on pretty much every workload"
* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: Force stripesize to the value of sectorsize
btrfs: fix disk_i_size update bug when fallocate() fails
Btrfs: fix error handling in map_private_extent_buffer
Btrfs: fix error return code in btrfs_init_test_fs()
Btrfs: don't do nocow check unless we have to
btrfs: fix deadlock in delayed_ref_async_start
Btrfs: track transid for delayed ref flushing
Commit fe742fd4f9 ("Revert "btrfs: switch to ->iterate_shared()"")
backed out the conversion to ->iterate_shared() for Btrfs because the
delayed inode handling in btrfs_real_readdir() is racy. However, we can
still do readdir in parallel if there are no delayed nodes.
This is a temporary fix which upgrades the shared inode lock to an
exclusive lock only when we have delayed items until we come up with a
more complete solution. While we're here, rename the
btrfs_{get,put}_delayed_items functions to make it very clear that
they're just for readdir.
Tested with xfstests and by doing a parallel kernel build:
while make tinyconfig && make -j4 && git clean dqfx; do
:
done
along with a bunch of parallel finds in another shell:
while true; do
for ((i=0; i<4; i++)); do
find . >/dev/null &
done
wait
done
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Using the offwakecputime bpf script I noticed most of our time was spent waiting
on the delayed ref throttling. This is what is supposed to happen, but
sometimes the transaction can commit and then we're waiting for throttling that
doesn't matter anymore. So change this stuff to be a little smarter by tracking
the transid we were in when we initiated the throttling. If the transaction we
get is different then we can just bail out. This resulted in a 50% speedup in
my fs_mark test, and reduced the amount of time spent throttling by 60 seconds
over the entire run (which is about 30 minutes). Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from Chris Mason:
"The most user visible change here is a fix for our recent superblock
validation checks that were causing problems on non-4k pagesized
systems"
* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: btrfs_check_super_valid: Allow 4096 as stripesize
btrfs: remove build fixup for qgroup_account_snapshot
btrfs: use new error message helper in qgroup_account_snapshot
btrfs: avoid blocking open_ctree from cleaner_kthread
Btrfs: don't BUG_ON() in btrfs_orphan_add
btrfs: account for non-CoW'd blocks in btrfs_abort_transaction
Btrfs: check if extent buffer is aligned to sectorsize
btrfs: Use correct format specifier
This is just a screwup for developers, so change it to an ASSERT() so developers
notice when things go wrong and deal with the error appropriately if ASSERT()
isn't enabled. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need bi_rw to be so large on 64 bit archs, so
reduce it to unsigned int.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
The bio REQ_OP and bi_rw rq_flag_bits are now always setup, so there is
no need to pass around the rq_flag_bits bits too. btrfs users should
should access the bio insead.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
We no longer pass in a bitmap of rq_flag_bits bits to __btrfs_map_block.
It will always be a REQ_OP, or the btrfs specific REQ_GET_READ_MIRRORS,
so this drops the bit tests.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
This should be the easier cases to convert btrfs to
bio_set_op_attrs/bio_op.
They are mostly just cut and replace type of changes.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
This patch has the dio code use a REQ_OP for the op and rq_flag_bits
for bi_rw flags. To set/get the op it uses the bio_set_op_attrs/bio_op
accssors.
It also begins to convert btrfs's dio_submit_t because of the dio
submit_io callout use. The next patches will completely convert
this code and the reset of the btrfs code paths.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Pull btrfs fixes from Chris Mason:
"The important part of this pull is Filipe's set of fixes for btrfs
device replacement. Filipe fixed a few issues seen on the list and a
number he found on his own"
* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: deal with duplciates during extent_map insertion in btrfs_get_extent
Btrfs: fix race between device replace and read repair
Btrfs: fix race between device replace and discard
Btrfs: fix race between device replace and chunk allocation
Btrfs: fix race setting block group back to RW mode during device replace
Btrfs: fix unprotected assignment of the left cursor for device replace
Btrfs: fix race setting block group readonly during device replace
Btrfs: fix race between device replace and block group removal
Btrfs: fix race between readahead and device replace/removal
When dealing with inline extents, btrfs_get_extent will incorrectly try
to insert a duplicate extent_map. The dup hits -EEXIST from
add_extent_map, but then we try to merge with the existing one and end
up trying to insert a zero length extent_map.
This actually works most of the time, except when there are extent maps
past the end of the inline extent. rocksdb will trigger this sometimes
because it preallocates an extent and then truncates down.
Josef made a script to trigger with xfs_io:
#!/bin/bash
xfs_io -f -c "pwrite 0 1000" inline
xfs_io -c "falloc -k 4k 1M" inline
xfs_io -c "pread 0 1000" -c "fadvise -d 0 1000" -c "pread 0 1000" inline
xfs_io -c "fadvise -d 0 1000" inline
cat inline
You'll get EIOs trying to read inline after this because add_extent_map
is returning EEXIST
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs cleanups and fixes from Chris Mason:
"We have another round of fixes and a few cleanups.
I have a fix for short returns from btrfs_copy_from_user, which
finally nails down a very hard to find regression we added in v4.6.
Dave is pushing around gfp parameters, mostly to cleanup internal apis
and make it a little more consistent.
The rest are smaller fixes, and one speelling fixup patch"
* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (22 commits)
Btrfs: fix handling of faults from btrfs_copy_from_user
btrfs: fix string and comment grammatical issues and typos
btrfs: scrub: Set bbio to NULL before calling btrfs_map_block
Btrfs: fix unexpected return value of fiemap
Btrfs: free sys_array eb as soon as possible
btrfs: sink gfp parameter to convert_extent_bit
btrfs: make state preallocation more speculative in __set_extent_bit
btrfs: untangle gotos a bit in convert_extent_bit
btrfs: untangle gotos a bit in __clear_extent_bit
btrfs: untangle gotos a bit in __set_extent_bit
btrfs: sink gfp parameter to set_record_extent_bits
btrfs: sink gfp parameter to set_extent_new
btrfs: sink gfp parameter to set_extent_defrag
btrfs: sink gfp parameter to set_extent_delalloc
btrfs: sink gfp parameter to clear_extent_dirty
btrfs: sink gfp parameter to clear_record_extent_bits
btrfs: sink gfp parameter to clear_extent_bits
btrfs: sink gfp parameter to set_extent_bits
btrfs: make find_workspace warn if there are no workspaces
btrfs: make find_workspace always succeed
...
Pull btrfs updates from Chris Mason:
"This has our merge window series of cleanups and fixes. These target
a wide range of issues, but do include some important fixes for
qgroups, O_DIRECT, and fsync handling. Jeff Mahoney moved around a
few definitions to make them easier for userland to consume.
Also whiteout support is included now that issues with overlayfs have
been cleared up.
I have one more fix pending for page faults during btrfs_copy_from_user,
but I wanted to get this bulk out the door first"
* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (90 commits)
btrfs: fix memory leak during RAID 5/6 device replacement
Btrfs: add semaphore to synchronize direct IO writes with fsync
Btrfs: fix race between block group relocation and nocow writes
Btrfs: fix race between fsync and direct IO writes for prealloc extents
Btrfs: fix number of transaction units for renames with whiteout
Btrfs: pin logs earlier when doing a rename exchange operation
Btrfs: unpin logs if rename exchange operation fails
Btrfs: fix inode leak on failure to setup whiteout inode in rename
btrfs: add support for RENAME_EXCHANGE and RENAME_WHITEOUT
Btrfs: pin log earlier when renaming
Btrfs: unpin log if rename operation fails
Btrfs: don't do unnecessary delalloc flushes when relocating
Btrfs: don't wait for unrelated IO to finish before relocation
Btrfs: fix empty symlink after creating symlink and fsync parent dir
Btrfs: fix for incorrect directory entries after fsync log replay
btrfs: build fixup for qgroup_account_snapshot
btrfs: qgroup: Fix qgroup accounting when creating snapshot
Btrfs: fix fspath error deallocation
btrfs: make find_workspace warn if there are no workspaces
btrfs: make find_workspace always succeed
...
Pull parallel lookup fixups from Al Viro:
"Fix for xfs parallel readdir (turns out the cxfs exposure was not
enough to catch all problems), and a reversion of btrfs back to
->iterate() until the fs/btrfs/delayed-inode.c gets fixed"
* 'work.lookups' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
xfs: concurrent readdir hangs on data buffer locks
Revert "btrfs: switch to ->iterate_shared()"
This reverts commit 972b241f84.
Quoth Chris:
didn't take the delayed inode stuff into account
it got an rbtree of items and it pulls things out
so in shared mode, its hugely racey
sorry, lets revert and fix it for real inside of btrfs
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull remaining vfs xattr work from Al Viro:
"The rest of work.xattr (non-cifs conversions)"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
btrfs: Switch to generic xattr handlers
ubifs: Switch to generic xattr handlers
jfs: Switch to generic xattr handlers
jfs: Clean up xattr name mapping
gfs2: Switch to generic xattr handlers
ceph: kill __ceph_removexattr()
ceph: Switch to generic xattr handlers
ceph: Get rid of d_find_alias in ceph_set_acl
The btrfs_{set,remove}xattr inode operations check for a read-only root
(btrfs_root_readonly) before calling into generic_{set,remove}xattr. If
this check is moved into __btrfs_setxattr, we can get rid of
btrfs_{set,remove}xattr.
This patch applies to mainline, I would like to keep it together with
the other xattr cleanups if possible, though. Could you please review?
Thanks,
Andreas
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull vfs cleanups from Al Viro:
"More cleanups from Christoph"
* 'work.preadv2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
nfsd: use RWF_SYNC
fs: add RWF_DSYNC aand RWF_SYNC
ceph: use generic_write_sync
fs: simplify the generic_write_sync prototype
fs: add IOCB_SYNC and IOCB_DSYNC
direct-io: remove the offset argument to dio_complete
direct-io: eliminate the offset argument to ->direct_IO
xfs: eliminate the pos variable in xfs_file_dio_aio_write
filemap: remove the pos argument to generic_file_direct_write
filemap: remove pos variables in generic_file_read_iter
Due to the optimization of lockless direct IO writes (the inode's i_mutex
is not held) introduced in commit 38851cc19a ("Btrfs: implement unlocked
dio write"), we started having races between such writes with concurrent
fsync operations that use the fast fsync path. These races were addressed
in the patches titled "Btrfs: fix race between fsync and lockless direct
IO writes" and "Btrfs: fix race between fsync and direct IO writes for
prealloc extents". The races happened because the direct IO path, like
every other write path, does create extent maps followed by the
corresponding ordered extents while the fast fsync path collected first
ordered extents and then it collected extent maps. This made it possible
to log file extent items (based on the collected extent maps) without
waiting for the corresponding ordered extents to complete (get their IO
done). The two fixes mentioned before added a solution that consists of
making the direct IO path create first the ordered extents and then the
extent maps, while the fsync path attempts to collect any new ordered
extents once it collects the extent maps. This was simple and did not
require adding any synchonization primitive to any data structure (struct
btrfs_inode for example) but it makes things more fragile for future
development endeavours and adds an exceptional approach compared to the
other write paths.
This change adds a read-write semaphore to the btrfs inode structure and
makes the direct IO path create the extent maps and the ordered extents
while holding read access on that semaphore, while the fast fsync path
collects extent maps and ordered extents while holding write access on
that semaphore. The logic for direct IO write path is encapsulated in a
new helper function that is used both for cow and nocow direct IO writes.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Relocation of a block group waits for all existing tasks flushing
dellaloc, starting direct IO writes and any ordered extents before
starting the relocation process. However for direct IO writes that end
up doing nocow (inode either has the flag nodatacow set or the write is
against a prealloc extent) we have a short time window that allows for a
race that makes relocation proceed without waiting for the direct IO
write to complete first, resulting in data loss after the relocation
finishes. This is illustrated by the following diagram:
CPU 1 CPU 2
btrfs_relocate_block_group(bg X)
direct IO write starts against
an extent in block group X
using nocow mode (inode has the
nodatacow flag or the write is
for a prealloc extent)
btrfs_direct_IO()
btrfs_get_blocks_direct()
--> can_nocow_extent() returns 1
btrfs_inc_block_group_ro(bg X)
--> turns block group into RO mode
btrfs_wait_ordered_roots()
--> returns and does not know about
the DIO write happening at CPU 2
(the task there has not created
yet an ordered extent)
relocate_block_group(bg X)
--> rc->stage == MOVE_DATA_EXTENTS
find_next_extent()
--> returns extent that the DIO
write is going to write to
relocate_data_extent()
relocate_file_extent_cluster()
--> reads the extent from disk into
pages belonging to the relocation
inode and dirties them
--> creates DIO ordered extent
btrfs_submit_direct()
--> submits bio against a location
on disk obtained from an extent
map before the relocation started
btrfs_wait_ordered_range()
--> writes all the pages read before
to disk (belonging to the
relocation inode)
relocation finishes
bio completes and wrote new data
to the old location of the block
group
So fix this by tracking the number of nocow writers for a block group and
make sure relocation waits for that number to go down to 0 before starting
to move the extents.
The same race can also happen with buffered writes in nocow mode since the
patch I recently made titled "Btrfs: don't do unnecessary delalloc flushes
when relocating", because we are no longer flushing all delalloc which
served as a synchonization mechanism (due to page locking) and ensured
the ordered extents for nocow buffered writes were created before we
called btrfs_wait_ordered_roots(). The race with direct IO writes in nocow
mode existed before that patch (no pages are locked or used during direct
IO) and that fixed only races with direct IO writes that do cow.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
When we do a direct IO write against a preallocated extent (fallocate)
that does not go beyond the i_size of the inode, we do the write operation
without holding the inode's i_mutex (an optimization that landed in
commit 38851cc19a ("Btrfs: implement unlocked dio write")). This allows
for a very tiny time window where a race can happen with a concurrent
fsync using the fast code path, as the direct IO write path creates first
a new extent map (no longer flagged as a prealloc extent) and then it
creates the ordered extent, while the fast fsync path first collects
ordered extents and then it collects extent maps. This allows for the
possibility of the fast fsync path to collect the new extent map without
collecting the new ordered extent, and therefore logging an extent item
based on the extent map without waiting for the ordered extent to be
created and complete. This can result in a situation where after a log
replay we end up with an extent not marked anymore as prealloc but it was
only partially written (or not written at all), exposing random, stale or
garbage data corresponding to the unwritten pages and without any
checksums in the csum tree covering the extent's range.
This is an extension of what was done in commit de0ee0edb2 ("Btrfs: fix
race between fsync and lockless direct IO writes").
So fix this by creating first the ordered extent and then the extent
map, so that this way if the fast fsync patch collects the new extent
map it also collects the corresponding ordered extent.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
When we do a rename with the whiteout flag, we need to create the whiteout
inode, which in the worst case requires 5 transaction units (1 inode item,
1 inode ref, 2 dir items and 1 xattr if selinux is enabled). So bump the
number of transaction units from 11 to 16 if the whiteout flag is set.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
The btrfs_rename_exchange() started as a copy-paste from btrfs_rename(),
which had a race fixed by my previous patch titled "Btrfs: pin log earlier
when renaming", and so it suffers from the same problem.
We pin the logs of the affected roots after we insert the new inode
references, leaving a time window where concurrent tasks logging the
inodes can end up logging both the new and old references, resulting
in log trees that when replayed can turn the metadata into inconsistent
states. This behaviour was added to btrfs_rename() in 2009 without any
explanation about why not pinning the logs earlier, just leaving a
comment about the posibility for the race. As of today it's perfectly
safe and sane to pin the logs before we start doing any of the steps
involved in the rename operation.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
If rename exchange operations fail at some point after we pinned any of
the logs, we end up aborting the current transaction but never unpin the
logs, which leaves concurrent tasks that are trying to sync the logs (as
part of an fsync request from user space) blocked forever and preventing
the filesystem from being unmountable.
Fix this by safely unpinning the log.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
If we failed to fully setup the whiteout inode during a rename operation
with the whiteout flag, we ended up leaking the inode, not decrementing
its link count nor removing all its items from the fs/subvol tree.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Two new flags, RENAME_EXCHANGE and RENAME_WHITEOUT, provide for new
behavior in the renameat2() syscall. This behavior is primarily used by
overlayfs. This patch adds support for these flags to btrfs, enabling it to
be used as a fully functional upper layer for overlayfs.
RENAME_EXCHANGE support was written by Davide Italiano originally
submitted on 2 April 2015.
