This includes following Thunderbolt/USB4 changes for the v6.1 merge
window:
- Support for Intel Meteor Lake integrated Thunderbolt/USB4 controller
- Support for ASMedia USB4 controller NVM firmware upgrade
- Receiver lane margining support
- Few fixes and cleanups.
All these have been in linux-next with no reported issues.
-----BEGIN PGP SIGNATURE-----
iQJUBAABCgA+FiEEVTdhRGBbNzLrSUBaAP2fSd+ZWKAFAmM0G3ogHG1pa2Eud2Vz
dGVyYmVyZ0BsaW51eC5pbnRlbC5jb20ACgkQAP2fSd+ZWKAhEg/8CuUZvDwLog7O
SbpKAPqGOvDC3EM0VhtJyjJAUVWImVaRuSHAWEHn/XJAICaRTxMJJM7xoJnr+X7O
4VMFzPhF6oF+28VMzy8OLm15kiiNtpXimOKaXNXzoDzJ6aqjgr9KpHSpzhOx3MuF
HUzhoMWk2RHwnrkxlpewU9wJg8ZtG6syI5QV534KsqIwxOcO+8pr7nKz8V8HrUt9
EwFIgU4op/eKCsgeLmotw/8CXI33ezIheMeUdSit3Gqa3Ey9u/JtzVaN7siEOhxy
c3nBO8MgYhKaX0RCVKFGRm/YktFlrECStfDNhgtUbBS2lfoePcaeZGKwuCRpmhkj
WicPxph8m5slKborqGVaoZtgtxqftOt1tWmvnJntqSLcOycPM4bX8gDfWZmoi6JX
f+Vritdy9DDTCE00/Hc2gCpQG0rfX+DzpYvLz4Z8tIa5oU9X5CfCNs8qb20VSQAg
xgmyRe+6/UzJAMKQ7uPy8wSKt/rpKOxsIQC+bhhdiN9g000YS7A56juiC0Z8IfrH
rZae7pvtoD/r7lrJlRcFKtNPup+QrZZ/kdLzWpZbAmKYZ7DkI44KA4iHVBpt24rg
8e23s2/U6ezhNMcR0dLWwIrE+KoiB15BkX9/J1CJxhJLW9lw+fxlSfeZDI0rfjE2
HqcC/Fxx1dMNJykbXAyrO9HYmT551Vs=
=67d1
-----END PGP SIGNATURE-----
Merge tag 'thunderbolt-for-v6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/westeri/thunderbolt into usb-next
Mika writes:
"thunderbolt: Changes for v6.1 merge window
This includes following Thunderbolt/USB4 changes for the v6.1 merge
window:
- Support for Intel Meteor Lake integrated Thunderbolt/USB4 controller
- Support for ASMedia USB4 controller NVM firmware upgrade
- Receiver lane margining support
- Few fixes and cleanups.
All these have been in linux-next with no reported issues."
* tag 'thunderbolt-for-v6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/westeri/thunderbolt:
thunderbolt: Explicitly enable lane adapter hotplug events at startup
thunderbolt: Use dev_err_probe()
thunderbolt: Convert to use sysfs_emit()/sysfs_emit_at() APIs
thunderbolt: Fix spelling mistake "simultaneusly" -> "simultaneously"
thunderbolt: debugfs: Fix spelling mistakes in seq_puts text
thunderbolt: Add support for ASMedia NVM image format
thunderbolt: Move vendor specific NVM handling into nvm.c
thunderbolt: Provide tb_retimer_nvm_read() analogous to tb_switch_nvm_read()
thunderbolt: Rename and make nvm_read() available for other files
thunderbolt: Extend NVM version fields to 32-bits
thunderbolt: Allow NVM upgrade of USB4 host routers
thunderbolt: Add support for receiver lane margining
thunderbolt: Add helper to check if CL states are enabled on port
thunderbolt: Pass CL state bitmask to tb_port_clx_supported()
thunderbolt: Move port CL state functions into correct place in switch.c
thunderbolt: Move tb_xdomain_parent() to tb.h
thunderbolt: Add support for Intel Meteor Lake
thunderbolt: Add comment where Thunderbolt 4 PCI IDs start
thunderbolt: Add DP OUT resource when DP tunnel is discovered
Add support for Maple Ridge discrete USB4 host controller from Intel
which has a single USB4 port (versus the already supported dual port
Maple Ridge USB4 host controller).
