Those are rather trivial now and its better to see inline what is
really going on.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Add fields to the page struct so that it is properly documented that
slab overlays the lru fields.
This cleans up some casts in slab.
Reviewed-by: Glauber Costa <glommer@parallels.com>
Reviewed-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Pull SLAB changes from Pekka Enberg:
"There's the new kmalloc_array() API, minor fixes and performance
improvements, but quite honestly, nothing terribly exciting."
* 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux:
mm: SLAB Out-of-memory diagnostics
slab: introduce kmalloc_array()
slub: per cpu partial statistics change
slub: include include for prefetch
slub: Do not hold slub_lock when calling sysfs_slab_add()
slub: prefetch next freelist pointer in slab_alloc()
slab, cleanup: remove unneeded return
Commit c0ff7453bb ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.
[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths. This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32. The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.
For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.
This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side. This is much cheaper on some architectures, including x86. The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.
While updating the nodemask, a check is made to see if a false failure
is a risk. If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.
In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The
actual results were
3.3.0-rc3 3.3.0-rc3
rc3-vanilla nobarrier-v2r1
Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%)
Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%)
Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%)
Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%)
Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%)
Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%)
Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%)
Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%)
Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%)
Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%)
Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%)
Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%)
Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%)
Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%)
Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%)
MMTests Statistics: duration
Sys Time Running Test (seconds) 135.68 132.17
User+Sys Time Running Test (seconds) 164.2 160.13
Total Elapsed Time (seconds) 123.46 120.87
The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected). The
actual number of page faults is noticeably improved.
For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.
To test the actual bug the commit fixed I opened two terminals. The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data. In a second window, the nodemask of the
cpuset was continually randomised in a loop.
Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Following the example at mm/slub.c, add out-of-memory diagnostics to the
SLAB allocator to help on debugging certain OOM conditions.
An example print out looks like this:
<snip page allocator out-of-memory message>
SLAB: Unable to allocate memory on node 0 (gfp=0x11200)
cache: bio-0, object size: 192, order: 0
node 0: slabs: 3/3, objs: 60/60, free: 0
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
The procedure ends right after the if-statement, so remove ``return''.
Also move the last common statement outside.
Signed-off-by: Zhao Jin <cronozhj@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
* 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux:
slub: disallow changing cpu_partial from userspace for debug caches
slub: add missed accounting
slub: Extract get_freelist from __slab_alloc
slub: Switch per cpu partial page support off for debugging
slub: fix a possible memleak in __slab_alloc()
slub: fix slub_max_order Documentation
slub: add missed accounting
slab: add taint flag outputting to debug paths.
slub: add taint flag outputting to debug paths
slab: introduce slab_max_order kernel parameter
slab: rename slab_break_gfp_order to slab_max_order
Including trace/events/*.h TRACE_EVENT() macro headers in other headers
can cause strange side effects if another trace/event/*.h header
includes that header. Having trace/events/kmem.h inside slab_def.h
caused a compile error in sparc64 when changes were done to some header
files. Moving the kmem.h trace header out of slab.h and into slab.c
fixes the problem.
Note, both slub.c and slob.c already include the trace/events/kmem.h
file. Only slab.c had it missing.
Link: http://lkml.kernel.org/r/20120105190405.1e3191fb5a43b2a0f1655e1f@canb.auug.org.au
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 30765b92 ("slab, lockdep: Annotate the locks before using
them") moves the init_lock_keys() call from after g_cpucache_up =
FULL, to before it. And overlooks the fact that init_node_lock_keys()
tests for it and ignores everything !FULL.
Introduce a LATE stage and change the lockdep test to be <LATE.
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: stable@kernel.org
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When we get corruption reports, it's useful to see if the kernel was
tainted, to rule out problems we can't do anything about.
Signed-off-by: Dave Jones <davej@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Introduce new slab_max_order kernel parameter which is the equivalent of
slub_max_order.
For immediate purposes, allows users to override the heuristic that sets
the max order to 1 by default if they have more than 32MB of RAM. This
may result in page allocation failures if there is substantial
fragmentation.
Another usecase would be to increase the max order for better
performance.
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
slab_break_gfp_order is more appropriately named slab_max_order since it
enforces the maximum order size of slabs as long as a single object will
still fit.
Also rename BREAK_GFP_ORDER_{LO,HI} accordingly.
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Historically /proc/slabinfo and files under /sys/kernel/slab/* have
world read permissions and are accessible to the world. slabinfo
contains rather private information related both to the kernel and
userspace tasks. Depending on the situation, it might reveal either
private information per se or information useful to make another
targeted attack. Some examples of what can be learned by
reading/watching for /proc/slabinfo entries:
1) dentry (and different *inode*) number might reveal other processes fs
activity. The number of dentry "active objects" doesn't strictly show
file count opened/touched by a process, however, there is a good
correlation between them. The patch "proc: force dcache drop on
unauthorized access" relies on the privacy of dentry count.
2) different inode entries might reveal the same information as (1), but
these are more fine granted counters. If a filesystem is mounted in a
private mount point (or even a private namespace) and fs type differs from
other mounted fs types, fs activity in this mount point/namespace is
revealed. If there is a single ecryptfs mount point, the whole fs
activity of a single user is revealed. Number of files in ecryptfs
mount point is a private information per se.
3) fuse_* reveals number of files / fs activity of a user in a user
private mount point. It is approx. the same severity as ecryptfs
infoleak in (2).
4) sysfs_dir_cache similar to (2) reveals devices' addition/removal,
which can be otherwise hidden by "chmod 0700 /sys/". With 0444 slabinfo
the precise number of sysfs files is known to the world.
5) buffer_head might reveal some kernel activity. With other
information leaks an attacker might identify what specific kernel
routines generate buffer_head activity.
6) *kmalloc* infoleaks are very situational. Attacker should watch for
the specific kmalloc size entry and filter the noise related to the unrelated
kernel activity. If an attacker has relatively silent victim system, he
might get rather precise counters.
Additional information sources might significantly increase the slabinfo
infoleak benefits. E.g. if an attacker knows that the processes
activity on the system is very low (only core daemons like syslog and
cron), he may run setxid binaries / trigger local daemon activity /
trigger network services activity / await sporadic cron jobs activity
/ etc. and get rather precise counters for fs and network activity of
these privileged tasks, which is unknown otherwise.
Also hiding slabinfo and /sys/kernel/slab/* is a one step to complicate
exploitation of kernel heap overflows (and possibly, other bugs). The
related discussion:
http://thread.gmane.org/gmane.linux.kernel/1108378
To keep compatibility with old permission model where non-root
monitoring daemon could watch for kernel memleaks though slabinfo one
should do:
groupadd slabinfo
usermod -a -G slabinfo $MONITOR_USER
And add the following commands to init scripts (to mountall.conf in
Ubuntu's upstart case):
chmod g+r /proc/slabinfo /sys/kernel/slab/*/*
chgrp slabinfo /proc/slabinfo /sys/kernel/slab/*/*
Signed-off-by: Vasiliy Kulikov <segoon@openwall.com>
Reviewed-by: Kees Cook <kees@ubuntu.com>
Reviewed-by: Dave Hansen <dave@linux.vnet.ibm.com>
Acked-by: Christoph Lameter <cl@gentwo.org>
Acked-by: David Rientjes <rientjes@google.com>
CC: Valdis.Kletnieks@vt.edu
CC: Linus Torvalds <torvalds@linux-foundation.org>
CC: Alan Cox <alan@linux.intel.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Lockdep thinks there's lock recursion through:
kmem_cache_free()
cache_flusharray()
spin_lock(&l3->list_lock) <----------------.
free_block() |
slab_destroy() |
call_rcu() |
debug_object_activate() |
debug_object_init() |
__debug_object_init() |
kmem_cache_alloc() |
cache_alloc_refill() |
spin_lock(&l3->list_lock) --'
Now debug objects doesn't use SLAB_DESTROY_BY_RCU and hence there is no
actual possibility of recursing. Luckily debug objects marks it slab
with SLAB_DEBUG_OBJECTS so we can identify the thing.