Signed-off-by: Davide Italiano <dccitaliano@gmail.com>
Signed-off-by: Dan Fuhry <dfuhry@datto.com>
[ remove unlikely ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
We were pinning the log right after the first step in the rename operation
(inserting inode ref for the new name in the destination directory)
instead of doing it before. This behaviour was introduced in 2009 for some
reason that was not mentioned neither on the changelog nor any comment,
with the drawback of a small time window where concurrent log writers can
end up logging the new inode reference for the inode we are renaming while
the rename operation is in progress (so that we can end up with a log
containing both the new and old references). As of today there's no reason
to not pin the log before that first step anymore, so just fix this.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
If rename operations fail at some point after we pinned the log, we end
up aborting the current transaction but never unpin the log, which leaves
concurrent tasks that are trying to sync the log (as part of an fsync
request from user space) blocked forever and preventing the filesystem
from being unmountable.
Fix this by safely unpinning the log.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Before we start the actual relocation process of a block group, we do
calls to flush delalloc of all inodes and then wait for ordered extents
to complete. However we do these flush calls just to make sure we don't
race with concurrent tasks that have actually already started to run
delalloc and have allocated an extent from the block group we want to
relocate, right before we set it to readonly mode, but have not yet
created the respective ordered extents. The flush calls make us wait
for such concurrent tasks because they end up calling
filemap_fdatawrite_range() (through btrfs_start_delalloc_roots() ->
__start_delalloc_inodes() -> btrfs_alloc_delalloc_work() ->
btrfs_run_delalloc_work()) which ends up serializing us with those tasks
due to attempts to lock the same pages (and the delalloc flush procedure
calls the allocator and creates the ordered extents before unlocking the
pages).
These flushing calls not only make us waste time (cpu, IO) but also reduce
the chances of writing larger extents (applications might be writing to
contiguous ranges and we flush before they finish dirtying the whole
ranges).
So make sure we don't flush delalloc and just wait for concurrent tasks
that have already started flushing delalloc and have allocated an extent
from the block group we are about to relocate.
This change also ends up fixing a race with direct IO writes that makes
relocation not wait for direct IO ordered extents. This race is
illustrated by the following diagram:
CPU 1 CPU 2
btrfs_relocate_block_group(bg X)
starts direct IO write,
target inode currently has no
ordered extents ongoing nor
dirty pages (delalloc regions),
therefore the root for our inode
is not in the list
fs_info->ordered_roots
btrfs_direct_IO()
__blockdev_direct_IO()
btrfs_get_blocks_direct()
btrfs_lock_extent_direct()
locks range in the io tree
btrfs_new_extent_direct()
btrfs_reserve_extent()
--> extent allocated
from bg X
btrfs_inc_block_group_ro(bg X)
btrfs_start_delalloc_roots()
__start_delalloc_inodes()
--> does nothing, no dealloc ranges
in the inode's io tree so the
inode's root is not in the list
fs_info->delalloc_roots
btrfs_wait_ordered_roots()
--> does not find the inode's root in the
list fs_info->ordered_roots
--> ends up not waiting for the direct IO
write started by the task at CPU 2
relocate_block_group(rc->stage ==
MOVE_DATA_EXTENTS)
prepare_to_relocate()
btrfs_commit_transaction()
iterates the extent tree, using its
commit root and moves extents into new
locations
btrfs_add_ordered_extent_dio()
--> now a ordered extent is
created and added to the
list root->ordered_extents
and the root added to the
list fs_info->ordered_roots
--> this is too late and the
task at CPU 1 already
started the relocation
btrfs_commit_transaction()
btrfs_finish_ordered_io()
btrfs_alloc_reserved_file_extent()
--> adds delayed data reference
for the extent allocated
from bg X
relocate_block_group(rc->stage ==
UPDATE_DATA_PTRS)
prepare_to_relocate()
btrfs_commit_transaction()
--> delayed refs are run, so an extent
item for the allocated extent from
bg X is added to extent tree
--> commit roots are switched, so the
next scan in the extent tree will
see the extent item
sees the extent in the extent tree
When this happens the relocation produces the following warning when it
finishes:
[ 7260.832836] ------------[ cut here ]------------
[ 7260.834653] WARNING: CPU: 5 PID: 6765 at fs/btrfs/relocation.c:4318 btrfs_relocate_block_group+0x245/0x2a1 [btrfs]()
[ 7260.838268] Modules linked in: btrfs crc32c_generic xor ppdev raid6_pq psmouse sg acpi_cpufreq evdev i2c_piix4 tpm_tis serio_raw tpm i2c_core pcspkr parport_pc
[ 7260.850935] CPU: 5 PID: 6765 Comm: btrfs Not tainted 4.5.0-rc6-btrfs-next-28+ #1
[ 7260.852998] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[ 7260.852998] 0000000000000000 ffff88020bf57bc0 ffffffff812648b3 0000000000000000
[ 7260.852998] 0000000000000009 ffff88020bf57bf8 ffffffff81051608 ffffffffa03c1b2d
[ 7260.852998] ffff8800b2bbb800 0000000000000000 ffff8800b17bcc58 ffff8800399dd000
[ 7260.852998] Call Trace:
[ 7260.852998] [<ffffffff812648b3>] dump_stack+0x67/0x90
[ 7260.852998] [<ffffffff81051608>] warn_slowpath_common+0x99/0xb2
[ 7260.852998] [<ffffffffa03c1b2d>] ? btrfs_relocate_block_group+0x245/0x2a1 [btrfs]
[ 7260.852998] [<ffffffff810516d4>] warn_slowpath_null+0x1a/0x1c
[ 7260.852998] [<ffffffffa03c1b2d>] btrfs_relocate_block_group+0x245/0x2a1 [btrfs]
[ 7260.852998] [<ffffffffa039d9de>] btrfs_relocate_chunk.isra.29+0x66/0xdb [btrfs]
[ 7260.852998] [<ffffffffa039f314>] btrfs_balance+0xde1/0xe4e [btrfs]
[ 7260.852998] [<ffffffff8127d671>] ? debug_smp_processor_id+0x17/0x19
[ 7260.852998] [<ffffffffa03a9583>] btrfs_ioctl_balance+0x255/0x2d3 [btrfs]
[ 7260.852998] [<ffffffffa03ac96a>] btrfs_ioctl+0x11e0/0x1dff [btrfs]
[ 7260.852998] [<ffffffff811451df>] ? handle_mm_fault+0x443/0xd63
[ 7260.852998] [<ffffffff81491817>] ? _raw_spin_unlock+0x31/0x44
[ 7260.852998] [<ffffffff8108b36a>] ? arch_local_irq_save+0x9/0xc
[ 7260.852998] [<ffffffff811876ab>] vfs_ioctl+0x18/0x34
[ 7260.852998] [<ffffffff81187cb2>] do_vfs_ioctl+0x550/0x5be
[ 7260.852998] [<ffffffff81190c30>] ? __fget_light+0x4d/0x71
[ 7260.852998] [<ffffffff81187d77>] SyS_ioctl+0x57/0x79
[ 7260.852998] [<ffffffff81492017>] entry_SYSCALL_64_fastpath+0x12/0x6b
[ 7260.893268] ---[ end trace eb7803b24ebab8ad ]---
This is because at the end of the first stage, in relocate_block_group(),
we commit the current transaction, which makes delayed refs run, the
commit roots are switched and so the second stage will find the extent
item that the ordered extent added to the delayed refs. But this extent
was not moved (ordered extent completed after first stage finished), so
at the end of the relocation our block group item still has a positive
used bytes counter, triggering a warning at the end of
btrfs_relocate_block_group(). Later on when trying to read the extent
contents from disk we hit a BUG_ON() due to the inability to map a block
with a logical address that belongs to the block group we relocated and
is no longer valid, resulting in the following trace:
[ 7344.885290] BTRFS critical (device sdi): unable to find logical 12845056 len 4096
[ 7344.887518] ------------[ cut here ]------------
[ 7344.888431] kernel BUG at fs/btrfs/inode.c:1833!
[ 7344.888431] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
[ 7344.888431] Modules linked in: btrfs crc32c_generic xor ppdev raid6_pq psmouse sg acpi_cpufreq evdev i2c_piix4 tpm_tis serio_raw tpm i2c_core pcspkr parport_pc
[ 7344.888431] CPU: 0 PID: 6831 Comm: od Tainted: G W 4.5.0-rc6-btrfs-next-28+ #1
[ 7344.888431] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[ 7344.888431] task: ffff880215818600 ti: ffff880204684000 task.ti: ffff880204684000
[ 7344.888431] RIP: 0010:[<ffffffffa037c88c>] [<ffffffffa037c88c>] btrfs_merge_bio_hook+0x54/0x6b [btrfs]
[ 7344.888431] RSP: 0018:ffff8802046878f0 EFLAGS: 00010282
[ 7344.888431] RAX: 00000000ffffffea RBX: 0000000000001000 RCX: 0000000000000001
[ 7344.888431] RDX: ffff88023ec0f950 RSI: ffffffff8183b638 RDI: 00000000ffffffff
[ 7344.888431] RBP: ffff880204687908 R08: 0000000000000001 R09: 0000000000000000
[ 7344.888431] R10: ffff880204687770 R11: ffffffff82f2d52d R12: 0000000000001000
[ 7344.888431] R13: ffff88021afbfee8 R14: 0000000000006208 R15: ffff88006cd199b0
[ 7344.888431] FS: 00007f1f9e1d6700(0000) GS:ffff88023ec00000(0000) knlGS:0000000000000000
[ 7344.888431] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 7344.888431] CR2: 00007f1f9dc8cb60 CR3: 000000023e3b6000 CR4: 00000000000006f0
[ 7344.888431] Stack:
[ 7344.888431] 0000000000001000 0000000000001000 ffff880204687b98 ffff880204687950
[ 7344.888431] ffffffffa0395c8f ffffea0004d64d48 0000000000000000 0000000000001000
[ 7344.888431] ffffea0004d64d48 0000000000001000 0000000000000000 0000000000000000
[ 7344.888431] Call Trace:
[ 7344.888431] [<ffffffffa0395c8f>] submit_extent_page+0xf5/0x16f [btrfs]
[ 7344.888431] [<ffffffffa03970ac>] __do_readpage+0x4a0/0x4f1 [btrfs]
[ 7344.888431] [<ffffffffa039680d>] ? btrfs_create_repair_bio+0xcb/0xcb [btrfs]
[ 7344.888431] [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs]
[ 7344.888431] [<ffffffff8108df55>] ? trace_hardirqs_on+0xd/0xf
[ 7344.888431] [<ffffffffa039728c>] __do_contiguous_readpages.constprop.26+0xc2/0xe4 [btrfs]
[ 7344.888431] [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs]
[ 7344.888431] [<ffffffffa039739b>] __extent_readpages.constprop.25+0xed/0x100 [btrfs]
[ 7344.888431] [<ffffffff81129d24>] ? lru_cache_add+0xe/0x10
[ 7344.888431] [<ffffffffa0397ea8>] extent_readpages+0x160/0x1aa [btrfs]
[ 7344.888431] [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs]
[ 7344.888431] [<ffffffff8115daad>] ? alloc_pages_current+0xa9/0xcd
[ 7344.888431] [<ffffffffa037cdc9>] btrfs_readpages+0x1f/0x21 [btrfs]
[ 7344.888431] [<ffffffff81128316>] __do_page_cache_readahead+0x168/0x1fc
[ 7344.888431] [<ffffffff811285a0>] ondemand_readahead+0x1f6/0x207
[ 7344.888431] [<ffffffff811285a0>] ? ondemand_readahead+0x1f6/0x207
[ 7344.888431] [<ffffffff8111cf34>] ? pagecache_get_page+0x2b/0x154
[ 7344.888431] [<ffffffff8112870e>] page_cache_sync_readahead+0x3d/0x3f
[ 7344.888431] [<ffffffff8111dbf7>] generic_file_read_iter+0x197/0x4e1
[ 7344.888431] [<ffffffff8117773a>] __vfs_read+0x79/0x9d
[ 7344.888431] [<ffffffff81178050>] vfs_read+0x8f/0xd2
[ 7344.888431] [<ffffffff81178a38>] SyS_read+0x50/0x7e
[ 7344.888431] [<ffffffff81492017>] entry_SYSCALL_64_fastpath+0x12/0x6b
[ 7344.888431] Code: 8d 4d e8 45 31 c9 45 31 c0 48 8b 00 48 c1 e2 09 48 8b 80 80 fc ff ff 4c 89 65 e8 48 8b b8 f0 01 00 00 e8 1d 42 02 00 85 c0 79 02 <0f> 0b 4c 0
[ 7344.888431] RIP [<ffffffffa037c88c>] btrfs_merge_bio_hook+0x54/0x6b [btrfs]
[ 7344.888431] RSP <ffff8802046878f0>
[ 7344.970544] ---[ end trace eb7803b24ebab8ae ]---
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Including blkdev_direct_IO and dax_do_io. It has to be ki_pos to actually
work, so eliminate the superflous argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Callers pass GFP_NOFS and tests pass GFP_KERNEL, but using NOFS there
does not hurt. No need to pass the flags around.
Signed-off-by: David Sterba <dsterba@suse.com>
32-bit ioctl uses these rather than the regular FS_IOC_* versions. They can
be handled in btrfs using the same code. Without this, 32-bit {ch,ls}attr
fail.
Signed-off-by: Luke Dashjr <luke-jr+git@utopios.org>
Cc: stable@vger.kernel.org
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull btrfs fix from Chris Mason:
"My for-linus-4.5 branch has a btrfs DIO error passing fix.
I know how much you love DIO, so I'm going to suggest against reading
it. We'll follow up with a patch to drop the error arg from
dio_end_io in the next merge window."
* 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix direct IO requests not reporting IO error to user space
Cleanup.
kmem_cache_destroy has support NULL argument checking,
so drop the double null testing before calling it.
Signed-off-by: Kinglong Mee <kinglongmee@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
CURRENT_TIME macro is not appropriate for filesystems as it
doesn't use the right granularity for filesystem timestamps.
Use current_fs_time() instead.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: linux-btrfs@vger.kernel.org
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
truncate_space_check is using btrfs_csum_bytes_to_leaves() but forgetting to
multiply by nodesize so we get an actual byte count. We need a tracepoint here
so that we have the matching reserve for the release that will come later. Also
add a comment to make clear what the intent of truncate_space_check is.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If a bio for a direct IO request fails, we were not setting the error in
the parent bio (the main DIO bio), making us not return the error to
user space in btrfs_direct_IO(), that is, it made __blockdev_direct_IO()
return the number of bytes issued for IO and not the error a bio created
and submitted by btrfs_submit_direct() got from the block layer.
This essentially happens because when we call:
dio_end_io(dio_bio, bio->bi_error);
It does not set dio_bio->bi_error to the value of the second argument.
So just add this missing assignment in endio callbacks, just as we do in
the error path at btrfs_submit_direct() when we fail to clone the dio bio
or allocate its private object. This follows the convention of what is
done with other similar APIs such as bio_endio() where the caller is
responsible for setting the bi_error field in the bio it passes as an
argument to bio_endio().
This was detected by the new generic test cases in xfstests: 271, 272,
276 and 278. Which essentially setup a dm error target, then load the
error table, do a direct IO write and unload the error table. They
expect the write to fail with -EIO, which was not getting reported
when testing against btrfs.
Cc: stable@vger.kernel.org # 4.3+
Fixes: 4246a0b63b ("block: add a bi_error field to struct bio")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Pull btrfs fixes from Chris Mason:
"This has a few fixes from Filipe, along with a readdir fix from Dave
that we've been testing for some time"
* 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: properly set the termination value of ctx->pos in readdir
Btrfs: fix hang on extent buffer lock caused by the inode_paths ioctl
Btrfs: remove no longer used function extent_read_full_page_nolock()
Btrfs: fix page reading in extent_same ioctl leading to csum errors
Btrfs: fix invalid page accesses in extent_same (dedup) ioctl
The value of ctx->pos in the last readdir call is supposed to be set to
INT_MAX due to 32bit compatibility, unless 'pos' is intentially set to a
larger value, then it's LLONG_MAX.
There's a report from PaX SIZE_OVERFLOW plugin that "ctx->pos++"
overflows (https://forums.grsecurity.net/viewtopic.php?f=1&t=4284), on a
64bit arch, where the value is 0x7fffffffffffffff ie. LLONG_MAX before
the increment.
We can get to that situation like that:
* emit all regular readdir entries
* still in the same call to readdir, bump the last pos to INT_MAX
* next call to readdir will not emit any entries, but will reach the
bump code again, finds pos to be INT_MAX and sets it to LLONG_MAX
Normally this is not a problem, but if we call readdir again, we'll find
'pos' set to LLONG_MAX and the unconditional increment will overflow.