Cc: stable@vger.kernel.org
Signed-off-by: Gil Fine <gil.fine@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Intel Meteor Lake has the same integrated Thunderbolt/USB4 controller as
Intel Alder Lake. Add the Intel Meteor Lake PCI IDs to the driver list
of supported devices.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Intel Raptor Lake has the same integrated Thunderbolt/USB4 controller as
Intel Alder Lake. By default it is still using firmware based connection
manager so we can use most of the Alder Lake flows.
Signed-off-by: George D Sworo <george.d.sworo@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Alder Lake has the same integrated Thunderbolt/USB4 controller as
Intel Tiger Lake. By default it is still using firmware based connection
manager so we can use most of the Tiger Lake flows.
Add the Alder Lake PCI IDs to the driver list of supported devices.
Signed-off-by: Azhar Shaikh <azhar.shaikh@intel.com>
Reviewed-by: Yehezkel Bernat <YehezkelShB@gmail.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
This includes following Thunderbolt/USB4 changes for v5.11 merge window:
* DMA traffic test driver
* USB4 router NVM upgrade improvements
* USB4 router operations proxy implementation available in the recent
Intel Connection Manager firmwares
* Support for Intel Maple Ridge discrete Thunderbolt 4 controller
* A couple of cleanups and minor improvements.
-----BEGIN PGP SIGNATURE-----
iQJUBAABCgA+FiEEVTdhRGBbNzLrSUBaAP2fSd+ZWKAFAl/PagggHG1pa2Eud2Vz
dGVyYmVyZ0BsaW51eC5pbnRlbC5jb20ACgkQAP2fSd+ZWKD5DQ/+NFsABFQaf1P+
sU4HVOo9cwfvQCFCapfOsOjBsrkuLsjZPQdUqVdTzhrDzRM6uVQXHqWkcInNYxEs
D0o9f8yheYSPuZolHIIydkNZ7VjhXwhVp7FuF+6M3bIhtD9siuBUisCu7QtOjzpF
EAzBZcGHvKXkPmVAQKZS/P4WsgcZDv0/pODjeQawosgJAPOo5begZVBEYcpbOeCT
qvl1vEs+Fr5fcoFcY/58sJX932CcbbO5bZMSc01IIF94FQMsQJg3ATLdxkgc++2M
FnzcHEVQi7h8zwCmMT4deGwLJqvbyVy5SNo6GY4/Adhsf0HQzrvtWdESegoIooJK
dNWhSCuAFbXrFKGH4iBEUldigNXiCGiTwalmJ1+IIDccJQwkKC4GGU+9KEWBtYCn
OIvKkHUWPeeqNBzSeiMbFDXiK6QFe2VpNBg/iRUZwZwxibqgjgJE1rHbY098sPrL
yHRcrz6vih3wgpqZJTGdanIMk6F0MzaoHtj2egXbXaqyGf8dIdvnZJZN9gb5WDyu
ZT/ffh3XiNfBvFtsu9gosnn3m76TQ4jIb4lUesTOVZjHX2yNz3MabYet312lP4PO
qhxb1l2HGWuxnLLSxas6gzEv5arpx88ldSj6PaA86pBL/eezy59Bvn5hYrmCQ269
lVZQ19nC8y13VyCgbqcyTSpGxS+NXV0=
=+RXF
-----END PGP SIGNATURE-----
Merge tag 'thunderbolt-for-v5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/westeri/thunderbolt into usb-next
Mika writes:
thunderbolt: Changes for v5.11 merge window
This includes following Thunderbolt/USB4 changes for v5.11 merge window:
* DMA traffic test driver
* USB4 router NVM upgrade improvements
* USB4 router operations proxy implementation available in the recent
Intel Connection Manager firmwares
* Support for Intel Maple Ridge discrete Thunderbolt 4 controller
* A couple of cleanups and minor improvements.