Mark all SLAB_DEBUG_OBJECTS (all one!) slab caches with a special
lockdep key so that lockdep sees its a different cachep.
Also add a WARN on trying to create a SLAB_DESTROY_BY_RCU |
SLAB_DEBUG_OBJECTS cache, to avoid possible future trouble.
Reported-and-tested-by: Sebastian Siewior <sebastian@breakpoint.cc>
[ fixes to the initial patch ]
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1311341165.27400.58.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use the nice enumerated constant.
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Reduce high order allocations in do_tune_cpucache() for some setups.
(NR_CPUS=4096 -> we need 64KB)
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
In commit c225150b "slab: fix DEBUG_SLAB build",
"if ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))" is always true if
ARCH_SLAB_MINALIGN == 0. Do not print warning if ARCH_SLAB_MINALIGN == 0.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Reduce high order allocations for some setups.
(NR_CPUS=4096 -> we need 64KB per kmem_cache struct)
We now allocate exact needed size (using nr_cpu_ids and nr_node_ids)
This also makes code a bit smaller on x86_64, since some field offsets
are less than the 127 limit :
Before patch :
# size mm/slab.o
text data bss dec hex filename
22605 361665 32 384302 5dd2e mm/slab.o
After patch :
# size mm/slab.o
text data bss dec hex filename
22349 353473 8224 384046 5dc2e mm/slab.o
CC: Andrew Morton <akpm@linux-foundation.org>
Reported-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Fix CONFIG_SLAB=y CONFIG_DEBUG_SLAB=y build error and warnings.
Now that ARCH_SLAB_MINALIGN defaults to __alignof__(unsigned long long),
it is always defined (when slab.h included), but cannot be used in #if:
mm/slab.c: In function `cache_alloc_debugcheck_after':
mm/slab.c:3156:5: warning: "__alignof__" is not defined
mm/slab.c:3156:5: error: missing binary operator before token "("
make[1]: *** [mm/slab.o] Error 1
So just remove the #if and #endif lines, but then 64-bit build warns:
mm/slab.c: In function `cache_alloc_debugcheck_after':
mm/slab.c:3156:6: warning: cast from pointer to integer of different size
mm/slab.c:3158:10: warning: format `%d' expects type `int', but argument
3 has type `long unsigned int'
Fix those with casts, whatever the actual type of ARCH_SLAB_MINALIGN.
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Currently, when using CONFIG_DEBUG_SLAB, we put in kfree() or
kmem_cache_free() as the last user of free objects, which is not
very useful, so change it to the caller of those functions instead.
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Commit e66eed651f ("list: remove prefetching from regular list
iterators") removed the include of prefetch.h from list.h, which
uncovered several cases that had apparently relied on that rather
obscure header file dependency.
So this fixes things up a bit, using
grep -L linux/prefetch.h $(git grep -l '[^a-z_]prefetchw*(' -- '*.[ch]')
grep -L 'prefetchw*(' $(git grep -l 'linux/prefetch.h' -- '*.[ch]')
to guide us in finding files that either need <linux/prefetch.h>
inclusion, or have it despite not needing it.
There are more of them around (mostly network drivers), but this gets
many core ones.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While looking at some other notifier callbacks I noticed this code could
use a simple cleanup.
notifier_from_errno() no longer needs the if (ret)/else conditional. That
same conditional is now done in notifier_from_errno().
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Cc: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The size of struct rcu_head may be changed. When it becomes larger,
it may pollute the data after struct slab.
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
The last user was ext4 and Eric Sandeen removed the call in a recent patch. See
the following URL for the discussion:
http://marc.info/?l=linux-ext4&m=129546975702198&w=2
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Local symbols should be static.
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6:
slub: Fix a crash during slabinfo -v
tracing/slab: Move kmalloc tracepoint out of inline code
slub: Fix slub_lock down/up imbalance
slub: Fix build breakage in Documentation/vm
slub tracing: move trace calls out of always inlined functions to reduce kernel code size
slub: move slabinfo.c to tools/slub/slabinfo.c
* 'for-2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (30 commits)
gameport: use this_cpu_read instead of lookup
x86: udelay: Use this_cpu_read to avoid address calculation
x86: Use this_cpu_inc_return for nmi counter
x86: Replace uses of current_cpu_data with this_cpu ops
x86: Use this_cpu_ops to optimize code
vmstat: User per cpu atomics to avoid interrupt disable / enable
irq_work: Use per cpu atomics instead of regular atomics
cpuops: Use cmpxchg for xchg to avoid lock semantics
x86: this_cpu_cmpxchg and this_cpu_xchg operations
percpu: Generic this_cpu_cmpxchg() and this_cpu_xchg support
percpu,x86: relocate this_cpu_add_return() and friends
connector: Use this_cpu operations
xen: Use this_cpu_inc_return
taskstats: Use this_cpu_ops
random: Use this_cpu_inc_return
fs: Use this_cpu_inc_return in buffer.c
highmem: Use this_cpu_xx_return() operations
vmstat: Use this_cpu_inc_return for vm statistics
x86: Support for this_cpu_add, sub, dec, inc_return
percpu: Generic support for this_cpu_add, sub, dec, inc_return
...
Fixed up conflicts: in arch/x86/kernel/{apic/nmi.c, apic/x2apic_uv_x.c, process.c}
as per Tejun.
* 'for-2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq: (33 commits)
usb: don't use flush_scheduled_work()
speedtch: don't abuse struct delayed_work
media/video: don't use flush_scheduled_work()
media/video: explicitly flush request_module work
ioc4: use static work_struct for ioc4_load_modules()
init: don't call flush_scheduled_work() from do_initcalls()
s390: don't use flush_scheduled_work()
rtc: don't use flush_scheduled_work()
mmc: update workqueue usages
mfd: update workqueue usages
dvb: don't use flush_scheduled_work()
leds-wm8350: don't use flush_scheduled_work()
mISDN: don't use flush_scheduled_work()
macintosh/ams: don't use flush_scheduled_work()
vmwgfx: don't use flush_scheduled_work()
tpm: don't use flush_scheduled_work()
sonypi: don't use flush_scheduled_work()
hvsi: don't use flush_scheduled_work()
xen: don't use flush_scheduled_work()
gdrom: don't use flush_scheduled_work()
...
Fixed up trivial conflict in drivers/media/video/bt8xx/bttv-input.c
as per Tejun.
__get_cpu_var() can be replaced with this_cpu_read and will then use a
single read instruction with implied address calculation to access the
correct per cpu instance.