The report from Victor at
(http://thread.gmane.org/gmane.comp.file-systems.btrfs/49500) with debugging
print shows that pattern:
Overflow: e
Overflow: 7fffffff
Overflow: 7fffffffffffffff
PAX: size overflow detected in function btrfs_real_readdir
fs/btrfs/inode.c:5760 cicus.935_282 max, count: 9, decl: pos; num: 0;
context: dir_context;
CPU: 0 PID: 2630 Comm: polkitd Not tainted 4.2.3-grsec #1
Hardware name: Gigabyte Technology Co., Ltd. H81ND2H/H81ND2H, BIOS F3 08/11/2015
ffffffff81901608 0000000000000000 ffffffff819015e6 ffffc90004973d48
ffffffff81742f0f 0000000000000007 ffffffff81901608 ffffc90004973d78
ffffffff811cb706 0000000000000000 ffff8800d47359e0 ffffc90004973ed8
Call Trace:
[<ffffffff81742f0f>] dump_stack+0x4c/0x7f
[<ffffffff811cb706>] report_size_overflow+0x36/0x40
[<ffffffff812ef0bc>] btrfs_real_readdir+0x69c/0x6d0
[<ffffffff811dafc8>] iterate_dir+0xa8/0x150
[<ffffffff811e6d8d>] ? __fget_light+0x2d/0x70
[<ffffffff811dba3a>] SyS_getdents+0xba/0x1c0
Overflow: 1a
[<ffffffff811db070>] ? iterate_dir+0x150/0x150
[<ffffffff81749b69>] entry_SYSCALL_64_fastpath+0x12/0x83
The jump from 7fffffff to 7fffffffffffffff happens when new dir entries
are not yet synced and are processed from the delayed list. Then the code
could go to the bump section again even though it might not emit any new
dir entries from the delayed list.
The fix avoids entering the "bump" section again once we've finished
emitting the entries, both for synced and delayed entries.
References: https://forums.grsecurity.net/viewtopic.php?f=1&t=4284
Reported-by: Victor <services@swwu.com>
CC: stable@vger.kernel.org
Signed-off-by: David Sterba <dsterba@suse.com>
Tested-by: Holger Hoffstätte <holger.hoffstaette@googlemail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Readdir is initiated from userspace and is not on the critical
writeback path, we don't need to use GFP_NOFS for allocations.
Signed-off-by: David Sterba <dsterba@suse.com>
When extending a file by either "truncate up" or by writing beyond i_size, the
page which had i_size needs to be marked "read only" so that future writes to
the page via mmap interface causes btrfs_page_mkwrite() to be invoked. If not,
a write performed after extending the file via the mmap interface will find
the page to be writaeable and continue writing to the page without invoking
btrfs_page_mkwrite() i.e. we end up writing to a file without reserving disk
space.
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_getattr() returns PAGE_CACHE_SIZE as the block size. Since
generic_fillattr() already does the right thing (by obtaining block size
from inode->i_blkbits), just remove the statement from btrfs_getattr.
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
cow_file_range_inline() limits the size of an inline extent to
PAGE_CACHE_SIZE. This breaks in subpagesize-blocksize scenarios. Fix this by
comparing against root->sectorsize.
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In subpagesize-blocksize scenario, map_length can be less than the length of a
bio vector. Such a condition may cause btrfs_submit_direct_hook() to submit a
zero length bio. Fix this by comparing map_length against block size rather
than with bv_len.
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In subpagesize-blocksize scenario it is not sufficient to search using the
first byte of the page to make sure that there are no ordered extents
present across the page. Fix this.
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In subpagesize-blocksize scenario, if i_size occurs in a block which is not
the last block in the page, then the space to be reserved should be calculated
appropriately.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While at it, this commit changes btrfs_truncate_page() to truncate sectorsized
blocks instead of pages. Hence the function has been renamed to
btrfs_truncate_block().
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The direct I/O read's endio and corresponding repair functions work on
page sized blocks. This commit adds the ability for direct I/O read to work on
subpagesized blocks.
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from Chris Mason:
"Dave had a small collection of fixes to the new free space tree code,
one of which was keeping our sysfs files more up to date with feature
bits as different things get enabled (lzo, raid5/6, etc).
I should have kept the sysfs stuff for rc3, since we always manage to
trip over something. This time it was GFP_KERNEL from somewhere that
is NOFS only. Instead of rebasing it out I've put a revert in, and
we'll fix it properly for rc3.
Otherwise, Filipe fixed a btrfs DIO race and Qu Wenruo fixed up a
use-after-free in our tracepoints that Dave Jones reported"
* 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Revert "btrfs: synchronize incompat feature bits with sysfs files"
btrfs: don't use GFP_HIGHMEM for free-space-tree bitmap kzalloc
btrfs: sysfs: check initialization state before updating features
Revert "btrfs: clear PF_NOFREEZE in cleaner_kthread()"
btrfs: async-thread: Fix a use-after-free error for trace
Btrfs: fix race between fsync and lockless direct IO writes
btrfs: add free space tree to the cow-only list
btrfs: add free space tree to lockdep classes
btrfs: tweak free space tree bitmap allocation
btrfs: tests: switch to GFP_KERNEL
btrfs: synchronize incompat feature bits with sysfs files
btrfs: sysfs: introduce helper for syncing bits with sysfs files
btrfs: sysfs: add free-space-tree bit attribute
btrfs: sysfs: fix typo in compat_ro attribute definition
An fsync, using the fast path, can race with a concurrent lockless direct
IO write and end up logging a file extent item that points to an extent
that wasn't written to yet. This is because the fast fsync path collects
ordered extents into a local list and then collects all the new extent
maps to log file extent items based on them, while the direct IO write
path creates the new extent map before it creates the corresponding
ordered extent (and submitting the respective bio(s)).
So fix this by making the direct IO write path create ordered extents
before the extent maps and make the fast fsync path collect any new
ordered extents after it collects the extent maps.
Note that making the fsync handler call inode_dio_wait() (after acquiring
the inode's i_mutex) would not work and lead to a deadlock when doing
AIO, as through AIO we end up in a path where the fsync handler is called
(through dio_aio_complete_work() -> dio_complete() -> vfs_fsync_range())
before the inode's dio counter is decremented (inode_dio_wait() waits
for this counter to have a value of zero).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).
Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull more btrfs updates from Chris Mason:
"These are mostly fixes that we've been testing, but also we grabbed
and tested a few small cleanups that had been on the list for a while.
Zhao Lei's patchset also fixes some early ENOSPC buglets"
* 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (21 commits)
btrfs: raid56: Use raid_write_end_io for scrub
btrfs: Remove unnecessary ClearPageUptodate for raid56
btrfs: use rbio->nr_pages to reduce calculation
btrfs: Use unified stripe_page's index calculation
btrfs: Fix calculation of rbio->dbitmap's size calculation
btrfs: Fix no_space in write and rm loop
btrfs: merge functions for wait snapshot creation
btrfs: delete unused argument in btrfs_copy_from_user
btrfs: Use direct way to determine raid56 write/recover mode
btrfs: Small cleanup for get index_srcdev loop
btrfs: Enhance chunk validation check
btrfs: Enhance super validation check
Btrfs: fix deadlock running delayed iputs at transaction commit time
Btrfs: fix typo in log message when starting a balance
btrfs: remove duplicate const specifier
btrfs: initialize the seq counter in struct btrfs_device
Btrfs: clean up an error code in btrfs_init_space_info()
btrfs: fix iterator with update error in backref.c
Btrfs: fix output of compression message in btrfs_parse_options()
Btrfs: Initialize btrfs_root->highest_objectid when loading tree root and subvolume roots
...
wait_for_snapshot_creation() is in same group with oher two:
btrfs_start_write_no_snapshoting()
btrfs_end_write_no_snapshoting()
Rename wait_for_snapshot_creation() and move it into same place
with other two.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs updates from Chris Mason:
"This has our usual assortment of fixes and cleanups, but the biggest
change included is Omar Sandoval's free space tree. It's not the
default yet, mounting -o space_cache=v2 enables it and sets a readonly
compat bit. The tree can actually be deleted and regenerated if there
are any problems, but it has held up really well in testing so far.
For very large filesystems (30T+) our existing free space caching code
can end up taking a huge amount of time during commits. The new tree
based code is faster and less work overall to update as the commit
progresses.
Omar worked on this during the summer and we'll hammer on it in
production here at FB over the next few months"
* 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (73 commits)
Btrfs: fix fitrim discarding device area reserved for boot loader's use
Btrfs: Check metadata redundancy on balance
btrfs: statfs: report zero available if metadata are exhausted
btrfs: preallocate path for snapshot creation at ioctl time
btrfs: allocate root item at snapshot ioctl time
btrfs: do an allocation earlier during snapshot creation
btrfs: use smaller type for btrfs_path locks
btrfs: use smaller type for btrfs_path lowest_level
btrfs: use smaller type for btrfs_path reada
btrfs: cleanup, use enum values for btrfs_path reada
btrfs: constify static arrays
btrfs: constify remaining structs with function pointers
btrfs tests: replace whole ops structure for free space tests
btrfs: use list_for_each_entry* in backref.c
btrfs: use list_for_each_entry_safe in free-space-cache.c
btrfs: use list_for_each_entry* in check-integrity.c
Btrfs: use linux/sizes.h to represent constants
btrfs: cleanup, remove stray return statements
btrfs: zero out delayed node upon allocation
btrfs: pass proper enum type to start_transaction()
...
Mark those kmem allocations that are known to be easily triggered from
userspace as __GFP_ACCOUNT/SLAB_ACCOUNT, which makes them accounted to
memcg. For the list, see below:
- threadinfo
- task_struct
- task_delay_info
- pid
- cred
- mm_struct
- vm_area_struct and vm_region (nommu)
- anon_vma and anon_vma_chain
- signal_struct
- sighand_struct
- fs_struct
- files_struct
- fdtable and fdtable->full_fds_bits
- dentry and external_name
- inode for all filesystems. This is the most tedious part, because
most filesystems overwrite the alloc_inode method.
The list is far from complete, so feel free to add more objects.
Nevertheless, it should be close to "account everything" approach and
keep most workloads within bounds. Malevolent users will be able to
breach the limit, but this was possible even with the former "account
everything" approach (simply because it did not account everything in
fact).
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull vfs xattr updates from Al Viro:
"Andreas' xattr cleanup series.
It's a followup to his xattr work that went in last cycle; -0.5KLoC"
* 'work.xattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
xattr handlers: Simplify list operation
ocfs2: Replace list xattr handler operations
nfs: Move call to security_inode_listsecurity into nfs_listxattr
xfs: Change how listxattr generates synthetic attributes
tmpfs: listxattr should include POSIX ACL xattrs
tmpfs: Use xattr handler infrastructure
btrfs: Use xattr handler infrastructure
vfs: Distinguish between full xattr names and proper prefixes
posix acls: Remove duplicate xattr name definitions
gfs2: Remove gfs2_xattr_acl_chmod
vfs: Remove vfs_xattr_cmp
Replace the integers by enums for better readability. The value 2 does
not have any meaning since a717531942
"Btrfs: do less aggressive btree readahead" (2009-01-22).
Signed-off-by: David Sterba <dsterba@suse.com>
There are a few statically initialized arrays that can be made const.
The remaining (like file_system_type, sysfs attributes or prop handlers)
do not allow that due to type mismatch when passed to the APIs or
because the structures are modified through other members.
Signed-off-by: David Sterba <dsterba@suse.com>
We use many constants to represent size and offset value. And to make
code readable we use '256 * 1024 * 1024' instead of '268435456' to
represent '256MB'. However we can make far more readable with 'SZ_256MB'
which is defined in the 'linux/sizes.h'.
So this patch replaces 'xxx * 1024 * 1024' kind of expression with
single 'SZ_xxxMB' if 'xxx' is a power of 2 then 'xxx * SZ_1M' if 'xxx' is
not a power of 2. And I haven't touched to '4096' & '8192' because it's
more intuitive than 'SZ_4KB' & 'SZ_8KB'.
Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The inode argument is never used from the beginning, so remove it.
Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Although we prefer to use separate caches for various structs, it seems
better not to do that for struct btrfs_delalloc_work. Objects of this
type are allocated rarely, when transaction commit calls
btrfs_start_delalloc_roots, requesting delayed iputs.
The objects are temporary (with some IO involved) but still allocated
and freed within __start_delalloc_inodes. Memory allocation failure is
handled.
The slab cache is empty most of the time (observed on several systems),
so if we need to allocate a new slab object, the first one has to
allocate a full page. In a potential case of low memory conditions this
might fail with higher probability compared to using the generic slab
caches.
Signed-off-by: David Sterba <dsterba@suse.com>
Inodes for delayed iput allocate a trivial helper structure, let's place
the list hook directly into the inode and save a kmalloc (killing a
__GFP_NOFAIL as a bonus) at the cost of increasing size of btrfs_inode.
The inode can be put into the delayed_iputs list more than once and we
have to keep the count. This means we can't use the list_splice to
process a bunch of inodes because we'd lost track of the count if the
inode is put into the delayed iputs again while it's processed.
Signed-off-by: David Sterba <dsterba@suse.com>
We hit this panic on a few of our boxes this week where we have an
ordered_extent with an NULL inode. We do an igrab() of the inode in writepages,
but weren't doing it in writepage which can be called directly from the VM on
dirty pages. If the inode has been unlinked then we could have I_FREEING set
which means igrab() would return NULL and we get this panic. Fix this by trying
to igrab in btrfs_writepage, and if it returns NULL then just redirty the page
and return AOP_WRITEPAGE_ACTIVATE; so the VM knows it wasn't successful. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we failed to create a hard link we were not always releasing the
the transaction handle we got before, resulting in a memory leak and
preventing any other tasks from being able to commit the current
transaction.
Fix this by always releasing our transaction handle.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
We weren't accounting for the insertion of an inline extent item for the
symlink inode nor that we need to update the parent inode item (through
the call to btrfs_add_nondir()). So fix this by including two more
transaction units.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
When we are creating a symlink we might fail with an error after we
created its inode and added the corresponding directory indexes to its
parent inode. In this case we end up never removing the directory indexes
because the inode eviction handler, called for our symlink inode on the
final iput(), only removes items associated with the symlink inode and
not with the parent inode.
Example:
$ mkfs.btrfs -f /dev/sdi
$ mount /dev/sdi /mnt
$ touch /mnt/foo
$ ln -s /mnt/foo /mnt/bar
ln: failed to create symbolic link ‘bar’: Cannot allocate memory
$ umount /mnt
$ btrfsck /dev/sdi
Checking filesystem on /dev/sdi
UUID: d5acb5ba-31bd-42da-b456-89dca2e716e1
checking extents
checking free space cache
checking fs roots
root 5 inode 258 errors 2001, no inode item, link count wrong
unresolved ref dir 256 index 3 namelen 3 name bar filetype 7 errors 4, no inode ref
found 131073 bytes used err is 1
total csum bytes: 0
total tree bytes: 131072
total fs tree bytes: 32768
total extent tree bytes: 16384
btree space waste bytes: 124305
file data blocks allocated: 262144
referenced 262144
btrfs-progs v4.2.3
So fix this by adding the directory index entries as the very last
step of symlink creation.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
When doing a direct IO write, __blockdev_direct_IO() can call the
btrfs_get_blocks_direct() callback one or more times before it calls the
btrfs_submit_direct() callback. However it can fail after calling the
first callback and before calling the second callback, which is a problem
because the first one creates ordered extents and the second one is the
one that submits bios that cover the ordered extents created by the first
one. That means the ordered extents will never complete nor have any of
the flags BTRFS_ORDERED_IO_DONE / BTRFS_ORDERED_IOERR set, resulting in
subsequent operations (such as other direct IO writes, buffered writes or
hole punching) that lock the same IO range and lookup for ordered extents
in the range to hang forever waiting for those ordered extents because
they can not complete ever, since no bio was submitted.
Fix this by tracking a range of created ordered extents that don't have
yet corresponding bios submitted and completing the ordered extents in
the range if __blockdev_direct_IO() fails with an error.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
If readpages() (triggered by defrag or buffered reads) is called while a
direct IO write is in progress, we have a small time window where we can
deadlock, resulting in traces like the following being generated:
[84723.212993] INFO: task fio:2849 blocked for more than 120 seconds.