* tag 'thunderbolt-for-v5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/westeri/thunderbolt: (22 commits)
thunderbolt: Add support for Intel Maple Ridge
thunderbolt: Add USB4 router operation proxy for firmware connection manager
thunderbolt: Move constants for USB4 router operations to tb_regs.h
thunderbolt: Add connection manager specific hooks for USB4 router operations
thunderbolt: Pass TX and RX data directly to usb4_switch_op()
thunderbolt: Pass metadata directly to usb4_switch_op()
thunderbolt: Perform USB4 router NVM upgrade in two phases
thunderbolt: Return -ENOTCONN when ERR_CONN is received
thunderbolt: Keep the parent runtime resumed for a while on device disconnect
thunderbolt: Log adapter numbers in decimal in path activation/deactivation
thunderbolt: Log which connection manager implementation is used
thunderbolt: Move max_boot_acl field to correct place in struct icm
MAINTAINERS: Add Isaac as maintainer of Thunderbolt DMA traffic test driver
thunderbolt: Add DMA traffic test driver
thunderbolt: Add support for end-to-end flow control
thunderbolt: Make it possible to allocate one directional DMA tunnel
thunderbolt: Create debugfs directory automatically for services
thunderbolt: Add functions for enabling and disabling lane bonding on XDomain
thunderbolt: Add link_speed and link_width to XDomain
thunderbolt: Create XDomain devices for loops back to the host
...
Maple Ridge is first discrete USB4 host controller from Intel. It comes
with firmware based connection manager and the flows are similar as used
in Intel Titan Ridge.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Intel Tiger Lake-H has the same Thunderbolt/USB4 controller as Tiger
Lake-LP. Add the Tiger Lake-H PCI IDs to the driver list of supported
devices.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Tiger Lake integrated Thunderbolt/USB4 controller is quite close to
Intel Ice Lake. By default it is still using firmware based connection
manager so we can use most of the Ice Lake flows in Tiger Lake as well.
We check if the firmware connection manager is running and in that case
use it, otherwise use the software based connection manager.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Yehezkel Bernat <yehezkelshb@gmail.com>
USB4 is the public specification based on Thunderbolt 3 protocol. There
are some differences in register layouts and flows. In addition to PCIe
and DP tunneling, USB4 supports tunneling of USB 3.x. USB4 is also
backward compatible with Thunderbolt 3 (and older generations but the
spec only talks about 3rd generation). USB4 compliant devices can be
identified by checking USB4 version field in router configuration space.
This patch adds initial support for USB4 compliant hosts and devices
which enables following features provided by the existing functionality
in the driver:
- PCIe tunneling
- Display Port tunneling
- Host and device NVM firmware upgrade
- P2P networking
This brings the USB4 support to the same level that we already have for
Thunderbolt 1, 2 and 3 devices.
Note the spec talks about host and device "routers" but in the driver we
still use term "switch" in most places. Both can be used interchangeably.
Co-developed-by: Rajmohan Mani <rajmohan.mani@intel.com>
Signed-off-by: Rajmohan Mani <rajmohan.mani@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Link: https://lore.kernel.org/r/20191217123345.31850-5-mika.westerberg@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The Thunderbolt controller is integrated into the Ice Lake CPU itself
and requires special flows to power it on and off using force power bit
in NHI VSEC registers. Runtime PM (RTD3) and Sx flows also differ from
the discrete solutions. Now the firmware notifies the driver whether
RTD3 entry or exit are possible. The driver is responsible of sending
Go2Sx command through link controller mailbox when system enters Sx
states (suspend-to-mem/disk). Rest of the ICM firwmare flows follow
Titan Ridge.
Signed-off-by: Raanan Avargil <raanan.avargil@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <YehezkelShB@gmail.com>
Tested-by: Mario Limonciello <mario.limonciello@dell.com>
Intel has done pretty major changes to the driver and we continue to do
so in the future as well. Add Intel as copyright holder of the files we
have done changes.
While there drop "Cactus Ridge" from the headers because this driver
works also with other Thunderbolt controllers.
No functional changes intended.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Yehezkel Bernat <yehezkelshb@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Intel Titan Ridge is the next Thunderbolt 3 controller. The ICM firmware
message format in Titan Ridge differs from Falcon Ridge and Alpine Ridge
somewhat because it is using route strings addressing devices. In
addition to that the DMA port of 4-channel (two port) controller is in
different port number than the previous controllers. There are some
other minor differences as well.
This patch add support for Intel Titan Ridge and the new ICM firmware
message format.
Signed-off-by: Radion Mirchevsky <radion.mirchevsky@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Files removed in 'net-next' had their license header updated
in 'net'. We take the remove from 'net-next'.
Signed-off-by: David S. Miller <davem@davemloft.net>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
These are used by Thunderbolt services to send and receive frames over
the high-speed DMA rings.