However, the address of a per cpu variable passed to __this_cpu_read()
cannot be determined (since it's an implied address conversion through
segment prefixes). Therefore apply this only to uses of __get_cpu_var
where the address of the variable is not used.
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Hugh Dickins <hughd@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
cancel_rearming_delayed_work[queue]() has been superceded by
cancel_delayed_work_sync() quite some time ago. Convert all the
in-kernel users. The conversions are completely equivalent and
trivial.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Acked-by: Evgeniy Polyakov <zbr@ioremap.net>
Cc: Jeff Garzik <jgarzik@pobox.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Mauro Carvalho Chehab <mchehab@infradead.org>
Cc: netdev@vger.kernel.org
Cc: Anton Vorontsov <cbou@mail.ru>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Neil Brown <neilb@suse.de>
Cc: Alex Elder <aelder@sgi.com>
Cc: xfs-masters@oss.sgi.com
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: netfilter-devel@vger.kernel.org
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: linux-nfs@vger.kernel.org
The tracepoint for kmalloc is in the slab inlined code which causes
every instance of kmalloc to have the tracepoint.
This patch moves the tracepoint out of the inline code to the
slab C file, which removes a large number of inlined trace
points.
objdump -dr vmlinux.slab| grep 'jmpq.*<trace_kmalloc' |wc -l
213
objdump -dr vmlinux.slab.patched| grep 'jmpq.*<trace_kmalloc' |wc -l
1
This also has a nice impact on size.
text data bss dec hex filename
7023060 2121564 2482432 11627056 b16a30 vmlinux.slab
6970579 2109772 2482432 11562783 b06f1f vmlinux.slab.patched
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Use the new {max,min}3 macros to save some cycles and bytes on the stack.
This patch substitutes trivial nested macros with their counterpart.
Signed-off-by: Hagen Paul Pfeifer <hagen@jauu.net>
Cc: Joe Perches <joe@perches.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Roland Dreier <rolandd@cisco.com>
Cc: Sean Hefty <sean.hefty@intel.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No real bugs, just some dead code and some fixups.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch fixes alignment of slab objects in case CONFIG_DEBUG_PAGEALLOC is
active.
Before this spot in kmem_cache_create, we have this situation:
- align contains the required alignment of the object
- cachep->obj_offset is 0 or equals align in case of CONFIG_DEBUG_SLAB
- size equals the size of the object, or object plus trailing redzone in case
of CONFIG_DEBUG_SLAB
This spot tries to fill one page per object if the object is in certain size
limits, however setting obj_offset to PAGE_SIZE - size does break the object
alignment since size may not be aligned with the required alignment.
This patch simply adds an ALIGN(size, align) to the equation and fixes the
object size detection accordingly.
This code in drivers/s390/cio/qdio_setup_init has lead to incorrectly aligned
slab objects (sizeof(struct qdio_q) equals 1792):
qdio_q_cache = kmem_cache_create("qdio_q", sizeof(struct qdio_q),
256, 0, NULL);
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6:
slub: Allow removal of slab caches during boot
Revert "slub: Allow removal of slab caches during boot"
slub numa: Fix rare allocation from unexpected node
slab: use deferable timers for its periodic housekeeping
slub: Use kmem_cache flags to detect if slab is in debugging mode.
slub: Allow removal of slab caches during boot
slub: Check kasprintf results in kmem_cache_init()
SLUB: Constants need UL
slub: Use a constant for a unspecified node.
SLOB: Free objects to their own list
slab: fix caller tracking on !CONFIG_DEBUG_SLAB && CONFIG_TRACING
slab has a "once every 2 second" timer for its housekeeping.
As the number of logical processors is growing, its more and more
common that this 2 second timer becomes the primary wakeup source.
This patch turns this housekeeping timer into a deferable timer,
which means that the timer does not interrupt idle, but just runs
at the next event that wakes the cpu up.
The impact is that the timer likely runs a bit later, but during the
delay no code is running so there's not all that much reason for
a difference in housekeeping to occur because of this delay.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
We have been resisting new ftrace plugins and removing existing
ones, and kmemtrace has been superseded by kmem trace events
and perf-kmem, so we remove it.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Steven Rostedt <rostedt@goodmis.org>
[ remove kmemtrace from the makefile, handle slob too ]
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Example usage of generic "numa_mem_id()":
The mainline slab code, since ~ 2.6.19, does not handle memoryless nodes
well. Specifically, the "fast path"--____cache_alloc()--will never
succeed as slab doesn't cache offnode object on the per cpu queues, and
for memoryless nodes, all memory will be "off node" relative to
numa_node_id(). This adds significant overhead to all kmem cache
allocations, incurring a significant regression relative to earlier
kernels [from before slab.c was reorganized].
This patch uses the generic topology function "numa_mem_id()" to return
the "effective local memory node" for the calling context. This is the
first node in the local node's generic fallback zonelist-- the same node
that "local" mempolicy-based allocations would use. This lets slab cache
these "local" allocations and avoid fallback/refill on every allocation.
N.B.: Slab will need to handle node and memory hotplug events that could
change the value returned by numa_mem_id() for any given node if recent
changes to address memory hotplug don't already address this. E.g., flush
all per cpu slab queues before rebuilding the zonelists while the
"machine" is held in the stopped state.
Performance impact on "hackbench 400 process 200"
2.6.34-rc3-mmotm-100405-1609 no-patch this-patch
ia64 no memoryless nodes [avg of 10]: 11.713 11.637 ~0.65 diff
ia64 cpus all on memless nodes [10]: 228.259 26.484 ~8.6x speedup
The slowdown of the patched kernel from ~12 sec to ~28 seconds when
configured with memoryless nodes is the result of all cpus allocating from
a single node's mm pagepool. The cache lines of the single node are
distributed/interleaved over the memory of the real physical nodes, but
the zone lock, list heads, ... of the single node with memory still each
live in a single cache line that is accessed from all processors.
x86_64 [8x6 AMD] [avg of 40]: 2.883 2.845
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Nick Piggin <npiggin@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By the previous modification, the cpu notifier can return encapsulate
errno value. This converts the cpu notifiers for slab.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have observed several workloads running on multi-node systems where
memory is assigned unevenly across the nodes in the system. There are
numerous reasons for this but one is the round-robin rotor in
cpuset_mem_spread_node().
For example, a simple test that writes a multi-page file will allocate
pages on nodes 0 2 4 6 ... Odd nodes are skipped. (Sometimes it
allocates on odd nodes & skips even nodes).
An example is shown below. The program "lfile" writes a file consisting
of 10 pages. The program then mmaps the file & uses get_mempolicy(...,
MPOL_F_NODE) to determine the nodes where the file pages were allocated.
The output is shown below:
# ./lfile
allocated on nodes: 2 4 6 0 1 2 6 0 2
There is a single rotor that is used for allocating both file pages & slab
pages. Writing the file allocates both a data page & a slab page
(buffer_head). This advances the RR rotor 2 nodes for each page
allocated.
A quick confirmation seems to confirm this is the cause of the uneven
allocation:
# echo 0 >/dev/cpuset/memory_spread_slab
# ./lfile
allocated on nodes: 6 7 8 9 0 1 2 3 4 5
This patch introduces a second rotor that is used for slab allocations.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Paul Menage <menage@google.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before applying this patch, cpuset updates task->mems_allowed and
mempolicy by setting all new bits in the nodemask first, and clearing all
old unallowed bits later. But in the way, the allocator may find that
there is no node to alloc memory.