[84723.214310] Tainted: G W 4.3.0-rc5-btrfs-next-17+ #1
[84723.215640] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[84723.217313] fio D ffff88023ec75218 0 2849 2835 0x00000000
[84723.218778] ffff880122dfb6e8 0000000000000092 0000000000000000 ffff88023ec75200
[84723.220458] ffff88000e05d2c0 ffff880122dfc000 ffff88023ec75200 7fffffffffffffff
[84723.230597] 0000000000000002 ffffffff8147891a ffff880122dfb700 ffffffff8147856a
[84723.232085] Call Trace:
[84723.232625] [<ffffffff8147891a>] ? bit_wait+0x3c/0x3c
[84723.233529] [<ffffffff8147856a>] schedule+0x7d/0x95
[84723.234398] [<ffffffff8147baa3>] schedule_timeout+0x43/0x10b
[84723.235384] [<ffffffff810f82eb>] ? time_hardirqs_on+0x15/0x28
[84723.236426] [<ffffffff8108a23d>] ? trace_hardirqs_on+0xd/0xf
[84723.237502] [<ffffffff810af8a3>] ? read_seqcount_begin.constprop.20+0x57/0x6d
[84723.238807] [<ffffffff8108a09b>] ? trace_hardirqs_on_caller+0x16/0x1ab
[84723.242012] [<ffffffff8108a23d>] ? trace_hardirqs_on+0xd/0xf
[84723.243064] [<ffffffff810af2ad>] ? timekeeping_get_ns+0xe/0x33
[84723.244116] [<ffffffff810afa2e>] ? ktime_get+0x41/0x52
[84723.245029] [<ffffffff81477cff>] io_schedule_timeout+0xb7/0x12b
[84723.245942] [<ffffffff81477cff>] ? io_schedule_timeout+0xb7/0x12b
[84723.246596] [<ffffffff81478953>] bit_wait_io+0x39/0x45
[84723.247503] [<ffffffff81478b93>] __wait_on_bit_lock+0x49/0x8d
[84723.248540] [<ffffffff8111684f>] __lock_page+0x66/0x68
[84723.249558] [<ffffffff81081c9b>] ? autoremove_wake_function+0x3a/0x3a
[84723.250844] [<ffffffff81124a04>] lock_page+0x2c/0x2f
[84723.251871] [<ffffffff81124afc>] invalidate_inode_pages2_range+0xf5/0x2aa
[84723.253274] [<ffffffff81117c34>] ? filemap_fdatawait_range+0x12d/0x146
[84723.254757] [<ffffffff81118191>] ? filemap_fdatawrite_range+0x13/0x15
[84723.256378] [<ffffffffa05139a2>] btrfs_get_blocks_direct+0x1b0/0x664 [btrfs]
[84723.258556] [<ffffffff8119e3f9>] ? submit_page_section+0x7b/0x111
[84723.260064] [<ffffffff8119eb90>] do_blockdev_direct_IO+0x658/0xbdb
[84723.261479] [<ffffffffa05137f2>] ? btrfs_page_exists_in_range+0x1a9/0x1a9 [btrfs]
[84723.262961] [<ffffffffa050a8a6>] ? btrfs_writepage_start_hook+0xce/0xce [btrfs]
[84723.264449] [<ffffffff8119f144>] __blockdev_direct_IO+0x31/0x33
[84723.265614] [<ffffffff8119f144>] ? __blockdev_direct_IO+0x31/0x33
[84723.266769] [<ffffffffa050a8a6>] ? btrfs_writepage_start_hook+0xce/0xce [btrfs]
[84723.268264] [<ffffffffa050935d>] btrfs_direct_IO+0x1b9/0x259 [btrfs]
[84723.270954] [<ffffffffa050a8a6>] ? btrfs_writepage_start_hook+0xce/0xce [btrfs]
[84723.272465] [<ffffffff8111878c>] generic_file_direct_write+0xb3/0x128
[84723.273734] [<ffffffffa051955c>] btrfs_file_write_iter+0x228/0x404 [btrfs]
[84723.275101] [<ffffffff8116ca6f>] __vfs_write+0x7c/0xa5
[84723.276200] [<ffffffff8116cfab>] vfs_write+0xa0/0xe4
[84723.277298] [<ffffffff8116d79d>] SyS_write+0x50/0x7e
[84723.278327] [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f
[84723.279595] INFO: lockdep is turned off.
[84723.379035] INFO: task btrfs:2923 blocked for more than 120 seconds.
[84723.380323] Tainted: G W 4.3.0-rc5-btrfs-next-17+ #1
[84723.381608] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[84723.383003] btrfs D ffff88023ed75218 0 2923 2859 0x00000000
[84723.384277] ffff88001311f860 0000000000000082 ffff88001311f840 ffff88023ed75200
[84723.385748] ffff88012c6751c0 ffff880013120000 ffff88012042fe68 ffff88012042fe30
[84723.387152] ffff880221571c88 0000000000000001 ffff88001311f878 ffffffff8147856a
[84723.388620] Call Trace:
[84723.389105] [<ffffffff8147856a>] schedule+0x7d/0x95
[84723.391882] [<ffffffffa051da32>] btrfs_start_ordered_extent+0x161/0x1fa [btrfs]
[84723.393718] [<ffffffff81081c61>] ? signal_pending_state+0x31/0x31
[84723.395659] [<ffffffffa0522c5b>] __do_contiguous_readpages.constprop.21+0x81/0xdc [btrfs]
[84723.397383] [<ffffffffa050ac96>] ? btrfs_submit_direct+0x3f0/0x3f0 [btrfs]
[84723.398852] [<ffffffffa0522da3>] __extent_readpages.constprop.20+0xed/0x100 [btrfs]
[84723.400561] [<ffffffff81123f6c>] ? __lru_cache_add+0x5d/0x72
[84723.401787] [<ffffffffa0523896>] extent_readpages+0x111/0x1a7 [btrfs]
[84723.403121] [<ffffffffa050ac96>] ? btrfs_submit_direct+0x3f0/0x3f0 [btrfs]
[84723.404583] [<ffffffffa05088fa>] btrfs_readpages+0x1f/0x21 [btrfs]
[84723.406007] [<ffffffff811226df>] __do_page_cache_readahead+0x168/0x1f4
[84723.407502] [<ffffffff81122988>] ondemand_readahead+0x21d/0x22e
[84723.408937] [<ffffffff81122988>] ? ondemand_readahead+0x21d/0x22e
[84723.410487] [<ffffffff81122af1>] page_cache_sync_readahead+0x3d/0x3f
[84723.411710] [<ffffffffa0535388>] btrfs_defrag_file+0x419/0xaaf [btrfs]
[84723.413007] [<ffffffffa0531db0>] ? kzalloc+0xf/0x11 [btrfs]
[84723.414085] [<ffffffffa0535b43>] btrfs_ioctl_defrag+0x125/0x14e [btrfs]
[84723.415307] [<ffffffffa0536753>] btrfs_ioctl+0x746/0x24c6 [btrfs]
[84723.416532] [<ffffffff81087481>] ? arch_local_irq_save+0x9/0xc
[84723.417731] [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7
[84723.418699] [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7
[84723.421532] [<ffffffff8113adba>] ? __might_fault+0xa5/0xa7
[84723.422629] [<ffffffff81171139>] ? cp_new_stat+0x15d/0x174
[84723.423712] [<ffffffff8117c610>] do_vfs_ioctl+0x427/0x4e6
[84723.424801] [<ffffffff81171175>] ? SYSC_newfstat+0x25/0x2e
[84723.425968] [<ffffffff8118574d>] ? __fget_light+0x4d/0x71
[84723.427063] [<ffffffff8117c726>] SyS_ioctl+0x57/0x79
[84723.428138] [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f
Consider the following logical and physical file layout:
logical: ... [ prealloc extent A ] [ prealloc extent B ] [ extent C ] ...
4K 8K 16K
physical: ... 12853248 12857344 1103101952 ...
(= 12853248 + 4K)
Extents A and B are physically adjacent. The following diagram shows a
sequence of events that lead to the deadlock when we attempt to do a
direct IO write against the file range [4K, 16K[ and a defrag is triggered
simultaneously.
CPU 1 CPU 2
btrfs_direct_IO()
btrfs_get_blocks_direct()
creates ordered extent A, covering
the 4k prealloc extent A (range [4K, 8K[)
btrfs_defrag_file()
page_cache_sync_readahead([0K, 1M[)
btrfs_readpages()
extent_readpages()
locks all pages in the file
range [0K, 128K[ through calls
to add_to_page_cache_lru()
__do_contiguous_readpages()
finds ordered extent A
waits for it to complete
btrfs_get_blocks_direct() called again
lock_extent_direct(range [8K, 16K[)
finds a page in range [8K, 16K[ through
btrfs_page_exists_in_range()
invalidate_inode_pages2_range([8K, 16K[)
--> tries to lock pages that are already
locked by the task at CPU 2
--> our task, running __blockdev_direct_IO(),
hangs waiting to lock the pages and the
submit bio callback, btrfs_submit_direct(),
ends up never being called, resulting in the
ordered extent A never completing (because a
corresponding bio is never submitted) and
CPU 2 will wait for it forever while holding
the pages locked
---> deadlock!
Fix this by removing the page invalidation approach when attempting to
lock the range for IO from the callback btrfs_get_blocks_direct() and
falling back buffered IO. This was a rare case anyway and well behaved
applications do not mix concurrent direct IO writes with buffered reads
anyway, being a concurrent defrag the only normal case that could lead
to the deadlock.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Commit 61de718fce ("Btrfs: fix memory corruption on failure to submit
bio for direct IO") fixed problems with the error handling code after we
fail to submit a bio for direct IO. However there were 2 problems that it
did not address when the failure is due to memory allocation failures for
direct IO writes:
1) We considered that there could be only one ordered extent for the whole
IO range, which is not always true, as we can have multiple;
2) It did not set the bit BTRFS_ORDERED_IO_DONE in the ordered extent,
which can make other tasks running btrfs_wait_logged_extents() hang
forever, since they wait for that bit to be set. The general assumption
is that regardless of an error, the BTRFS_ORDERED_IO_DONE is always set
and it precedes setting the bit BTRFS_ORDERED_COMPLETE.
Fix these issues by moving part of the btrfs_endio_direct_write() handler
into a new helper function and having that new helper function called when
we fail to allocate memory to submit the bio (and its private object) for
a direct IO write.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
new method: ->get_link(); replacement of ->follow_link(). The differences
are:
* inode and dentry are passed separately
* might be called both in RCU and non-RCU mode;
the former is indicated by passing it a NULL dentry.
* when called that way it isn't allowed to block
and should return ERR_PTR(-ECHILD) if it needs to be called
in non-RCU mode.
It's a flagday change - the old method is gone, all in-tree instances
converted. Conversion isn't hard; said that, so far very few instances
do not immediately bail out when called in RCU mode. That'll change
in the next commits.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
kmap() in page_follow_link_light() needed to go - allowing to hold
an arbitrary number of kmaps for long is a great way to deadlocking
the system.
new helper (inode_nohighmem(inode)) needs to be used for pagecache
symlinks inodes; done for all in-tree cases. page_follow_link_light()
instrumented to yell about anything missed.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Use the VFS xattr handler infrastructure and get rid of similar code in
the filesystem.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Remove POSIX_ACL_XATTR_{ACCESS,DEFAULT} and GFS2_POSIX_ACL_{ACCESS,DEFAULT}
and replace them with the definitions in <include/uapi/linux/xattr.h>.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
There's only one caller and single value, we can propagate it down to
the callee and remove the unused parameter.
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from Chris Mason:
"This has Mark Fasheh's patches to fix quota accounting during subvol
deletion, which we've been working on for a while now. The patch is
pretty small but it's a key fix.
Otherwise it's a random assortment"
* 'for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: fix balance range usage filters in 4.4-rc
btrfs: qgroup: account shared subtree during snapshot delete
Btrfs: use btrfs_get_fs_root in resolve_indirect_ref
btrfs: qgroup: fix quota disable during rescan
Btrfs: fix race between cleaner kthread and space cache writeout
Btrfs: fix scrub preventing unused block groups from being deleted
Btrfs: fix race between scrub and block group deletion
btrfs: fix rcu warning during device replace
btrfs: Continue replace when set_block_ro failed
btrfs: fix clashing number of the enhanced balance usage filter
Btrfs: fix the number of transaction units needed to remove a block group
Btrfs: use global reserve when deleting unused block group after ENOSPC
Btrfs: tests: checking for NULL instead of IS_ERR()
btrfs: fix signed overflows in btrfs_sync_file
It's possible to reach a state where the cleaner kthread isn't able to
start a transaction to delete an unused block group due to lack of enough
free metadata space and due to lack of unallocated device space to allocate
a new metadata block group as well. If this happens try to use space from
the global block group reserve just like we do for unlink operations, so
that we don't reach a permanent state where starting a transaction for
filesystem operations (file creation, renames, etc) keeps failing with
-ENOSPC. Such an unfortunate state was observed on a machine where over
a dozen unused data block groups existed and the cleaner kthread was
failing to delete them due to ENOSPC error when attempting to start a
transaction, and even running balance with a -dusage=0 filter failed with
ENOSPC as well. Also unmounting and mounting again the filesystem didn't
help. Allowing the cleaner kthread to use the global block reserve to
delete the unused data block groups fixed the problem.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes and cleanups from Chris Mason:
"Some of this got cherry-picked from a github repo this week, but I
verified the patches.
We have three small scrub cleanups and a collection of fixes"
* 'for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: Use fs_info directly in btrfs_delete_unused_bgs
btrfs: Fix lost-data-profile caused by balance bg
btrfs: Fix lost-data-profile caused by auto removing bg
btrfs: Remove len argument from scrub_find_csum
btrfs: Reduce unnecessary arguments in scrub_recheck_block
btrfs: Use scrub_checksum_data and scrub_checksum_tree_block for scrub_recheck_block_checksum
btrfs: Reset sblock->xxx_error stats before calling scrub_recheck_block_checksum
btrfs: scrub: setup all fields for sblock_to_check
btrfs: scrub: set error stats when tree block spanning stripes
Btrfs: fix race when listing an inode's xattrs
Btrfs: fix race leading to BUG_ON when running delalloc for nodatacow
Btrfs: fix race leading to incorrect item deletion when dropping extents
Btrfs: fix sleeping inside atomic context in qgroup rescan worker
Btrfs: fix race waiting for qgroup rescan worker
btrfs: qgroup: exit the rescan worker during umount
Btrfs: fix extent accounting for partial direct IO writes
new_valid_dev() always returns 1, so the !new_valid_dev() check is not
needed. Remove it.
Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we are using the NO_HOLES feature, we have a tiny time window when
running delalloc for a nodatacow inode where we can race with a concurrent
link or xattr add operation leading to a BUG_ON.
This happens because at run_delalloc_nocow() we end up casting a leaf item
of type BTRFS_INODE_[REF|EXTREF]_KEY or of type BTRFS_XATTR_ITEM_KEY to a
file extent item (struct btrfs_file_extent_item) and then analyse its
extent type field, which won't match any of the expected extent types
(values BTRFS_FILE_EXTENT_[REG|PREALLOC|INLINE]) and therefore trigger an
explicit BUG_ON(1).
The following sequence diagram shows how the race happens when running a
no-cow dellaloc range [4K, 8K[ for inode 257 and we have the following
neighbour leafs:
Leaf X (has N items) Leaf Y
[ ... (257 INODE_ITEM 0) (257 INODE_REF 256) ] [ (257 EXTENT_DATA 8192), ... ]
slot N - 2 slot N - 1 slot 0
(Note the implicit hole for inode 257 regarding the [0, 8K[ range)
CPU 1 CPU 2
run_dealloc_nocow()
btrfs_lookup_file_extent()
--> searches for a key with value
(257 EXTENT_DATA 4096) in the
fs/subvol tree
--> returns us a path with
path->nodes[0] == leaf X and
path->slots[0] == N
because path->slots[0] is >=
btrfs_header_nritems(leaf X), it
calls btrfs_next_leaf()
btrfs_next_leaf()
--> releases the path
hard link added to our inode,
with key (257 INODE_REF 500)
added to the end of leaf X,
so leaf X now has N + 1 keys
--> searches for the key
(257 INODE_REF 256), because
it was the last key in leaf X
before it released the path,
with path->keep_locks set to 1
--> ends up at leaf X again and
it verifies that the key
(257 INODE_REF 256) is no longer
the last key in the leaf, so it
returns with path->nodes[0] ==
leaf X and path->slots[0] == N,
pointing to the new item with
key (257 INODE_REF 500)
the loop iteration of run_dealloc_nocow()
does not break out the loop and continues
because the key referenced in the path
at path->nodes[0] and path->slots[0] is
for inode 257, its type is < BTRFS_EXTENT_DATA_KEY
and its offset (500) is less then our delalloc
range's end (8192)
the item pointed by the path, an inode reference item,
is (incorrectly) interpreted as a file extent item and
we get an invalid extent type, leading to the BUG_ON(1):
if (extent_type == BTRFS_FILE_EXTENT_REG ||
extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
(...)