We also put the functions to tb_ namespace to make sure we do not
collide with others and add missing kernel-doc comments for the exported
functions.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When high-speed DMA paths are used to transfer arbitrary data over a
Thunderbolt link, DMA rings should be in frame mode instead of raw mode.
The latter is used by the control channel (ring 0). In frame mode each
data frame can hold up to 4kB payload.
This patch modifies the DMA ring code to allow configuring a ring to be
in frame mode by passing a new flag (RING_FLAG_FRAME) to the ring when
it is allocated. In addition there might be need to enable end-to-end
(E2E) workaround for the ring to prevent losing Rx frames in certain
situations. We add another flag (RING_FLAG_E2E) that can be used for
this purpose.
This code is based on the work done by Amir Levy and Michael Jamet.
Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When two hosts are connected over a Thunderbolt cable, there is a
protocol they can use to communicate capabilities supported by the host.
The discovery protocol uses automatically configured control channel
(ring 0) and is build on top of request/response transactions using
special XDomain primitives provided by the Thunderbolt base protocol.
The capabilities consists of a root directory block of basic properties
used for identification of the host, and then there can be zero or more
directories each describing a Thunderbolt service and its capabilities.
Once both sides have discovered what is supported the two hosts can
setup high-speed DMA paths and transfer data to the other side using
whatever protocol was agreed based on the properties. The software
protocol used to communicate which DMA paths to enable is service
specific.
This patch adds support for the XDomain discovery protocol to the
Thunderbolt bus. We model each remote host connection as a Linux XDomain
device. For each Thunderbolt service found supported on the XDomain
device, we create Linux Thunderbolt service device which Thunderbolt
service drivers can then bind to based on the protocol identification
information retrieved from the property directory describing the
service.
This code is based on the work done by Amir Levy and Michael Jamet.
Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Starting from Intel Falcon Ridge the NVM firmware can be upgraded by
using DMA configuration based mailbox commands. If we detect that the
host or device (device support starts from Intel Alpine Ridge) has the
DMA configuration based mailbox we expose NVM information to the
userspace as two separate Linux NVMem devices: nvm_active and
nvm_non_active. The former is read-only portion of the active NVM which
firmware upgrade tools can be use to find out suitable NVM image if the
device identification strings are not enough.
The latter is write-only portion where the new NVM image is to be
written by the userspace. It is up to the userspace to find out right
NVM image (the kernel does very minimal validation). The ICM firmware
itself authenticates the new NVM firmware and fails the operation if it
is not what is expected.
We also expose two new sysfs files per each switch: nvm_version and
nvm_authenticate which can be used to read the active NVM version and
start the upgrade process.
We also introduce safe mode which is the mode a switch goes when it does
not have properly authenticated firmware. In this mode the switch only
accepts a couple of commands including flashing a new NVM firmware image
and triggering power cycle.
This code is based on the work done by Amir Levy and Michael Jamet.
Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
On PCs the NHI host controller is only present when there is a device
connected. When the last device is disconnected the host controller will
dissappear shortly (within 10s). Now if that happens when we are
suspended we should not try to touch the hardware anymore, so add a flag
for this and check it before we re-enable rings.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The host controller includes two sets of registers that are used to
communicate with the firmware. Add functions that can be used to access
these registers.
This code is based on the work done by Amir Levy and Michael Jamet.
Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add Intel Win Ridge (Thunderbolt 2) and Alpine Ridge (Thunderbolt 3)
controller PCI IDs to the list of supported devices.
This code is based on the work done by Amir Levy and Michael Jamet.
Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Intel Thunderbolt controllers support up to 16 MSI-X vectors. Using
MSI-X is preferred over MSI or legacy interrupt and may bring additional
performance because there is no need to check the status registers which
interrupt was triggered.
While there we convert comments in structs tb_ring and tb_nhi to follow
kernel-doc format more closely.
This code is based on the work done by Amir Levy and Michael Jamet.
Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Thunderbolt hotplug is supposed to be handled by the firmware. But Apple
decided to implement thunderbolt at the operating system level. The
firmare only initializes thunderbolt devices that are present at boot
time. This driver enables hotplug of thunderbolt of non-chained
thunderbolt devices on Apple systems with a cactus ridge controller.
This first patch adds the Kconfig file as well the parts of the driver
which talk directly to the hardware (that is pci device setup, interrupt
handling and RX/TX ring management).
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>