The reason is that cpuset rebinds the task's mempolicy, it cleans the
nodes which the allocater can alloc pages on, for example:
(mpol: mempolicy)
task1 task1's mpol task2
alloc page 1
alloc on node0? NO 1
1 change mems from 1 to 0
1 rebind task1's mpol
0-1 set new bits
0 clear disallowed bits
alloc on node1? NO 0
...
can't alloc page
goto oom
This patch fixes this problem by expanding the nodes range first(set newly
allowed bits) and shrink it lazily(clear newly disallowed bits). So we
use a variable to tell the write-side task that read-side task is reading
nodemask, and the write-side task clears newly disallowed nodes after
read-side task ends the current memory allocation.
[akpm@linux-foundation.org: fix spello]
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Paul Menage <menage@google.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Ravikiran Thirumalai <kiran@scalex86.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Even with SLAB_RED_ZONE and SLAB_STORE_USER enabled, kernel would NOT store
redzone and last user data around allocated memory space if "arch cache line >
sizeof(unsigned long long)". As a result, last user information is unexpectedly
MISSED while dumping slab corruption log.
This fix makes sure that redzone and last user tags get stored unless the
required alignment breaks redzone's.
Signed-off-by: Shiyong Li <shi-yong.li@motorola.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
As suggested by Linus, introduce a kern_ptr_validate() helper that does some
sanity checks to make sure a pointer is a valid kernel pointer. This is a
preparational step for fixing SLUB kmem_ptr_validate().
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Slab lacks any memory hotplug support for nodes that are hotplugged
without cpus being hotplugged. This is possible at least on x86
CONFIG_MEMORY_HOTPLUG_SPARSE kernels where SRAT entries are marked
ACPI_SRAT_MEM_HOT_PLUGGABLE and the regions of RAM represent a seperate
node. It can also be done manually by writing the start address to
/sys/devices/system/memory/probe for kernels that have
CONFIG_ARCH_MEMORY_PROBE set, which is how this patch was tested, and
then onlining the new memory region.
When a node is hotadded, a nodelist for that node is allocated and
initialized for each slab cache. If this isn't completed due to a lack
of memory, the hotadd is aborted: we have a reasonable expectation that
kmalloc_node(nid) will work for all caches if nid is online and memory is
available.
Since nodelists must be allocated and initialized prior to the new node's
memory actually being online, the struct kmem_list3 is allocated off-node
due to kmalloc_node()'s fallback.
When an entire node would be offlined, its nodelists are subsequently
drained. If slab objects still exist and cannot be freed, the offline is
aborted. It is possible that objects will be allocated between this
drain and page isolation, so it's still possible that the offline will
still fail, however.
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
This patch allow to inject faults only for specific slabs.
In order to preserve default behavior cache filter is off by
default (all caches are faulty).
One may define specific set of slabs like this:
# mark skbuff_head_cache as faulty
echo 1 > /sys/kernel/slab/skbuff_head_cache/failslab
# Turn on cache filter (off by default)
echo 1 > /sys/kernel/debug/failslab/cache-filter
# Turn on fault injection
echo 1 > /sys/kernel/debug/failslab/times
echo 1 > /sys/kernel/debug/failslab/probability
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Akinobu Mita <akinobu.mita@gmail.com>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
When factoring common code into transfer_objects in commit 3ded175 ("slab: add
transfer_objects() function"), the 'touched' logic got a bit broken. When
refilling from the shared array (taking objects from the shared array), we are
making use of the shared array so it should be marked as touched.
Subsequently pulling an element from the cpu array and allocating it should
also touch the cpu array, but that is taken care of after the alloc_done label.
(So yes, the cpu array was getting touched = 1 twice).
So revert this logic to how it worked in earlier kernels.
This also affects the behaviour in __drain_alien_cache, which would previously
'touch' the shared array and now does not. I think it is more logical not to
touch there, because we are pushing objects into the shared array rather than
pulling them off. So there is no good reason to postpone reaping them -- if the
shared array is getting utilized, then it will get 'touched' in the alloc path
(where this patch now restores the touch).
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Comparing with existing code, it's a simpler way to use kzalloc_node()
to ensure that each unused alien cache entry is NULL.
CC: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Commit ce79ddc8e2 ("SLAB: Fix lockdep annotations
for CPU hotplug") broke init_node_lock_keys() off-slab logic which causes
lockdep false positives.
Fix that up by reverting the logic back to original while keeping CPU hotplug
fixes intact.
Reported-and-tested-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reported-and-tested-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
* 'cpumask-cleanups' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-for-linus:
cpumask: rename tsk_cpumask to tsk_cpus_allowed
cpumask: don't recommend set_cpus_allowed hack in Documentation/cpu-hotplug.txt
cpumask: avoid dereferencing struct cpumask
cpumask: convert drivers/idle/i7300_idle.c to cpumask_var_t
cpumask: use modern cpumask style in drivers/scsi/fcoe/fcoe.c
cpumask: avoid deprecated function in mm/slab.c
cpumask: use cpu_online in kernel/perf_event.c
* 'kmemleak' of git://linux-arm.org/linux-2.6:
kmemleak: fix kconfig for crc32 build error
kmemleak: Reduce the false positives by checking for modified objects
kmemleak: Show the age of an unreferenced object
kmemleak: Release the object lock before calling put_object()
kmemleak: Scan the _ftrace_events section in modules
kmemleak: Simplify the kmemleak_scan_area() function prototype
kmemleak: Do not use off-slab management with SLAB_NOLEAKTRACE
These days we use cpumask_empty() which takes a pointer.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
perf sched: Fix build failure on sparc
perf bench: Add "all" pseudo subsystem and "all" pseudo suite
perf tools: Introduce perf_session class
perf symbols: Ditch dso->find_symbol
perf symbols: Allow lookups by symbol name too
perf symbols: Add missing "Variables" entry to map_type__name
perf symbols: Add support for 'variable' symtabs
perf symbols: Introduce ELF counterparts to symbol_type__is_a
perf symbols: Introduce symbol_type__is_a
perf symbols: Rename kthreads to kmaps, using another abstraction for it
perf tools: Allow building for ARM
hw-breakpoints: Handle bad modify_user_hw_breakpoint off-case return value
perf tools: Allow cross compiling
tracing, slab: Fix no callsite ifndef CONFIG_KMEMTRACE
tracing, slab: Define kmem_cache_alloc_notrace ifdef CONFIG_TRACING
Trivial conflict due to different fixes to modify_user_hw_breakpoint()
in include/linux/hw_breakpoint.h
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (34 commits)
m68k: rename global variable vmalloc_end to m68k_vmalloc_end
percpu: add missing per_cpu_ptr_to_phys() definition for UP
percpu: Fix kdump failure if booted with percpu_alloc=page
percpu: make misc percpu symbols unique
percpu: make percpu symbols in ia64 unique
percpu: make percpu symbols in powerpc unique
percpu: make percpu symbols in x86 unique
percpu: make percpu symbols in xen unique
percpu: make percpu symbols in cpufreq unique
percpu: make percpu symbols in oprofile unique
percpu: make percpu symbols in tracer unique
percpu: make percpu symbols under kernel/ and mm/ unique
percpu: remove some sparse warnings
percpu: make alloc_percpu() handle array types
vmalloc: fix use of non-existent percpu variable in put_cpu_var()
this_cpu: Use this_cpu_xx in trace_functions_graph.c
this_cpu: Use this_cpu_xx for ftrace
this_cpu: Use this_cpu_xx in nmi handling
this_cpu: Use this_cpu operations in RCU
this_cpu: Use this_cpu ops for VM statistics
...