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
(...)
} else {
BUG_ON(1)
}
The same can happen if a xattr is added concurrently and ends up having
a key with an offset smaller then the delalloc's range end.
So fix this by skipping keys with a type smaller than
BTRFS_EXTENT_DATA_KEY.
Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
When doing a write using direct IO we can end up not doing the whole write
operation using the direct IO path, in that case we fallback to a buffered
write to do the remaining IO. This happens for example if the range we are
writing to contains a compressed extent.
When we do a partial write and fallback to buffered IO, due to the
existence of a compressed extent for example, we end up not adjusting the
outstanding extents counter of our inode which ends up getting decremented
twice, once by the DIO ordered extent for the partial write and once again
by btrfs_direct_IO(), resulting in an arithmetic underflow at
extent-tree.c:drop_outstanding_extent(). For example if we have:
extents [ prealloc extent ] [ compressed extent ]
offsets A B C D E
and at the moment our inode's outstanding extents counter is 0, if we do a
direct IO write against the range [B, D[ (which has a length smaller than
128Mb), we end up bumping our inode's outstanding extents counter to 1, we
create a DIO ordered extent for the range [B, C[ and then fallback to a
buffered write for the range [C, D[. The direct IO handler
(inode.c:btrfs_direct_IO()) decrements the outstanding extents counter by
1, leaving it with a value of 0, through a call to
btrfs_delalloc_release_space() and then shortly after the DIO ordered
extent finishes and calls btrfs_delalloc_release_metadata() which ends
up to attempt to decrement the inode's outstanding extents counter by 1,
resulting in an assertion failure at drop_outstanding_extent() because
the operation would result in an arithmetic underflow (0 - 1). This
produces the following trace:
[125471.336838] BTRFS: assertion failed: BTRFS_I(inode)->outstanding_extents >= num_extents, file: fs/btrfs/extent-tree.c, line: 5526
[125471.338844] ------------[ cut here ]------------
[125471.340745] kernel BUG at fs/btrfs/ctree.h:4173!
[125471.340745] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
[125471.340745] Modules linked in: btrfs f2fs xfs libcrc32c dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc acpi_cpufreq psmouse i2c_piix4 parport pcspkr serio_raw microcode processor evdev i2c_core button ext4 crc16 jbd2 mbcache sd_mod sg sr_mod cdrom ata_generic virtio_scsi ata_piix virtio_pci virtio_ring floppy libata virtio e1000 scsi_mod [last unloaded: btrfs]
[125471.340745] CPU: 10 PID: 23649 Comm: kworker/u32:1 Tainted: G W 4.3.0-rc5-btrfs-next-17+ #1
[125471.340745] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014
[125471.340745] Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs]
[125471.340745] task: ffff8804244fcf80 ti: ffff88040a118000 task.ti: ffff88040a118000
[125471.340745] RIP: 0010:[<ffffffffa0550da1>] [<ffffffffa0550da1>] assfail.constprop.46+0x1e/0x20 [btrfs]
[125471.340745] RSP: 0018:ffff88040a11bc78 EFLAGS: 00010296
[125471.340745] RAX: 0000000000000075 RBX: 0000000000005000 RCX: 0000000000000000
[125471.340745] RDX: ffffffff81098f93 RSI: ffffffff8147c619 RDI: 00000000ffffffff
[125471.340745] RBP: ffff88040a11bc78 R08: 0000000000000001 R09: 0000000000000000
[125471.340745] R10: ffff88040a11bc08 R11: ffffffff81651000 R12: ffff8803efb4a000
[125471.340745] R13: ffff8803efb4a000 R14: 0000000000000000 R15: ffff8802f8e33c88
[125471.340745] FS: 0000000000000000(0000) GS:ffff88043dd40000(0000) knlGS:0000000000000000
[125471.340745] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[125471.340745] CR2: 00007fae7ca86095 CR3: 0000000001a0b000 CR4: 00000000000006e0
[125471.340745] Stack:
[125471.340745] ffff88040a11bc88 ffffffffa04ca0cd ffff88040a11bcc8 ffffffffa04ceeb1
[125471.340745] ffff8802f8e33940 ffff8802c93eadb0 ffff8802f8e0bf50 ffff8803efb4a000
[125471.340745] 0000000000000000 ffff8802f8e33c88 ffff88040a11bd38 ffffffffa04eccfa
[125471.340745] Call Trace:
[125471.340745] [<ffffffffa04ca0cd>] drop_outstanding_extent+0x3d/0x6d [btrfs]
[125471.340745] [<ffffffffa04ceeb1>] btrfs_delalloc_release_metadata+0x51/0xdd [btrfs]
[125471.340745] [<ffffffffa04eccfa>] btrfs_finish_ordered_io+0x420/0x4eb [btrfs]
[125471.340745] [<ffffffffa04ecdda>] finish_ordered_fn+0x15/0x17 [btrfs]
[125471.340745] [<ffffffffa050e6e8>] normal_work_helper+0x14c/0x32a [btrfs]
[125471.340745] [<ffffffffa050e9c8>] btrfs_endio_write_helper+0x12/0x14 [btrfs]
[125471.340745] [<ffffffff81063b23>] process_one_work+0x24a/0x4ac
[125471.340745] [<ffffffff81064285>] worker_thread+0x206/0x2c2
[125471.340745] [<ffffffff8106407f>] ? rescuer_thread+0x2cb/0x2cb
[125471.340745] [<ffffffff8106407f>] ? rescuer_thread+0x2cb/0x2cb
[125471.340745] [<ffffffff8106904d>] kthread+0xef/0xf7
[125471.340745] [<ffffffff81068f5e>] ? kthread_parkme+0x24/0x24
[125471.340745] [<ffffffff8147d10f>] ret_from_fork+0x3f/0x70
[125471.340745] [<ffffffff81068f5e>] ? kthread_parkme+0x24/0x24
[125471.340745] Code: a5 55 a0 48 89 e5 e8 42 50 bc e0 0f 0b 55 89 f1 48 c7 c2 f0 a8 55 a0 48 89 fe 31 c0 48 c7 c7 14 aa 55 a0 48 89 e5 e8 22 50 bc e0 <0f> 0b 0f 1f 44 00 00 55 31 c9 ba 18 00 00 00 48 89 e5 41 56 41
[125471.340745] RIP [<ffffffffa0550da1>] assfail.constprop.46+0x1e/0x20 [btrfs]
[125471.340745] RSP <ffff88040a11bc78>
[125471.539620] ---[ end trace 144259f7838b4aa4 ]---
So fix this by ensuring we adjust the outstanding extents counter when we
do the fallback just like we do for the case where the whole write can be
done through the direct IO path.
We were also adjusting the outstanding extents counter by a constant value
of 1, which is incorrect because we were ignorning that we account extents
in BTRFS_MAX_EXTENT_SIZE units, o fix that as well.
The following test case for fstests reproduces this issue:
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
# real QA test starts here
_need_to_be_root
_supported_fs btrfs
_supported_os Linux
_require_scratch
_require_xfs_io_command "falloc"
rm -f $seqres.full
_scratch_mkfs >>$seqres.full 2>&1
_scratch_mount "-o compress"
# Create a compressed extent covering the range [700K, 800K[.
$XFS_IO_PROG -f -s -c "pwrite -S 0xaa -b 100K 700K 100K" \
$SCRATCH_MNT/foo | _filter_xfs_io
# Create prealloc extent covering the range [600K, 700K[.
$XFS_IO_PROG -c "falloc 600K 100K" $SCRATCH_MNT/foo
# Write 80K of data to the range [640K, 720K[ using direct IO. This
# range covers both the prealloc extent and the compressed extent.
# Because there's a compressed extent in the range we are writing to,
# the DIO write code path ends up only writing the first 60k of data,
# which goes to the prealloc extent, and then falls back to buffered IO
# for writing the remaining 20K of data - because that remaining data
# maps to a file range containing a compressed extent.
# When falling back to buffered IO, we used to trigger an assertion when
# releasing reserved space due to bad accounting of the inode's
# outstanding extents counter, which was set to 1 but we ended up
# decrementing it by 1 twice, once through the ordered extent for the
# 60K of data we wrote using direct IO, and once through the main direct
# IO handler (inode.cbtrfs_direct_IO()) because the direct IO write
# wrote less than 80K of data (60K).
$XFS_IO_PROG -d -c "pwrite -S 0xbb -b 80K 640K 80K" \
$SCRATCH_MNT/foo | _filter_xfs_io
# Now similar test as above but for very large write operations. This
# triggers special cases for an inode's outstanding extents accounting,
# as internally btrfs logically splits extents into 128Mb units.
$XFS_IO_PROG -f -s \
-c "pwrite -S 0xaa -b 128M 258M 128M" \
-c "falloc 0 258M" \
$SCRATCH_MNT/bar | _filter_xfs_io
$XFS_IO_PROG -d -c "pwrite -S 0xbb -b 256M 3M 256M" $SCRATCH_MNT/bar \
| _filter_xfs_io
# Now verify the file contents are correct and that they are the same
# even after unmounting and mounting the fs again (or evicting the page
# cache).
#
# For file foo, all bytes in the range [0, 640K[ must have a value of
# 0x00, all bytes in the range [640K, 720K[ must have a value of 0xbb
# and all bytes in the range [720K, 800K[ must have a value of 0xaa.
#
# For file bar, all bytes in the range [0, 3M[ must havea value of 0x00,
# all bytes in the range [3M, 259M[ must have a value of 0xbb and all
# bytes in the range [259M, 386M[ must have a value of 0xaa.
#
echo "File digests before remounting the file system:"
md5sum $SCRATCH_MNT/foo | _filter_scratch
md5sum $SCRATCH_MNT/bar | _filter_scratch
_scratch_remount
echo "File digests after remounting the file system:"
md5sum $SCRATCH_MNT/foo | _filter_scratch
md5sum $SCRATCH_MNT/bar | _filter_scratch
status=0
exit
Fixes: e1cbbfa5f5 ("Btrfs: fix outstanding_extents accounting in DIO")
Fixes: 3e05bde8c3 ("Btrfs: only adjust outstanding_extents when we do a short write")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Between btrfs_allocerved_file_extent() and
btrfs_add_delayed_qgroup_reserve(), there is a window that delayed_refs
are run and delayed ref head maybe freed before
btrfs_add_delayed_qgroup_reserve().
This will cause btrfs_dad_delayed_qgroup_reserve() to return -ENOENT,
and cause transaction to be aborted.
This patch will record qgroup reserve space info into delayed_ref_head
at btrfs_add_delayed_ref(), to eliminate the race window.
Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
In the kernel 4.2 merge window we had a big changes to the implementation
of delayed references and qgroups which made the no_quota field of delayed
references not used anymore. More specifically the no_quota field is not
used anymore as of:
commit 0ed4792af0 ("btrfs: qgroup: Switch to new extent-oriented qgroup mechanism.")
Leaving the no_quota field actually prevents delayed references from
getting merged, which in turn cause the following BUG_ON(), at
fs/btrfs/extent-tree.c, to be hit when qgroups are enabled:
static int run_delayed_tree_ref(...)
{
(...)
BUG_ON(node->ref_mod != 1);
(...)
}
This happens on a scenario like the following:
1) Ref1 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added.
2) Ref2 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added.
It's not merged with Ref1 because Ref1->no_quota != Ref2->no_quota.
3) Ref3 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added.
It's not merged with the reference at the tail of the list of refs
for bytenr X because the reference at the tail, Ref2 is incompatible
due to Ref2->no_quota != Ref3->no_quota.
4) Ref4 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added.
It's not merged with the reference at the tail of the list of refs
for bytenr X because the reference at the tail, Ref3 is incompatible
due to Ref3->no_quota != Ref4->no_quota.
5) We run delayed references, trigger merging of delayed references,
through __btrfs_run_delayed_refs() -> btrfs_merge_delayed_refs().
6) Ref1 and Ref3 are merged as Ref1->no_quota = Ref3->no_quota and
all other conditions are satisfied too. So Ref1 gets a ref_mod
value of 2.
7) Ref2 and Ref4 are merged as Ref2->no_quota = Ref4->no_quota and
all other conditions are satisfied too. So Ref2 gets a ref_mod
value of 2.
8) Ref1 and Ref2 aren't merged, because they have different values
for their no_quota field.
9) Delayed reference Ref1 is picked for running (select_delayed_ref()
always prefers references with an action == BTRFS_ADD_DELAYED_REF).
So run_delayed_tree_ref() is called for Ref1 which triggers the
BUG_ON because Ref1->red_mod != 1 (equals 2).
So fix this by removing the no_quota field, as it's not used anymore as
of commit 0ed4792af0 ("btrfs: qgroup: Switch to new extent-oriented
qgroup mechanism.").
The use of no_quota was also buggy in at least two places:
1) At delayed-refs.c:btrfs_add_delayed_tree_ref() - we were setting
no_quota to 0 instead of 1 when the following condition was true:
is_fstree(ref_root) || !fs_info->quota_enabled
2) At extent-tree.c:__btrfs_inc_extent_ref() - we were attempting to
reset a node's no_quota when the condition "!is_fstree(root_objectid)
|| !root->fs_info->quota_enabled" was true but we did it only in
an unused local stack variable, that is, we never reset the no_quota
value in the node itself.
This fixes the remainder of problems several people have been having when
running delayed references, mostly while a balance is running in parallel,
on a 4.2+ kernel.
Very special thanks to Stéphane Lesimple for helping debugging this issue
and testing this fix on his multi terabyte filesystem (which took more
than one day to balance alone, plus fsck, etc).
Also, this fixes deadlock issue when using the clone ioctl with qgroups
enabled, as reported by Elias Probst in the mailing list. The deadlock
happens because after calling btrfs_insert_empty_item we have our path
holding a write lock on a leaf of the fs/subvol tree and then before
releasing the path we called check_ref() which did backref walking, when
qgroups are enabled, and tried to read lock the same leaf. The trace for
this case is the following:
INFO: task systemd-nspawn:6095 blocked for more than 120 seconds.
(...)
Call Trace:
[<ffffffff86999201>] schedule+0x74/0x83
[<ffffffff863ef64c>] btrfs_tree_read_lock+0xc0/0xea
[<ffffffff86137ed7>] ? wait_woken+0x74/0x74
[<ffffffff8639f0a7>] btrfs_search_old_slot+0x51a/0x810
[<ffffffff863a129b>] btrfs_next_old_leaf+0xdf/0x3ce
[<ffffffff86413a00>] ? ulist_add_merge+0x1b/0x127
[<ffffffff86411688>] __resolve_indirect_refs+0x62a/0x667
[<ffffffff863ef546>] ? btrfs_clear_lock_blocking_rw+0x78/0xbe
[<ffffffff864122d3>] find_parent_nodes+0xaf3/0xfc6
[<ffffffff86412838>] __btrfs_find_all_roots+0x92/0xf0
[<ffffffff864128f2>] btrfs_find_all_roots+0x45/0x65
[<ffffffff8639a75b>] ? btrfs_get_tree_mod_seq+0x2b/0x88
[<ffffffff863e852e>] check_ref+0x64/0xc4
[<ffffffff863e9e01>] btrfs_clone+0x66e/0xb5d
[<ffffffff863ea77f>] btrfs_ioctl_clone+0x48f/0x5bb
[<ffffffff86048a68>] ? native_sched_clock+0x28/0x77
[<ffffffff863ed9b0>] btrfs_ioctl+0xabc/0x25cb
(...)
The problem goes away by eleminating check_ref(), which no longer is
needed as its purpose was to get a value for the no_quota field of
a delayed reference (this patch removes the no_quota field as mentioned
earlier).
Reported-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Tested-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Reported-by: Elias Probst <mail@eliasprobst.eu>
Reported-by: Peter Becker <floyd.net@gmail.com>
Reported-by: Malte Schröder <malte@tnxip.de>
Reported-by: Derek Dongray <derek@valedon.co.uk>
Reported-by: Erkki Seppala <flux-btrfs@inside.org>
Cc: stable@vger.kernel.org # 4.2+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
If we are heavily fragmented we will continually try to prealloc the largest
extent size we can every time we call btrfs_reserve_extent. This can be very
expensive when we are heavily fragmented, burning lots of CPU cycles and loops
through the allocator. So instead notice when we get a smaller chunk from the
allocator than what we specified and use this as the new maximum size we try to
allocate. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add check at btrfs_destroy_inode() time to detect qgroup reserved space
leak.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
In clear_bit_hook, qgroup reserved data is already handled quite well,
either released by finish_ordered_io or invalidatepage.