Fix up trivial (famous last words) global per-cpu naming conflicts in
arch/x86/kvm/svm.c
mm/slab.c
Define kmem_trace_alloc_{,node}_notrace() if CONFIG_TRACING is
enabled, otherwise perf-kmem will show wrong stats ifndef
CONFIG_KMEM_TRACE, because a kmalloc() memory allocation may
be traced by both trace_kmalloc() and trace_kmem_cache_alloc().
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: linux-mm@kvack.org <linux-mm@kvack.org>
Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
LKML-Reference: <4B21F89A.7000801@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In ____cache_alloc(), the variable 'ac' may be changed after
cache_alloc_refill() and the following kmemleak_erase() may get an incorrect
pointer. Update 'ac' after cache_alloc_refill() unconditionally.
See the following URL for the discussion of this patch:
http://marc.info/?l=linux-kernel&m=125873373124187&w=2
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: J. R. Okajima <hooanon05@yahoo.co.jp>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
When the gotten object is NULL (probably due to ENOMEM), kmemleak_erase() is
unnecessary here, It just sets NULL to where already is NULL. Add a condition.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: J. R. Okajima <hooanon05@yahoo.co.jp>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Branch profiling on my nehalem machine showed 99% incorrect branch hints:
28459 7678524 99 __cache_alloc_node slab.c 3551
Discussion on lkml [1] led to the solution to remove this hint.
[1] http://patchwork.kernel.org/patch/63517/
Signed-off-by: Tim Blechmann <tim@klingt.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
As reported by Paul McKenney:
I am seeing some lockdep complaints in rcutorture runs that include
frequent CPU-hotplug operations. The tests are otherwise successful.
My first thought was to send a patch that gave each array_cache
structure's ->lock field its own struct lock_class_key, but you already
have a init_lock_keys() that seems to be intended to deal with this.
------------------------------------------------------------------------
=============================================
[ INFO: possible recursive locking detected ]
2.6.32-rc4-autokern1 #1
---------------------------------------------
syslogd/2908 is trying to acquire lock:
(&nc->lock){..-...}, at: [<c0000000001407f4>] .kmem_cache_free+0x118/0x2d4
but task is already holding lock:
(&nc->lock){..-...}, at: [<c0000000001411bc>] .kfree+0x1f0/0x324
other info that might help us debug this:
3 locks held by syslogd/2908:
#0: (&u->readlock){+.+.+.}, at: [<c0000000004556f8>] .unix_dgram_recvmsg+0x70/0x338
#1: (&nc->lock){..-...}, at: [<c0000000001411bc>] .kfree+0x1f0/0x324
#2: (&parent->list_lock){-.-...}, at: [<c000000000140f64>] .__drain_alien_cache+0x50/0xb8
stack backtrace:
Call Trace:
[c0000000e8ccafc0] [c0000000000101e4] .show_stack+0x70/0x184 (unreliable)
[c0000000e8ccb070] [c0000000000afebc] .validate_chain+0x6ec/0xf58
[c0000000e8ccb180] [c0000000000b0ff0] .__lock_acquire+0x8c8/0x974
[c0000000e8ccb280] [c0000000000b2290] .lock_acquire+0x140/0x18c
[c0000000e8ccb350] [c000000000468df0] ._spin_lock+0x48/0x70
[c0000000e8ccb3e0] [c0000000001407f4] .kmem_cache_free+0x118/0x2d4
[c0000000e8ccb4a0] [c000000000140b90] .free_block+0x130/0x1a8
[c0000000e8ccb540] [c000000000140f94] .__drain_alien_cache+0x80/0xb8
[c0000000e8ccb5e0] [c0000000001411e0] .kfree+0x214/0x324
[c0000000e8ccb6a0] [c0000000003ca860] .skb_release_data+0xe8/0x104
[c0000000e8ccb730] [c0000000003ca2ec] .__kfree_skb+0x20/0xd4
[c0000000e8ccb7b0] [c0000000003cf2c8] .skb_free_datagram+0x1c/0x5c
[c0000000e8ccb830] [c00000000045597c] .unix_dgram_recvmsg+0x2f4/0x338
[c0000000e8ccb920] [c0000000003c0f14] .sock_recvmsg+0xf4/0x13c
[c0000000e8ccbb30] [c0000000003c28ec] .SyS_recvfrom+0xb4/0x130
[c0000000e8ccbcb0] [c0000000003bfb78] .sys_recv+0x18/0x2c
[c0000000e8ccbd20] [c0000000003ed388] .compat_sys_recv+0x14/0x28
[c0000000e8ccbd90] [c0000000003ee1bc] .compat_sys_socketcall+0x178/0x220
[c0000000e8ccbe30] [c0000000000085d4] syscall_exit+0x0/0x40
This patch fixes the issue by setting up lockdep annotations during CPU
hotplug.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
This patch updates percpu related symbols under kernel/ and mm/ such
that percpu symbols are unique and don't clash with local symbols.
This serves two purposes of decreasing the possibility of global
percpu symbol collision and allowing dropping per_cpu__ prefix from
percpu symbols.
* kernel/lockdep.c: s/lock_stats/cpu_lock_stats/
* kernel/sched.c: s/init_rq_rt/init_rt_rq_var/ (any better idea?)
s/sched_group_cpus/sched_groups/
* kernel/softirq.c: s/ksoftirqd/run_ksoftirqd/a
* kernel/softlockup.c: s/(*)_timestamp/softlockup_\1_ts/
s/watchdog_task/softlockup_watchdog/
s/timestamp/ts/ for local variables
* kernel/time/timer_stats: s/lookup_lock/tstats_lookup_lock/
* mm/slab.c: s/reap_work/slab_reap_work/
s/reap_node/slab_reap_node/
* mm/vmstat.c: local variable changed to avoid collision with vmstat_work
Partly based on Rusty Russell's "alloc_percpu: rename percpu vars
which cause name clashes" patch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: (slab/vmstat) Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Nick Piggin <npiggin@suse.de>
This function was taking non-necessary arguments which can be determined
by kmemleak. The patch also modifies the calling sites.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
With the slab allocator, if off-slab management is enabled for the
kmem_caches used by kmemleak, it leads to recursive calls into
kmemleak_alloc(). Off-slab management can be triggered by other config
options increasing the slab size, e.g. DEBUG_PAGEALLOC.
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Sizing of memory allocations shouldn't depend on the number of physical
pages found in a system, as that generally includes (perhaps a huge amount
of) non-RAM pages. The amount of what actually is usable as storage
should instead be used as a basis here.
Some of the calculations (i.e. those not intending to use high memory)
should likely even use (totalram_pages - totalhigh_pages).
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Dave Airlie <airlied@linux.ie>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Patrick McHardy <kaber@trash.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jesper noted that kmem_cache_destroy() invokes synchronize_rcu() rather than
rcu_barrier() in the SLAB_DESTROY_BY_RCU case, which could result in RCU
callbacks accessing a kmem_cache after it had been destroyed.
Cc: <stable@kernel.org>
Acked-by: Matt Mackall <mpm@selenic.com>
Reported-by: Jesper Dangaard Brouer <hawk@comx.dk>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
The page allocator also needs the masking of gfp flags during boot,
so this moves it out of slab/slub and uses it with the page allocator
as well.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* akpm: (182 commits)
fbdev: bf54x-lq043fb: use kzalloc over kmalloc/memset
fbdev: *bfin*: fix __dev{init,exit} markings
fbdev: *bfin*: drop unnecessary calls to memset
fbdev: bfin-t350mcqb-fb: drop unused local variables
fbdev: blackfin has __raw I/O accessors, so use them in fb.h
fbdev: s1d13xxxfb: add accelerated bitblt functions
tcx: use standard fields for framebuffer physical address and length
fbdev: add support for handoff from firmware to hw framebuffers
intelfb: fix a bug when changing video timing
fbdev: use framebuffer_release() for freeing fb_info structures
radeon: P2G2CLK_ALWAYS_ONb tested twice, should 2nd be P2G2CLK_DAC_ALWAYS_ONb?
s3c-fb: CPUFREQ frequency scaling support
s3c-fb: fix resource releasing on error during probing
carminefb: fix possible access beyond end of carmine_modedb[]
acornfb: remove fb_mmap function
mb862xxfb: use CONFIG_OF instead of CONFIG_PPC_OF
mb862xxfb: restrict compliation of platform driver to PPC
Samsung SoC Framebuffer driver: add Alpha Channel support
atmel-lcdc: fix pixclock upper bound detection
offb: use framebuffer_alloc() to allocate fb_info struct
...
Manually fix up conflicts due to kmemcheck in mm/slab.c
SLAB currently avoids checking a bitmap repeatedly by checking once and
storing a flag. When the addition of nr_online_nodes as a cheaper version
of num_online_nodes(), this check can be replaced by nr_online_nodes.
(Christoph did a patch that this is lifted almost verbatim from)
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Callers of alloc_pages_node() can optionally specify -1 as a node to mean
"allocate from the current node". However, a number of the callers in
fast paths know for a fact their node is valid. To avoid a comparison and
branch, this patch adds alloc_pages_exact_node() that only checks the nid
with VM_BUG_ON(). Callers that know their node is valid are then
converted.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Paul Mundt <lethal@linux-sh.org> [for the SLOB NUMA bits]
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds support for tracking the initializedness of memory that
was allocated with the page allocator. Highmem requests are not
tracked.
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
[build fix for !CONFIG_KMEMCHECK]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
[rebased for mainline inclusion]
Signed-off-by: Vegard Nossum <vegard.nossum@gmail.com>
We now have SLAB support for kmemcheck! This means that it doesn't matter
whether one chooses SLAB or SLUB, or indeed whether Linus chooses to chuck
SLAB or SLUB.. ;-)
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
[rebased for mainline inclusion]
Signed-off-by: Vegard Nossum <vegard.nossum@gmail.com>
Move the SLAB struct kmem_cache definition to <linux/slab_def.h> like
with SLUB so kmemcheck can access ->ctor and ->flags.
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
[rebased for mainline inclusion]
Signed-off-by: Vegard Nossum <vegard.nossum@gmail.com>
As explained by Benjamin Herrenschmidt:
Oh and btw, your patch alone doesn't fix powerpc, because it's missing
a whole bunch of GFP_KERNEL's in the arch code... You would have to
grep the entire kernel for things that check slab_is_available() and
even then you'll be missing some.
For example, slab_is_available() didn't always exist, and so in the
early days on powerpc, we used a mem_init_done global that is set form
mem_init() (not perfect but works in practice). And we still have code
using that to do the test.
Therefore, mask out __GFP_WAIT, __GFP_IO, and __GFP_FS in the slab allocators
in early boot code to avoid enabling interrupts.
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
* 'for-linus' of git://linux-arm.org/linux-2.6:
kmemleak: Add the corresponding MAINTAINERS entry
kmemleak: Simple testing module for kmemleak
kmemleak: Enable the building of the memory leak detector
kmemleak: Remove some of the kmemleak false positives
kmemleak: Add modules support
kmemleak: Add kmemleak_alloc callback from alloc_large_system_hash
kmemleak: Add the vmalloc memory allocation/freeing hooks
kmemleak: Add the slub memory allocation/freeing hooks
kmemleak: Add the slob memory allocation/freeing hooks
kmemleak: Add the slab memory allocation/freeing hooks
kmemleak: Add documentation on the memory leak detector
kmemleak: Add the base support
Manual conflict resolution (with the slab/earlyboot changes) in:
drivers/char/vt.c
init/main.c
mm/slab.c
This patch makes kmalloc() available earlier in the boot sequence so we can get
rid of some bootmem allocations. The bulk of the changes are due to
kmem_cache_init() being called with interrupts disabled which requires some
changes to allocator boostrap code.
Note: 32-bit x86 does WP protect test in mem_init() so we must setup traps
before we call mem_init() during boot as reported by Ingo Molnar:
We have a hard crash in the WP-protect code:
[ 0.000000] Checking if this processor honours the WP bit even in supervisor mode...BUG: Int 14: CR2 ffcff000
[ 0.000000] EDI 00000188 ESI 00000ac7 EBP c17eaf9c ESP c17eaf8c
[ 0.000000] EBX 000014e0 EDX 0000000e ECX 01856067 EAX 00000001
[ 0.000000] err 00000003 EIP c10135b1 CS 00000060 flg 00010002
[ 0.000000] Stack: c17eafa8 c17fd410 c16747bc c17eafc4 c17fd7e5 000011fd f8616000 c18237cc
[ 0.000000] 00099800 c17bb000 c17eafec c17f1668 000001c5 c17f1322 c166e039 c1822bf0
[ 0.000000] c166e033 c153a014 c18237cc 00020800 c17eaff8 c17f106a 00020800 01ba5003
[ 0.000000] Pid: 0, comm: swapper Not tainted 2.6.30-tip-02161-g7a74539-dirty #52203
[ 0.000000] Call Trace:
[ 0.000000] [<c15357c2>] ? printk+0x14/0x16
[ 0.000000] [<c10135b1>] ? do_test_wp_bit+0x19/0x23
[ 0.000000] [<c17fd410>] ? test_wp_bit+0x26/0x64
[ 0.000000] [<c17fd7e5>] ? mem_init+0x1ba/0x1d8
[ 0.000000] [<c17f1668>] ? start_kernel+0x164/0x2f7
[ 0.000000] [<c17f1322>] ? unknown_bootoption+0x0/0x19c
[ 0.000000] [<c17f106a>] ? __init_begin+0x6a/0x6f
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by Linus Torvalds <torvalds@linux-foundation.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
This patch adds the callbacks to kmemleak_(alloc|free) functions from
the slab allocator. The patch also adds the SLAB_NOLEAKTRACE flag to
avoid recursive calls to kmemleak when it allocates its own data
structures.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
A generic page poisoning mechanism was added with commit:
6a11f75b6a
which destructively poisons full pages with a bitpattern.
On arches where PAGE_POISONING is used, this conflicts with the slab
redzone checking enabled by DEBUG_SLAB, scribbling bits all over its
magic words and making it complain about that quite emphatically.