So calling btrfs_qgroup_free_data() here is completely meaningless, and
since btrfs_qgroup_free_data() will lock io_tree, so it can't be called
with io_tree lock hold.
This patch will add a new function
btrfs_free_reserved_data_space_noquota() for clear_bit_hook() to cease
the lockdep warning.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
For btrfs_invalidatepage() and its variant evict_inode_truncate_page(),
there will be pages don't reach disk.
In that case, their reserved space won't be release nor freed by
finish_ordered_io() nor delayed_ref handler.
So we must free their qgroup reserved space, or we will leaking reserved
space again.
So this will patch will call btrfs_qgroup_free_data() for
invalidatepage() and its variant evict_inode_truncate_page().
And due to the nature of new btrfs_qgroup_reserve/free_data() reserved
space will only be reserved or freed once, so for pages which are
already flushed to disk, their reserved space will be released and freed
by delayed_ref handler.
Double free won't be a problem.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
For NOCOW and inline case, there will be no delayed_ref created for
them, so we should free their reserved data space at proper
time(finish_ordered_io for NOCOW and cow_file_inline for inline).
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Cleanup the old facilities which use old btrfs_qgroup_reserve() function
call, replace them with the newer version, and remove the "__" prefix in
them.
Also, make btrfs_qgroup_reserve/free() functions private, as they are
now only used inside qgroup codes.
Now, the whole btrfs qgroup is swithed to use the new reserve facilities.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Use new __btrfs_delalloc_reserve_space() and
__btrfs_delalloc_release_space() to reserve and release space for
delalloc.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Qgroup reserved space needs to be released from inode dirty map and get
freed at different timing:
1) Release when the metadata is written into tree
After corresponding metadata is written into tree, any newer write will
be COWed(don't include NOCOW case yet).
So we must release its range from inode dirty range map, or we will
forget to reserve needed range, causing accounting exceeding the limit.
2) Free reserved bytes when delayed ref is run
When delayed refs are run, qgroup accounting will follow soon and turn
the reserved bytes into rfer/excl numbers.
As run_delayed_refs and qgroup accounting are all done at
commit_transaction() time, we are safe to free reserved space in
run_delayed_ref time().
With these timing to release/free reserved space, we should be able to
resolve the long existing qgroup reserve space leak problem.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
We can safely iterate whole list items, without using list_del macro.
So remove the list_del call.
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When truncating a file to a smaller size which consists of an inline
extent that is compressed, we did not discard (or made unusable) the
data between the new file size and the old file size, wasting metadata
space and allowing for the truncated data to be leaked and the data
corruption/loss mentioned below.
We were also not correctly decrementing the number of bytes used by the
inode, we were setting it to zero, giving a wrong report for callers of
the stat(2) syscall. The fsck tool also reported an error about a mismatch
between the nbytes of the file versus the real space used by the file.
Now because we weren't discarding the truncated region of the file, it
was possible for a caller of the clone ioctl to actually read the data
that was truncated, allowing for a security breach without requiring root
access to the system, using only standard filesystem operations. The
scenario is the following:
1) User A creates a file which consists of an inline and compressed
extent with a size of 2000 bytes - the file is not accessible to
any other users (no read, write or execution permission for anyone
else);
2) The user truncates the file to a size of 1000 bytes;
3) User A makes the file world readable;
4) User B creates a file consisting of an inline extent of 2000 bytes;
5) User B issues a clone operation from user A's file into its own
file (using a length argument of 0, clone the whole range);
6) User B now gets to see the 1000 bytes that user A truncated from
its file before it made its file world readbale. User B also lost
the bytes in the range [1000, 2000[ bytes from its own file, but
that might be ok if his/her intention was reading stale data from
user A that was never supposed to be public.
Note that this contrasts with the case where we truncate a file from 2000
bytes to 1000 bytes and then truncate it back from 1000 to 2000 bytes. In
this case reading any byte from the range [1000, 2000[ will return a value
of 0x00, instead of the original data.
This problem exists since the clone ioctl was added and happens both with
and without my recent data loss and file corruption fixes for the clone
ioctl (patch "Btrfs: fix file corruption and data loss after cloning
inline extents").
So fix this by truncating the compressed inline extents as we do for the
non-compressed case, which involves decompressing, if the data isn't already
in the page cache, compressing the truncated version of the extent, writing
the compressed content into the inline extent and then truncate it.
The following test case for fstests reproduces the problem. In order for
the test to pass both this fix and my previous fix for the clone ioctl
that forbids cloning a smaller inline extent into a larger one,
which is titled "Btrfs: fix file corruption and data loss after cloning
inline extents", are needed. Without that other fix the test fails in a
different way that does not leak the truncated data, instead part of
destination file gets replaced with zeroes (because the destination file
has a larger inline extent than the source).
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
# real QA test starts here
_need_to_be_root
_supported_fs btrfs
_supported_os Linux
_require_scratch
_require_cloner
rm -f $seqres.full
_scratch_mkfs >>$seqres.full 2>&1
_scratch_mount "-o compress"
# Create our test files. File foo is going to be the source of a clone operation
# and consists of a single inline extent with an uncompressed size of 512 bytes,
# while file bar consists of a single inline extent with an uncompressed size of
# 256 bytes. For our test's purpose, it's important that file bar has an inline
# extent with a size smaller than foo's inline extent.
$XFS_IO_PROG -f -c "pwrite -S 0xa1 0 128" \
-c "pwrite -S 0x2a 128 384" \
$SCRATCH_MNT/foo | _filter_xfs_io
$XFS_IO_PROG -f -c "pwrite -S 0xbb 0 256" $SCRATCH_MNT/bar | _filter_xfs_io
# Now durably persist all metadata and data. We do this to make sure that we get
# on disk an inline extent with a size of 512 bytes for file foo.
sync
# Now truncate our file foo to a smaller size. Because it consists of a
# compressed and inline extent, btrfs did not shrink the inline extent to the
# new size (if the extent was not compressed, btrfs would shrink it to 128
# bytes), it only updates the inode's i_size to 128 bytes.
$XFS_IO_PROG -c "truncate 128" $SCRATCH_MNT/foo
# Now clone foo's inline extent into bar.
# This clone operation should fail with errno EOPNOTSUPP because the source
# file consists only of an inline extent and the file's size is smaller than
# the inline extent of the destination (128 bytes < 256 bytes). However the
# clone ioctl was not prepared to deal with a file that has a size smaller
# than the size of its inline extent (something that happens only for compressed
# inline extents), resulting in copying the full inline extent from the source
# file into the destination file.
#
# Note that btrfs' clone operation for inline extents consists of removing the
# inline extent from the destination inode and copy the inline extent from the
# source inode into the destination inode, meaning that if the destination
# inode's inline extent is larger (N bytes) than the source inode's inline
# extent (M bytes), some bytes (N - M bytes) will be lost from the destination
# file. Btrfs could copy the source inline extent's data into the destination's
# inline extent so that we would not lose any data, but that's currently not
# done due to the complexity that would be needed to deal with such cases
# (specially when one or both extents are compressed), returning EOPNOTSUPP, as
# it's normally not a very common case to clone very small files (only case
# where we get inline extents) and copying inline extents does not save any
# space (unlike for normal, non-inlined extents).
$CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/foo $SCRATCH_MNT/bar
# Now because the above clone operation used to succeed, and due to foo's inline
# extent not being shinked by the truncate operation, our file bar got the whole
# inline extent copied from foo, making us lose the last 128 bytes from bar
# which got replaced by the bytes in range [128, 256[ from foo before foo was
# truncated - in other words, data loss from bar and being able to read old and
# stale data from foo that should not be possible to read anymore through normal
# filesystem operations. Contrast with the case where we truncate a file from a
# size N to a smaller size M, truncate it back to size N and then read the range
# [M, N[, we should always get the value 0x00 for all the bytes in that range.
# We expected the clone operation to fail with errno EOPNOTSUPP and therefore
# not modify our file's bar data/metadata. So its content should be 256 bytes
# long with all bytes having the value 0xbb.
#
# Without the btrfs bug fix, the clone operation succeeded and resulted in
# leaking truncated data from foo, the bytes that belonged to its range
# [128, 256[, and losing data from bar in that same range. So reading the
# file gave us the following content:
#
# 0000000 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1
# *
# 0000200 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
# *
# 0000400
echo "File bar's content after the clone operation:"
od -t x1 $SCRATCH_MNT/bar
# Also because the foo's inline extent was not shrunk by the truncate
# operation, btrfs' fsck, which is run by the fstests framework everytime a
# test completes, failed reporting the following error:
#
# root 5 inode 257 errors 400, nbytes wrong
status=0
exit
Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Pull btrfs fixes from Chris Mason:
"This is an assorted set I've been queuing up:
Jeff Mahoney tracked down a tricky one where we ended up starting IO
on the wrong mapping for special files in btrfs_evict_inode. A few
people reported this one on the list.
Filipe found (and provided a test for) a difficult bug in reading
compressed extents, and Josef fixed up some quota record keeping with
snapshot deletion. Chandan killed off an accounting bug during DIO
that lead to WARN_ONs as we freed inodes"
* 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: keep dropped roots in cache until transaction commit
Btrfs: Direct I/O: Fix space accounting
btrfs: skip waiting on ordered range for special files
Btrfs: fix read corruption of compressed and shared extents
Btrfs: remove unnecessary locking of cleaner_mutex to avoid deadlock
Btrfs: don't initialize a space info as full to prevent ENOSPC
The following call trace is seen when generic/095 test is executed,
WARNING: CPU: 3 PID: 2769 at /home/chandan/code/repos/linux/fs/btrfs/inode.c:8967 btrfs_destroy_inode+0x284/0x2a0()
Modules linked in:
CPU: 3 PID: 2769 Comm: umount Not tainted 4.2.0-rc5+ #31
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.7.5-20150306_163512-brownie 04/01/2014
ffffffff81c08150 ffff8802ec9cbce8 ffffffff81984058 ffff8802ffd8feb0
0000000000000000 ffff8802ec9cbd28 ffffffff81050385 ffff8802ec9cbd38
ffff8802d12f8588 ffff8802d12f8588 ffff8802f15ab000 ffff8800bb96c0b0
Call Trace:
[<ffffffff81984058>] dump_stack+0x45/0x57
[<ffffffff81050385>] warn_slowpath_common+0x85/0xc0
[<ffffffff81050465>] warn_slowpath_null+0x15/0x20
[<ffffffff81340294>] btrfs_destroy_inode+0x284/0x2a0
[<ffffffff8117ce07>] destroy_inode+0x37/0x60
[<ffffffff8117cf39>] evict+0x109/0x170
[<ffffffff8117cfd5>] dispose_list+0x35/0x50
[<ffffffff8117dd3a>] evict_inodes+0xaa/0x100
[<ffffffff81165667>] generic_shutdown_super+0x47/0xf0
[<ffffffff81165951>] kill_anon_super+0x11/0x20
[<ffffffff81302093>] btrfs_kill_super+0x13/0x110
[<ffffffff81165c99>] deactivate_locked_super+0x39/0x70
[<ffffffff811660cf>] deactivate_super+0x5f/0x70
[<ffffffff81180e1e>] cleanup_mnt+0x3e/0x90
[<ffffffff81180ebd>] __cleanup_mnt+0xd/0x10
[<ffffffff81069c06>] task_work_run+0x96/0xb0
[<ffffffff81003a3d>] do_notify_resume+0x3d/0x50
[<ffffffff8198cbc2>] int_signal+0x12/0x17
This means that the inode had non-zero "outstanding extents" during
eviction. This occurs because, during direct I/O a task which successfully
used up its reserved data space would set BTRFS_INODE_DIO_READY bit and does
not clear the bit after finishing the DIO write. A future DIO write could
actually fail and the unused reserve space won't be freed because of the
previously set BTRFS_INODE_DIO_READY bit.
Clearing the BTRFS_INODE_DIO_READY bit in btrfs_direct_IO() caused the
following issue,
|-----------------------------------+-------------------------------------|
| Task A | Task B |
|-----------------------------------+-------------------------------------|
| Start direct i/o write on inode X.| |
| reserve space | |
| Allocate ordered extent | |
| release reserved space | |
| Set BTRFS_INODE_DIO_READY bit. | |
| | splice() |
| | Transfer data from pipe buffer to |
| | destination file. |
| | - kmap(pipe buffer page) |
| | - Start direct i/o write on |
| | inode X. |
| | - reserve space |
| | - dio_refill_pages() |
| | - sdio->blocks_available == 0 |
| | - Since a kernel address is |
| | being passed instead of a |
| | user space address, |
| | iov_iter_get_pages() returns |
| | -EFAULT. |
| | - Since BTRFS_INODE_DIO_READY is |
| | set, we don't release reserved |
| | space. |
| | - Clear BTRFS_INODE_DIO_READY bit.|
| -EIOCBQUEUED is returned. | |
|-----------------------------------+-------------------------------------|
Hence this commit introduces "struct btrfs_dio_data" to track the usage of
reserved data space. The remaining unused "reserve space" can now be freed
reliably.
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
In btrfs_evict_inode, we properly truncate the page cache for evicted
inodes but then we call btrfs_wait_ordered_range for every inode as well.
It's the right thing to do for regular files but results in incorrect
behavior for device inodes for block devices.
filemap_fdatawrite_range gets called with inode->i_mapping which gets
resolved to the block device inode before getting passed to
wbc_attach_fdatawrite_inode and ultimately to inode_to_bdi. What happens
next depends on whether there's an open file handle associated with the
inode. If there is, we write to the block device, which is unexpected
behavior. If there isn't, we through normally and inode->i_data is used.
We can also end up racing against open/close which can result in crashes
when i_mapping points to a block device inode that has been closed.
Since there can't be any page cache associated with special file inodes,
it's safe to skip the btrfs_wait_ordered_range call entirely and avoid
the problem.
Cc: <stable@vger.kernel.org>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=100911
Tested-by: Christoph Biedl <linux-kernel.bfrz@manchmal.in-ulm.de>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Pull btrfs cleanups and fixes from Chris Mason:
"These are small cleanups, and also some fixes for our async worker
thread initialization.
I was having some trouble testing these, but it ended up being a
combination of changing around my test servers and a shiny new
schedule while atomic from the new start/finish_plug in
writeback_sb_inodes().
That one only hits on btrfs raid5/6 or MD raid10, and if I wasn't
changing a bunch of things in my test setup at once it would have been
really clear. Fix for writeback_sb_inodes() on the way as well"
* 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: cleanup: remove unnecessary check before btrfs_free_path is called
btrfs: async_thread: Fix workqueue 'max_active' value when initializing
btrfs: Add raid56 support for updating num_tolerated_disk_barrier_failures in btrfs_balance
btrfs: Cleanup for btrfs_calc_num_tolerated_disk_barrier_failures
btrfs: Remove noused chunk_tree and chunk_objectid from scrub_enumerate_chunks and scrub_chunk
btrfs: Update out-of-date "skip parity stripe" comment
Pull btrfs updates from Chris Mason:
"This has Jeff Mahoney's long standing trim patch that fixes corners
where trims were missing. Omar has some raid5/6 fixes, especially for
using scrub and device replace when devices are missing.
Zhao Lie continues cleaning and fixing things, this series fixes some
really hard to hit corners in xfstests. I had to pull it last merge
window due to some deadlocks, but those are now resolved.
I added support for Tejun's new blkio controllers. It seems to work
well for single devices, we'll expand to multi-device as well"
* 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (47 commits)
btrfs: fix compile when block cgroups are not enabled
Btrfs: fix file read corruption after extent cloning and fsync
Btrfs: check if previous transaction aborted to avoid fs corruption
btrfs: use __GFP_NOFAIL in alloc_btrfs_bio
btrfs: Prevent from early transaction abort
btrfs: Remove unused arguments in tree-log.c
btrfs: Remove useless condition in start_log_trans()
Btrfs: add support for blkio controllers
Btrfs: remove unused mutex from struct 'btrfs_fs_info'
Btrfs: fix parity scrub of RAID 5/6 with missing device
Btrfs: fix device replace of a missing RAID 5/6 device
Btrfs: add RAID 5/6 BTRFS_RBIO_REBUILD_MISSING operation
Btrfs: count devices correctly in readahead during RAID 5/6 replace
Btrfs: remove misleading handling of missing device scrub
btrfs: fix clone / extent-same deadlocks
Btrfs: fix defrag to merge tail file extent
Btrfs: fix warning in backref walking
btrfs: Add WARN_ON() for double lock in btrfs_tree_lock()
btrfs: Remove root argument in extent_data_ref_count()
btrfs: Fix wrong comment of btrfs_alloc_tree_block()
...