On x86 (and I presume at present all the other arches which set
ARCH_SUPPORTS_DEBUG_PAGEALLOC too), the kernel_map_pages() operation
is non destructive so it can coexist with the other DEBUG_SLAB
mechanisms just fine.
This patch favours the expensive full page destruction test for
cases where there is a collision and it is explicitly selected.
Signed-off-by: Ron Lee <ron@debian.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Impact: refactor code for future changes
Current kmemtrace.h is used both as header file of kmemtrace and kmem's
tracepoints definition.
Tracepoints' definition file may be used by other code, and should only have
definition of tracepoint.
We can separate include/trace/kmemtrace.h into 2 files:
include/linux/kmemtrace.h: header file for kmemtrace
include/trace/kmem.h: definition of kmem tracepoints
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Acked-by: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Tom Zanussi <tzanussi@gmail.com>
LKML-Reference: <49DEE68A.5040902@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'kmemtrace-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
kmemtrace: trace kfree() calls with NULL or zero-length objects
kmemtrace: small cleanups
kmemtrace: restore original tracing data binary format, improve ABI
kmemtrace: kmemtrace_alloc() must fill type_id
kmemtrace: use tracepoints
kmemtrace, rcu: don't include unnecessary headers, allow kmemtrace w/ tracepoints
kmemtrace, rcu: fix rcupreempt.c data structure dependencies
kmemtrace, rcu: fix rcu_tree_trace.c data structure dependencies
kmemtrace, rcu: fix linux/rcutree.h and linux/rcuclassic.h dependencies
kmemtrace, mm: fix slab.h dependency problem in mm/failslab.c
kmemtrace, kbuild: fix slab.h dependency problem in lib/decompress_unlzma.c
kmemtrace, kbuild: fix slab.h dependency problem in lib/decompress_bunzip2.c
kmemtrace, kbuild: fix slab.h dependency problem in lib/decompress_inflate.c
kmemtrace, squashfs: fix slab.h dependency problem in squasfs
kmemtrace, befs: fix slab.h dependency problem
kmemtrace, security: fix linux/key.h header file dependencies
kmemtrace, fs: fix linux/fdtable.h header file dependencies
kmemtrace, fs: uninline simple_transaction_set()
kmemtrace, fs, security: move alloc_secdata() and free_secdata() to linux/security.h
* 'tracing-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (413 commits)
tracing, net: fix net tree and tracing tree merge interaction
tracing, powerpc: fix powerpc tree and tracing tree interaction
ring-buffer: do not remove reader page from list on ring buffer free
function-graph: allow unregistering twice
trace: make argument 'mem' of trace_seq_putmem() const
tracing: add missing 'extern' keywords to trace_output.h
tracing: provide trace_seq_reserve()
blktrace: print out BLK_TN_MESSAGE properly
blktrace: extract duplidate code
blktrace: fix memory leak when freeing struct blk_io_trace
blktrace: fix blk_probes_ref chaos
blktrace: make classic output more classic
blktrace: fix off-by-one bug
blktrace: fix the original blktrace
blktrace: fix a race when creating blk_tree_root in debugfs
blktrace: fix timestamp in binary output
tracing, Text Edit Lock: cleanup
tracing: filter fix for TRACE_EVENT_FORMAT events
ftrace: Using FTRACE_WARN_ON() to check "freed record" in ftrace_release()
x86: kretprobe-booster interrupt emulation code fix
...
Fix up trivial conflicts in
arch/parisc/include/asm/ftrace.h
include/linux/memory.h
kernel/extable.c
kernel/module.c
* git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-cpumask: (36 commits)
cpumask: remove cpumask allocation from idle_balance, fix
numa, cpumask: move numa_node_id default implementation to topology.h, fix
cpumask: remove cpumask allocation from idle_balance
x86: cpumask: x86 mmio-mod.c use cpumask_var_t for downed_cpus
x86: cpumask: update 32-bit APM not to mug current->cpus_allowed
x86: microcode: cleanup
x86: cpumask: use work_on_cpu in arch/x86/kernel/microcode_core.c
cpumask: fix CONFIG_CPUMASK_OFFSTACK=y cpu hotunplug crash
numa, cpumask: move numa_node_id default implementation to topology.h
cpumask: convert node_to_cpumask_map[] to cpumask_var_t
cpumask: remove x86 cpumask_t uses.
cpumask: use cpumask_var_t in uv_flush_tlb_others.
cpumask: remove cpumask_t assignment from vector_allocation_domain()
cpumask: make Xen use the new operators.
cpumask: clean up summit's send_IPI functions
cpumask: use new cpumask functions throughout x86
x86: unify cpu_callin_mask/cpu_callout_mask/cpu_initialized_mask/cpu_sibling_setup_mask
cpumask: convert struct cpuinfo_x86's llc_shared_map to cpumask_var_t
cpumask: convert node_to_cpumask_map[] to cpumask_var_t
x86: unify 32 and 64-bit node_to_cpumask_map
...
Impact: also output kfree(NULL) entries
This patch moves the trace_kfree() calls before the ZERO_OR_NULL_PTR
check so that we can trace call-sites that call kfree() with NULL many
times which might be an indication of a bug.
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
LKML-Reference: <1237971957.30175.18.camel@penberg-laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
kmemtrace now uses tracepoints instead of markers. We no longer need to
use format specifiers to pass arguments.
Signed-off-by: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
[ folded: Use the new TP_PROTO and TP_ARGS to fix the build. ]
[ folded: fix build when CONFIG_KMEMTRACE is disabled. ]
[ folded: define tracepoints when CONFIG_TRACEPOINTS is enabled. ]
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
LKML-Reference: <ae61c0f37156db8ec8dc0d5778018edde60a92e3.1237813499.git.eduard.munteanu@linux360.ro>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It is a fairly common operation to have a pointer to a work and to need a
pointer to the delayed work it is contained in. In particular, all
delayed works which want to rearm themselves will have to do that. So it
would seem fair to offer a helper function for this operation.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Greg KH <greg@kroah.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Impact: cleanup
node_to_cpumask (and the blecherous node_to_cpumask_ptr which
contained a declaration) are replaced now everyone implements
cpumask_of_node.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Here is another version, with the incremental patch rolled up, and
added reclaim context annotation to kswapd, and allocation tracing
to slab allocators (which may only ever reach the page allocator
in rare cases, so it is good to put annotations here too).
Haven't tested this version as such, but it should be getting closer
to merge worthy ;)
--
After noticing some code in mm/filemap.c accidentally perform a __GFP_FS
allocation when it should not have been, I thought it might be a good idea to
try to catch this kind of thing with lockdep.
I coded up a little idea that seems to work. Unfortunately the system has to
actually be in __GFP_FS page reclaim, then take the lock, before it will mark
it. But at least that might still be some orders of magnitude more common
(and more debuggable) than an actual deadlock condition, so we have some
improvement I hope (the concept is no less complete than discovery of a lock's
interrupt contexts).
I guess we could even do the same thing with __GFP_IO (normal reclaim), and
even GFP_NOIO locks too... but filesystems will have the most locks and fiddly
code paths, so let's start there and see how it goes.
It *seems* to work. I did a quick test.