Pull core block updates from Jens Axboe:
"This first core part of the block IO changes contains:
- Cleanup of the bio IO error signaling from Christoph. We used to
rely on the uptodate bit and passing around of an error, now we
store the error in the bio itself.
- Improvement of the above from myself, by shrinking the bio size
down again to fit in two cachelines on x86-64.
- Revert of the max_hw_sectors cap removal from a revision again,
from Jeff Moyer. This caused performance regressions in various
tests. Reinstate the limit, bump it to a more reasonable size
instead.
- Make /sys/block/<dev>/queue/discard_max_bytes writeable, by me.
Most devices have huge trim limits, which can cause nasty latencies
when deleting files. Enable the admin to configure the size down.
We will look into having a more sane default instead of UINT_MAX
sectors.
- Improvement of the SGP gaps logic from Keith Busch.
- Enable the block core to handle arbitrarily sized bios, which
enables a nice simplification of bio_add_page() (which is an IO hot
path). From Kent.
- Improvements to the partition io stats accounting, making it
faster. From Ming Lei.
- Also from Ming Lei, a basic fixup for overflow of the sysfs pending
file in blk-mq, as well as a fix for a blk-mq timeout race
condition.
- Ming Lin has been carrying Kents above mentioned patches forward
for a while, and testing them. Ming also did a few fixes around
that.
- Sasha Levin found and fixed a use-after-free problem introduced by
the bio->bi_error changes from Christoph.
- Small blk cgroup cleanup from Viresh Kumar"
* 'for-4.3/core' of git://git.kernel.dk/linux-block: (26 commits)
blk: Fix bio_io_vec index when checking bvec gaps
block: Replace SG_GAPS with new queue limits mask
block: bump BLK_DEF_MAX_SECTORS to 2560
Revert "block: remove artifical max_hw_sectors cap"
blk-mq: fix race between timeout and freeing request
blk-mq: fix buffer overflow when reading sysfs file of 'pending'
Documentation: update notes in biovecs about arbitrarily sized bios
block: remove bio_get_nr_vecs()
fs: use helper bio_add_page() instead of open coding on bi_io_vec
block: kill merge_bvec_fn() completely
md/raid5: get rid of bio_fits_rdev()
md/raid5: split bio for chunk_aligned_read
block: remove split code in blkdev_issue_{discard,write_same}
btrfs: remove bio splitting and merge_bvec_fn() calls
bcache: remove driver private bio splitting code
block: simplify bio_add_page()
block: make generic_make_request handle arbitrarily sized bios
blk-cgroup: Drop unlikely before IS_ERR(_OR_NULL)
block: don't access bio->bi_error after bio_put()
block: shrink struct bio down to 2 cache lines again
...
We need not check path before btrfs_free_path() is called because
path is checked in btrfs_free_path().
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
We can always fill up the bio now, no need to estimate the possible
size based on queue parameters.
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
[hch: rebased and wrote a changelog]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ming Lin <ming.l@ssi.samsung.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
This attaches accounting information to bios as we submit them so the
new blkio controllers can throttle on btrfs filesystems.
Not much is required, we're just associating bios with blkcgs during clone,
calling wbc_init_bio()/wbc_account_io() during writepages submission,
and attaching the bios to the current context during direct IO.
Finally if we are splitting bios during btrfs_map_bio, this attaches
accounting information to the split.
The end result is able to throttle nicely on single disk filesystems. A
little more work is required for multi-device filesystems.
Signed-off-by: Chris Mason <clm@fb.com>
If we remove a hard link from an inode, the inode gets evicted, then
we fsync the inode and then power fail/crash, when the log tree is
replayed, the parent directory inode still has entries pointing to
the name that no longer exists, while our inode no longer has the
BTRFS_INODE_REF_KEY item matching the deleted hard link (as expected),
leaving the filesystem in an inconsistent state. The stale directory
entries can not be deleted (an attempt to delete them causes -ESTALE
errors), which makes it impossible to delete the parent directory.
This happens because we track the id of the transaction where the last
unlink operation for the inode happened (last_unlink_trans) in an
in-memory only field of the inode, that is, a value that is never
persisted in the inode item stored on the fs/subvol btree. So if an
inode is evicted and loaded again, the value for last_unlink_trans is
set to 0, which prevents the fsync from logging the parent directory
at btrfs_log_inode_parent(). So fix this by setting last_unlink_trans
to the id of the transaction that last modified the inode when we
load the inode. This is a pessimistic approach but it always ensures
correctness with the trade off of ocassional full transaction commits
when an fsync is done against the inode in the same transaction where
it was evicted and reloaded when our inode is a directory and often
logging its parent unnecessarily when our inode is not a directory.
The following test case for fstests triggers the problem:
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
_cleanup_flakey
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
. ./common/dmflakey
# real QA test starts here
_need_to_be_root
_supported_fs generic
_supported_os Linux
_require_scratch
_require_dm_flakey
_require_metadata_journaling $SCRATCH_DEV
rm -f $seqres.full
_scratch_mkfs >>$seqres.full 2>&1
_init_flakey
_mount_flakey
# Create our test file with 2 hard links.
mkdir $SCRATCH_MNT/testdir
touch $SCRATCH_MNT/testdir/foo
ln $SCRATCH_MNT/testdir/foo $SCRATCH_MNT/testdir/bar
# Make sure everything done so far is durably persisted.
sync
# Now remove one of the links, trigger inode eviction and then fsync
# our inode.
unlink $SCRATCH_MNT/testdir/bar
echo 2 > /proc/sys/vm/drop_caches
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/testdir/foo
# Silently drop all writes on our scratch device to simulate a power failure.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
# Allow writes again and mount the fs to trigger log/journal replay.
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# Now verify our directory entries.
echo "Entries in testdir:"
ls -1 $SCRATCH_MNT/testdir
# If we remove our inode, its parent should become empty and therefore we should
# be able to remove the parent.
rm -f $SCRATCH_MNT/testdir/*
rmdir $SCRATCH_MNT/testdir
_unmount_flakey
# The fstests framework will call fsck against our filesystem which will verify
# that all metadata is in a consistent state.
status=0
exit
The test failed on btrfs with:
generic/098 4s ... - output mismatch (see /home/fdmanana/git/hub/xfstests/results//generic/098.out.bad)
--- tests/generic/098.out 2015-07-23 18:01:12.616175932 +0100
+++ /home/fdmanana/git/hub/xfstests/results//generic/098.out.bad 2015-07-23 18:04:58.924138308 +0100
@@ -1,3 +1,6 @@
QA output created by 098
Entries in testdir:
+bar
foo
+rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/testdir/foo': Stale file handle
+rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/testdir': Directory not empty
...
(Run 'diff -u tests/generic/098.out /home/fdmanana/git/hub/xfstests/results//generic/098.out.bad' to see the entire diff)
_check_btrfs_filesystem: filesystem on /dev/sdc is inconsistent (see /home/fdmanana/git/hub/xfstests/results//generic/098.full)
$ cat /home/fdmanana/git/hub/xfstests/results//generic/098.full
(...)
checking fs roots
root 5 inode 258 errors 2001, no inode item, link count wrong
unresolved ref dir 257 index 0 namelen 3 name foo filetype 1 errors 6, no dir index, no inode ref
unresolved ref dir 257 index 3 namelen 3 name bar filetype 1 errors 5, no dir item, no inode ref
Checking filesystem on /dev/sdc
(...)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently we have two different ways to signal an I/O error on a BIO:
(1) by clearing the BIO_UPTODATE flag
(2) by returning a Linux errno value to the bi_end_io callback
The first one has the drawback of only communicating a single possible
error (-EIO), and the second one has the drawback of not beeing persistent
when bios are queued up, and are not passed along from child to parent
bio in the ever more popular chaining scenario. Having both mechanisms
available has the additional drawback of utterly confusing driver authors
and introducing bugs where various I/O submitters only deal with one of
them, and the others have to add boilerplate code to deal with both kinds
of error returns.
So add a new bi_error field to store an errno value directly in struct
bio and remove the existing mechanisms to clean all this up.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
If the no_holes feature is enabled, we attempt to shrink a file to a size
that ends up in the middle of a hole and we don't have any file extent
items in the fs/subvol tree that go beyond the new file size (or any
ordered extents that will insert such file extent items), we end up not
updating the inode's disk_i_size, we only update the inode's i_size.
This means that after unmounting and mounting the filesystem, or after
the inode is evicted and reloaded, its i_size ends up being incorrect
(an inode's i_size is set to the disk_i_size field when an inode is
loaded). This happens when btrfs_truncate_inode_items() doesn't find
any file extent items to drop - in this case it never makes a call to
btrfs_ordered_update_i_size() in order to update the inode's disk_i_size.
Example reproducer:
$ mkfs.btrfs -O no-holes -f /dev/sdd
$ mount /dev/sdd /mnt
# Create our test file with some data and durably persist it.
$ xfs_io -f -c "pwrite -S 0xaa 0 128K" /mnt/foo
$ sync
# Append some data to the file, increasing its size, and leave a hole
# between the old size and the start offset if the following write. So
# our file gets a hole in the range [128Kb, 256Kb[.
$ xfs_io -c "truncate 160K" /mnt/foo
# We expect to see our file with a size of 160Kb, with the first 128Kb
# of data all having the value 0xaa and the remaining 32Kb of data all
# having the value 0x00.
$ od -t x1 /mnt/foo
0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
*
0400000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
0500000
# Now cleanly unmount and mount again the filesystem.
$ umount /mnt
$ mount /dev/sdd /mnt
# We expect to get the same result as before, a file with a size of
# 160Kb, with the first 128Kb of data all having the value 0xaa and the
# remaining 32Kb of data all having the value 0x00.
$ od -t x1 /mnt/foo
0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
*
0400000
In the example above the file size/data do not match what they were before
the remount.
Fix this by always calling btrfs_ordered_update_i_size() with a size
matching the size the file was truncated to if btrfs_truncate_inode_items()
is not called for a log tree and no file extent items were dropped. This
ensures the same behaviour as when the no_holes feature is not enabled.
A test case for fstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
While running generic/019, dmesg got several warnings from
btrfs_free_reserved_data_space().
Test generic/019 produces some disk failures so sumbit dio will get errors,
in which case, btrfs_direct_IO() goes to the error handling and free
bytes_may_use, but the problem is that bytes_may_use has been free'd
during get_block().
This adds a runtime flag to show if we've gone through get_block(), if so,
don't do the cleanup work.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The hang is uncoverd by generic/019.
btrfs_endio_direct_write() skips the "finish_ordered_fn" part when it hits
an error, thus those added ordered extents will never get processed, which
block processes that waiting for them via btrfs_start_ordered_extent().
This fixes the above, and meanwhile finish_ordered_fn will do the space
accounting work.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The comment was not correct about the part where it says the endio
callback of the bio might have not yet been called - update it
to mention that by that time the endio callback execution might
still be in progress only.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we fail to submit a bio for a direct IO request, we were grabbing the
corresponding ordered extent and decrementing its reference count twice,
once for our lookup reference and once for the ordered tree reference.
This was a problem because it caused the ordered extent to be freed
without removing it from the ordered tree and any lists it might be
attached to, leaving dangling pointers to the ordered extent around.
Example trace with CONFIG_DEBUG_PAGEALLOC=y:
[161779.858707] BUG: unable to handle kernel paging request at 0000000087654330
[161779.859983] IP: [<ffffffff8124ca68>] rb_prev+0x22/0x3b
[161779.860636] PGD 34d818067 PUD 0
[161779.860636] Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
(...)
[161779.860636] Call Trace:
[161779.860636] [<ffffffffa06b36a6>] __tree_search+0xd9/0xf9 [btrfs]
[161779.860636] [<ffffffffa06b3708>] tree_search+0x42/0x63 [btrfs]
[161779.860636] [<ffffffffa06b4868>] ? btrfs_lookup_ordered_range+0x2d/0xa5 [btrfs]
[161779.860636] [<ffffffffa06b4873>] btrfs_lookup_ordered_range+0x38/0xa5 [btrfs]
[161779.860636] [<ffffffffa06aab8e>] btrfs_get_blocks_direct+0x11b/0x615 [btrfs]
[161779.860636] [<ffffffff8119727f>] do_blockdev_direct_IO+0x5ff/0xb43
[161779.860636] [<ffffffffa06aaa73>] ? btrfs_page_exists_in_range+0x1ad/0x1ad [btrfs]
[161779.860636] [<ffffffffa06a2c9a>] ? btrfs_get_extent_fiemap+0x1bc/0x1bc [btrfs]
[161779.860636] [<ffffffff811977f5>] __blockdev_direct_IO+0x32/0x34
[161779.860636] [<ffffffffa06a2c9a>] ? btrfs_get_extent_fiemap+0x1bc/0x1bc [btrfs]
[161779.860636] [<ffffffffa06a10ae>] btrfs_direct_IO+0x198/0x21f [btrfs]
[161779.860636] [<ffffffffa06a2c9a>] ? btrfs_get_extent_fiemap+0x1bc/0x1bc [btrfs]
[161779.860636] [<ffffffff81112ca1>] generic_file_direct_write+0xb3/0x128
[161779.860636] [<ffffffffa06affaa>] ? btrfs_file_write_iter+0x15f/0x3e0 [btrfs]
[161779.860636] [<ffffffffa06b004c>] btrfs_file_write_iter+0x201/0x3e0 [btrfs]
(...)
We were also not freeing the btrfs_dio_private we allocated previously,
which kmemleak reported with the following trace in its sysfs file:
unreferenced object 0xffff8803f553bf80 (size 96):
comm "xfs_io", pid 4501, jiffies 4295039588 (age 173.936s)
hex dump (first 32 bytes):
88 6c 9b f5 02 88 ff ff 00 00 00 00 00 00 00 00 .l..............
00 00 00 00 00 00 00 00 00 00 c4 00 00 00 00 00 ................
backtrace:
[<ffffffff81161ffe>] create_object+0x172/0x29a
[<ffffffff8145870f>] kmemleak_alloc+0x25/0x41
[<ffffffff81154e64>] kmemleak_alloc_recursive.constprop.40+0x16/0x18
[<ffffffff811579ed>] kmem_cache_alloc_trace+0xfb/0x148
[<ffffffffa03d8cff>] btrfs_submit_direct+0x65/0x16a [btrfs]
[<ffffffff811968dc>] dio_bio_submit+0x62/0x8f
[<ffffffff811975fe>] do_blockdev_direct_IO+0x97e/0xb43
[<ffffffff811977f5>] __blockdev_direct_IO+0x32/0x34
[<ffffffffa03d70ae>] btrfs_direct_IO+0x198/0x21f [btrfs]
[<ffffffff81112ca1>] generic_file_direct_write+0xb3/0x128
[<ffffffffa03e604d>] btrfs_file_write_iter+0x201/0x3e0 [btrfs]
[<ffffffff8116586a>] __vfs_write+0x7c/0xa5
[<ffffffff81165da9>] vfs_write+0xa0/0xe4
[<ffffffff81166675>] SyS_pwrite64+0x64/0x82
[<ffffffff81464fd7>] system_call_fastpath+0x12/0x6f
[<ffffffffffffffff>] 0xffffffffffffffff
For read requests we weren't doing any cleanup either (none of the work
done by btrfs_endio_direct_read()), so a failure submitting a bio for a
read request would leave a range in the inode's io_tree locked forever,
blocking any future operations (both reads and writes) against that range.
So fix this by making sure we do the same cleanup that we do for the case
where the bio submission succeeds.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Zygo Blaxell and other users have reported occasional hangs while an
inode is being evicted, leading to traces like the following:
[ 5281.972322] INFO: task rm:20488 blocked for more than 120 seconds.
[ 5281.973836] Not tainted 4.0.0-rc5-btrfs-next-9+ #2
[ 5281.974818] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 5281.976364] rm D ffff8800724cfc38 0 20488 7747 0x00000000
[ 5281.977506] ffff8800724cfc38 ffff8800724cfc38 ffff880065da5c50 0000000000000001
[ 5281.978461] ffff8800724cffd8 ffff8801540a5f50 0000000000000008 ffff8801540a5f78
[ 5281.979541] ffff8801540a5f50 ffff8800724cfc58 ffffffff8143107e 0000000000000123
[ 5281.981396] Call Trace:
[ 5281.982066] [<ffffffff8143107e>] schedule+0x74/0x83
[ 5281.983341] [<ffffffffa03b33cf>] wait_on_state+0xac/0xcd [btrfs]
[ 5281.985127] [<ffffffff81075cd6>] ? signal_pending_state+0x31/0x31
[ 5281.986715] [<ffffffffa03b4b71>] wait_extent_bit.constprop.32+0x7c/0xde [btrfs]
[ 5281.988680] [<ffffffffa03b540b>] lock_extent_bits+0x5d/0x88 [btrfs]
[ 5281.990200] [<ffffffffa03a621d>] btrfs_evict_inode+0x24e/0x5be [btrfs]
[ 5281.991781] [<ffffffff8116964d>] evict+0xa0/0x148
[ 5281.992735] [<ffffffff8116a43d>] iput+0x18f/0x1e5
[ 5281.993796] [<ffffffff81160d4a>] do_unlinkat+0x15b/0x1fa
[ 5281.994806] [<ffffffff81435b54>] ? ret_from_sys_call+0x1d/0x58
[ 5281.996120] [<ffffffff8107d314>] ? trace_hardirqs_on_caller+0x18f/0x1ab
[ 5281.997562] [<ffffffff8123960b>] ? trace_hardirqs_on_thunk+0x3a/0x3f
[ 5281.998815] [<ffffffff81161a16>] SyS_unlinkat+0x29/0x2b
[ 5281.999920] [<ffffffff81435b32>] system_call_fastpath+0x12/0x17
[ 5282.001299] 1 lock held by rm/20488:
[ 5282.002066] #0: (sb_writers#12){.+.+.+}, at: [<ffffffff8116dd81>] mnt_want_write+0x24/0x4b
This happens when we have readahead, which calls readpages(), happening
right before the inode eviction handler is invoked. So the reason is
essentially:
1) readpages() is called while a reference on the inode is held, so
eviction can not be triggered before readpages() returns. It also
locks one or more ranges in the inode's io_tree (which is done at
extent_io.c:__do_contiguous_readpages());
2) readpages() submits several read bios, all with an end io callback
that runs extent_io.c:end_bio_extent_readpage() and that is executed
by other task when a bio finishes, corresponding to a work queue
(fs_info->end_io_workers) worker kthread. This callback unlocks
the ranges in the inode's io_tree that were previously locked in
step 1;
3) readpages() returns, the reference on the inode is dropped;
4) One or more of the read bios previously submitted are still not
complete (their end io callback was not yet invoked or has not
yet finished execution);
5) Inode eviction is triggered (through an unlink call for example).
The inode reference count was not incremented before submitting
the read bios, therefore this is possible;
6) The eviction handler starts executing and enters the loop that
iterates over all extent states in the inode's io_tree;
7) The loop picks one extent state record and uses its ->start and
->end fields, after releasing the inode's io_tree spinlock, to
call lock_extent_bits() and clear_extent_bit(). The call to lock
the range [state->start, state->end] blocks because the whole
range or a part of it was locked by the previous call to
readpages() and the corresponding end io callback, which unlocks
the range was not yet executed;
8) The end io callback for the read bio is executed and unlocks the
range [state->start, state->end] (or a superset of that range).
And at clear_extent_bit() the extent_state record state is used
as a second argument to split_state(), which sets state->start to
a larger value;
9) The task executing the eviction handler is woken up by the task
executing the bio's end io callback (through clear_state_bit) and
the eviction handler locks the range
[old value for state->start, state->end]. Shortly after, when
calling clear_extent_bit(), it unlocks the range
[new value for state->start, state->end], so it ends up unlocking
only part of the range that it locked, leaving an extent state
record in the io_tree that represents the unlocked subrange;
10) The eviction handler loop, in its next iteration, gets the
extent_state record for the subrange that it did not unlock in the
previous step and then tries to lock it, resulting in an hang.
So fix this by not using the ->start and ->end fields of an existing
extent_state record. This is a simple solution, and an alternative
could be to bump the inode's reference count before submitting each
read bio and having it dropped in the bio's end io callback. But that
would be a more invasive/complex change and would not protect against
other possible places that are not holding a reference on the inode
as well. Something to consider in the future.
Many thanks to Zygo Blaxell for reporting, in the mailing list, the
issue, a set of scripts to trigger it and testing this fix.
Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Tested-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from Chris Mason:
"A few more btrfs fixes.
These range from corners Filipe found in the new free space cache
writeback to a grab bag of fixes from the list"
* 'for-linus-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: btrfs_release_extent_buffer_page didn't free pages of dummy extent
Btrfs: fill ->last_trans for delayed inode in btrfs_fill_inode.
btrfs: unlock i_mutex after attempting to delete subvolume during send
btrfs: check io_ctl_prepare_pages return in __btrfs_write_out_cache
btrfs: fix race on ENOMEM in alloc_extent_buffer
btrfs: handle ENOMEM in btrfs_alloc_tree_block
Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole
Btrfs: don't check for delalloc_bytes in cache_save_setup
Btrfs: fix deadlock when starting writeback of bg caches
Btrfs: fix race between start dirty bg cache writeout and bg deletion
Pull fourth vfs update from Al Viro:
"d_inode() annotations from David Howells (sat in for-next since before
the beginning of merge window) + four assorted fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
RCU pathwalk breakage when running into a symlink overmounting something
fix I_DIO_WAKEUP definition
direct-io: only inc/dec inode->i_dio_count for file systems
fs/9p: fix readdir()
VFS: assorted d_backing_inode() annotations
VFS: fs/inode.c helpers: d_inode() annotations
VFS: fs/cachefiles: d_backing_inode() annotations
VFS: fs library helpers: d_inode() annotations
VFS: assorted weird filesystems: d_inode() annotations
VFS: normal filesystems (and lustre): d_inode() annotations
VFS: security/: d_inode() annotations
VFS: security/: d_backing_inode() annotations
VFS: net/: d_inode() annotations
VFS: net/unix: d_backing_inode() annotations
VFS: kernel/: d_inode() annotations
VFS: audit: d_backing_inode() annotations
VFS: Fix up some ->d_inode accesses in the chelsio driver
VFS: Cachefiles should perform fs modifications on the top layer only
VFS: AF_UNIX sockets should call mknod on the top layer only
We need to fill inode when we found a node for it in delayed_nodes_tree.
But we did not fill the ->last_trans currently, it will cause the test
of xfstest/generic/311 fail. Scenario of the 311 is shown as below:
Problem:
(1). test_fd = open(fname, O_RDWR|O_DIRECT)
(2). pwrite(test_fd, buf, 4096, 0)
(3). close(test_fd)
(4). drop_all_caches() <-------- "echo 3 > /proc/sys/vm/drop_caches"
(5). test_fd = open(fname, O_RDWR|O_DIRECT)
(6). fsync(test_fd);
<-------- we did not get the correct log entry for the file
Reason:
When we re-open this file in (5), we would find a node
in delayed_nodes_tree and fill the inode we are lookup with the
information. But the ->last_trans is not filled, then the fsync()
will check the ->last_trans and found it's 0 then say this inode
is already in our tree which is commited, not recording the extents
for it.
Fix:
This patch fill the ->last_trans properly and set the
runtime_flags if needed in this situation. Then we can get the
log entries we expected after (6) and generic/311 passed.
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Reviewed-by: Miao Xie <miaoxie@huawei.com>
Signed-off-by: Chris Mason <clm@fb.com>
do_blockdev_direct_IO() increments and decrements the inode
->i_dio_count for each IO operation. It does this to protect against
truncate of a file. Block devices don't need this sort of protection.
For a capable multiqueue setup, this atomic int is the only shared
state between applications accessing the device for O_DIRECT, and it
presents a scaling wall for that. In my testing, as much as 30% of
system time is spent incrementing and decrementing this value. A mixed
read/write workload improved from ~2.5M IOPS to ~9.6M IOPS, with
better latencies too. Before:
clat percentiles (usec):
| 1.00th=[ 33], 5.00th=[ 34], 10.00th=[ 34], 20.00th=[ 34],
| 30.00th=[ 34], 40.00th=[ 34], 50.00th=[ 35], 60.00th=[ 35],
| 70.00th=[ 35], 80.00th=[ 35], 90.00th=[ 37], 95.00th=[ 80],
| 99.00th=[ 98], 99.50th=[ 151], 99.90th=[ 155], 99.95th=[ 155],
| 99.99th=[ 165]
After:
clat percentiles (usec):
| 1.00th=[ 95], 5.00th=[ 108], 10.00th=[ 129], 20.00th=[ 149],
| 30.00th=[ 155], 40.00th=[ 161], 50.00th=[ 167], 60.00th=[ 171],
| 70.00th=[ 177], 80.00th=[ 185], 90.00th=[ 201], 95.00th=[ 270],
| 99.00th=[ 390], 99.50th=[ 398], 99.90th=[ 418], 99.95th=[ 422],
| 99.99th=[ 438]
In other setups, Robert Elliott reported seeing good performance
improvements:
https://lkml.org/lkml/2015/4/3/557
The more applications accessing the device, the worse it gets.
Add a new direct-io flags, DIO_SKIP_DIO_COUNT, which tells
do_blockdev_direct_IO() that it need not worry about incrementing
or decrementing the inode i_dio_count for this caller.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Elliott, Robert (Server Storage) <elliott@hp.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull btrfs updates from Chris Mason:
"I've been running these through a longer set of load tests because my
commits change the free space cache writeout. It fixes commit stalls
on large filesystems (~20T space used and up) that we have been
triggering here. We were seeing new writers blocked for 10 seconds or
more during commits, which is far from good.
Josef and I fixed up ENOSPC aborts when deleting huge files (3T or
more), that are triggered because our metadata reservations were not
properly accounting for crcs and were not replenishing during the
truncate.
Also in this series, a number of qgroup fixes from Fujitsu and Dave
Sterba collected most of the pending cleanups from the list"
* 'for-linus-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (93 commits)
btrfs: quota: Update quota tree after qgroup relationship change.
btrfs: quota: Automatically update related qgroups or mark INCONSISTENT flags when assigning/deleting a qgroup relations.
btrfs: qgroup: clear STATUS_FLAG_ON in disabling quota.
btrfs: Update btrfs qgroup status item when rescan is done.
btrfs: qgroup: Fix dead judgement on qgroup_rescan_leaf() return value.
btrfs: Don't allow subvolid >= (1 << BTRFS_QGROUP_LEVEL_SHIFT) to be created
btrfs: Check qgroup level in kernel qgroup assign.
btrfs: qgroup: allow to remove qgroup which has parent but no child.
btrfs: qgroup: return EINVAL if level of parent is not higher than child's.
btrfs: qgroup: do a reservation in a higher level.
Btrfs: qgroup, Account data space in more proper timings.
Btrfs: qgroup: Introduce a may_use to account space_info->bytes_may_use.
Btrfs: qgroup: free reserved in exceeding quota.
Btrfs: qgroup: cleanup, remove an unsued parameter in btrfs_create_qgroup().
btrfs: qgroup: fix limit args override whole limit struct
btrfs: qgroup: update limit info in function btrfs_run_qgroups().
btrfs: qgroup: consolidate the parameter of fucntion update_qgroup_limit_item().
btrfs: qgroup: update qgroup in memory at the same time when we update it in btree.
btrfs: qgroup: inherit limit info from srcgroup in creating snapshot.
btrfs: Support busy loop of write and delete
...
that's the bulk of filesystem drivers dealing with inodes of their own
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
There are two problems in qgroup:
a). The PAGE_CACHE is 4K, even when we are writing a data of 1K,
qgroup will reserve a 4K size. It will cause the last 3K in a qgroup
is not available to user.
b). When user is writing a inline data, qgroup will not reserve it,
it means this is a window we can exceed the limit of a qgroup.
The main idea of this patch is reserving the data size of write_bytes
rather than the reserve_bytes. It means qgroup will not care about
the data size btrfs will reserve for user, but only care about the
data size user is going to write. Then reserve it when user want to
write and release it in transaction committed.
In this way, qgroup can be released from the complex procedure in
btrfs and only do the reserve when user want to write and account
when the data is written in commit_transaction().
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently, for pre_alloc or delay_alloc, the bytes will be accounted
in space_info by the three guys.
space_info->bytes_may_use --- space_info->reserved --- space_info->used.
But on the other hand, in qgroup, there are only two counters to account the
bytes, qgroup->reserved and qgroup->excl. And qg->reserved accounts
bytes in space_info->bytes_may_use and qg->excl accounts bytes in
space_info->used. So the bytes in space_info->reserved is not accounted
in qgroup. If so, there is a window we can exceed the quota limit when
bytes is in space_info->reserved.
Example:
# btrfs quota enable /mnt
# btrfs qgroup limit -e 10M /mnt
# for((i=0;i<20;i++));do fallocate -l 1M /mnt/data$i; done
# sync
# btrfs qgroup show -pcre /mnt
qgroupid rfer excl max_rfer max_excl parent child
-------- ---- ---- -------- -------- ------ -----
0/5 20987904 20987904 0 10485760 --- ---
qg->excl is 20987904 larger than max_excl 10485760.
This patch introduce a new counter named may_use to qgroup, then
there are three counters in qgroup to account bytes in space_info
as below.
space_info->bytes_may_use --- space_info->reserved --- space_info->used.
qgroup->may_use --- qgroup->reserved --- qgroup->excl
With this patch applied:
# btrfs quota enable /mnt
# btrfs qgroup limit -e 10M /mnt
# for((i=0;i<20;i++));do fallocate -l 1M /mnt/data$i; done
fallocate: /mnt/data9: fallocate failed: Disk quota exceeded
fallocate: /mnt/data10: fallocate failed: Disk quota exceeded
fallocate: /mnt/data11: fallocate failed: Disk quota exceeded
fallocate: /mnt/data12: fallocate failed: Disk quota exceeded
fallocate: /mnt/data13: fallocate failed: Disk quota exceeded
fallocate: /mnt/data14: fallocate failed: Disk quota exceeded
fallocate: /mnt/data15: fallocate failed: Disk quota exceeded
fallocate: /mnt/data16: fallocate failed: Disk quota exceeded
fallocate: /mnt/data17: fallocate failed: Disk quota exceeded
fallocate: /mnt/data18: fallocate failed: Disk quota exceeded
fallocate: /mnt/data19: fallocate failed: Disk quota exceeded
# sync
# btrfs qgroup show -pcre /mnt
qgroupid rfer excl max_rfer max_excl parent child
-------- ---- ---- -------- -------- ------ -----
0/5 9453568 9453568 0 10485760 --- ---
Reported-by: Cyril SCETBON <cyril.scetbon@free.fr>
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Steps to reproduce:
while true; do
dd if=/dev/zero of=/btrfs_dir/file count=[fs_size * 75%]
rm /btrfs_dir/file
sync
done
And we'll see dd failed because btrfs return NO_SPACE.
Reason:
Normally, btrfs_commit_transaction() call btrfs_run_delayed_iputs()
in end to free fs space for next write, but sometimes it hadn't
done work on time, because btrfs-cleaner thread get delayed-iputs
from list before, but do iput() after next write.
This is log:
[ 2569.050776] comm=btrfs-cleaner func=btrfs_evict_inode() begin
[ 2569.084280] comm=sync func=btrfs_commit_transaction() call btrfs_run_delayed_iputs()
[ 2569.085418] comm=sync func=btrfs_commit_transaction() done btrfs_run_delayed_iputs()
[ 2569.087554] comm=sync func=btrfs_commit_transaction() end
[ 2569.191081] comm=dd begin
[ 2569.790112] comm=dd func=__btrfs_buffered_write() ret=-28
[ 2569.847479] comm=btrfs-cleaner func=add_pinned_bytes() 0 + 32677888 = 32677888
[ 2569.849530] comm=btrfs-cleaner func=add_pinned_bytes() 32677888 + 23834624 = 56512512
...
[ 2569.903893] comm=btrfs-cleaner func=add_pinned_bytes() 943976448 + 21762048 = 965738496
[ 2569.908270] comm=btrfs-cleaner func=btrfs_evict_inode() end
Fix:
Make btrfs_commit_transaction() wait current running btrfs-cleaner's
delayed-iputs() done in end.
Test:
Use script similar to above(more complex),
before patch:
7 failed in 100 * 20 loop.
after patch:
0 failed in 100 * 20 loop.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The rw parameter to direct_IO is redundant with iov_iter->type, and
treated slightly differently just about everywhere it's used: some users
do rw & WRITE, and others do rw == WRITE where they should be doing a
bitwise check. Simplify this with the new iov_iter_rw() helper, which
always returns either READ or WRITE.
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Most filesystems call through to these at some point, so we'll start
here.
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>