=================================
[ INFO: inconsistent lock state ]
2.6.28-rc6-00007-ged31348-dirty #26
---------------------------------
inconsistent {in-reclaim-W} -> {ov-reclaim-W} usage.
modprobe/8526 [HC0[0]:SC0[0]:HE1:SE1] takes:
(testlock){--..}, at: [<ffffffffa0020055>] brd_init+0x55/0x216 [brd]
{in-reclaim-W} state was registered at:
[<ffffffff80267bdb>] __lock_acquire+0x75b/0x1a60
[<ffffffff80268f71>] lock_acquire+0x91/0xc0
[<ffffffff8070f0e1>] mutex_lock_nested+0xb1/0x310
[<ffffffffa002002b>] brd_init+0x2b/0x216 [brd]
[<ffffffff8020903b>] _stext+0x3b/0x170
[<ffffffff80272ebf>] sys_init_module+0xaf/0x1e0
[<ffffffff8020c3fb>] system_call_fastpath+0x16/0x1b
[<ffffffffffffffff>] 0xffffffffffffffff
irq event stamp: 3929
hardirqs last enabled at (3929): [<ffffffff8070f2b5>] mutex_lock_nested+0x285/0x310
hardirqs last disabled at (3928): [<ffffffff8070f089>] mutex_lock_nested+0x59/0x310
softirqs last enabled at (3732): [<ffffffff8061f623>] sk_filter+0x83/0xe0
softirqs last disabled at (3730): [<ffffffff8061f5b6>] sk_filter+0x16/0xe0
other info that might help us debug this:
1 lock held by modprobe/8526:
#0: (testlock){--..}, at: [<ffffffffa0020055>] brd_init+0x55/0x216 [brd]
stack backtrace:
Pid: 8526, comm: modprobe Not tainted 2.6.28-rc6-00007-ged31348-dirty #26
Call Trace:
[<ffffffff80265483>] print_usage_bug+0x193/0x1d0
[<ffffffff80266530>] mark_lock+0xaf0/0xca0
[<ffffffff80266735>] mark_held_locks+0x55/0xc0
[<ffffffffa0020000>] ? brd_init+0x0/0x216 [brd]
[<ffffffff802667ca>] trace_reclaim_fs+0x2a/0x60
[<ffffffff80285005>] __alloc_pages_internal+0x475/0x580
[<ffffffff8070f29e>] ? mutex_lock_nested+0x26e/0x310
[<ffffffffa0020000>] ? brd_init+0x0/0x216 [brd]
[<ffffffffa002006a>] brd_init+0x6a/0x216 [brd]
[<ffffffffa0020000>] ? brd_init+0x0/0x216 [brd]
[<ffffffff8020903b>] _stext+0x3b/0x170
[<ffffffff8070f8b9>] ? mutex_unlock+0x9/0x10
[<ffffffff8070f83d>] ? __mutex_unlock_slowpath+0x10d/0x180
[<ffffffff802669ec>] ? trace_hardirqs_on_caller+0x12c/0x190
[<ffffffff80272ebf>] sys_init_module+0xaf/0x1e0
[<ffffffff8020c3fb>] system_call_fastpath+0x16/0x1b
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit 7b2cd92adc ("crypto: api - Fix
zeroing on free") added modular user of ksize(). Export that to fix
crypto.ko compilation.
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Impact: Use new API
Convert kernel mm functions to use struct cpumask.
We skip include/linux/percpu.h and mm/allocpercpu.c, which are in flux.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Mike Travis <travis@sgi.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Impact: avoid conflicts with kmemcheck
kmemcheck modifies the same area of slab.c and slub.c - move the
include lines up a bit.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This adds hooks for the SLAB allocator, to allow tracing with kmemtrace.
We also convert some inline functions to __always_inline to make sure
_RET_IP_, which expands to __builtin_return_address(0), always works
as expected.
Signed-off-by: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
This patch replaces __builtin_return_address(0) with _RET_IP_, since a
previous patch moved _RET_IP_ and _THIS_IP_ to include/linux/kernel.h and
they're widely available now. This makes for shorter and easier to read
code.
[penberg@cs.helsinki.fi: remove _RET_IP_ casts to void pointer]
Signed-off-by: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Commit 6cb062296f ("Categorize GFP flags")
left one call-site in alloc_slabmgmt() to clear GFP_THISNODE instead of
GFP_CONSTRAINT_MASK. Unfortunately, that ends up clearing __GFP_NOWARN
and __GFP_NORETRY as well which is not what we want. As the only caller
of alloc_slabmgmt() already clears GFP_CONSTRAINT_MASK before passing
local_flags to it, we can just remove the clearing of GFP_THISNODE.
This patch should fix spurious page allocation failure warnings on the
mempool_alloc() path. See the following URL for the original discussion
of the bug:
http://lkml.org/lkml/2008/10/27/100
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Reported-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Currently fault-injection capability for SLAB allocator is only
available to SLAB. This patch makes it available to SLUB, too.
[penberg@cs.helsinki.fi: unify slab and slub implementations]
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
kmem_cache implementations like slub are allowed to merge multiple
caches but only the initial name is preserved. Therefore,
kmem_cache_name() is not guaranteed to return the same pointer passed to
the former function. This patch updates the documentation to make this
clearer.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
unsigned slabp->inuse cannot be less than 0
Acked-by: Christoph Lameter <cl@linux-foundation.org
Signed-off-by: Roel Kluin <roel.kluin@gmail.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
This patch replaces __builtin_return_address(0) with _RET_IP_, since a
previous patch moved _RET_IP_ and _THIS_IP_ to include/linux/kernel.h and
they're widely available now. This makes for shorter and easier to read
code.
[penberg@cs.helsinki.fi: remove _RET_IP_ casts to void pointer]
Signed-off-by: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Lose dummy ->write hook in case of SLUB, it's possible now.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
This patch removes the obsolete and no longer used exports of ksize.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Kmem cache passed to constructor is only needed for constructors that are
themselves multiplexeres. Nobody uses this "feature", nor does anybody uses
passed kmem cache in non-trivial way, so pass only pointer to object.
Non-trivial places are:
arch/powerpc/mm/init_64.c
arch/powerpc/mm/hugetlbpage.c
This is flag day, yes.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Matt Mackall <mpm@selenic.com>
[akpm@linux-foundation.org: fix arch/powerpc/mm/hugetlbpage.c]
[akpm@linux-foundation.org: fix mm/slab.c]
[akpm@linux-foundation.org: fix ubifs]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the removal of destructors, slab_destroy_objs no longer actually
destroys any objects, making the kernel doc incorrect and the function
name misleading.
In keeping with the other debug functions, rename it to
slab_destroy_debugcheck and drop the kernel doc.
Signed-off-by: Rabin Vincent <rabin@rab.in>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
It's not even passed on to smp_call_function() anymore, since that
was removed. So kill it.
Acked-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
The zonelist patches caused the loop that checks for available
objects in permitted zones to not terminate immediately. One object
per zone per allocation may be allocated and then abandoned.
Break the loop when we have successfully allocated one object.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__FUNCTION__ is gcc-specific, use __func__
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can see an ever repeating problem pattern with objects of any kind in the
kernel:
1) freeing of active objects
2) reinitialization of active objects
Both problems can be hard to debug because the crash happens at a point where
we have no chance to decode the root cause anymore. One problem spot are
kernel timers, where the detection of the problem often happens in interrupt
context and usually causes the machine to panic.
While working on a timer related bug report I had to hack specialized code
into the timer subsystem to get a reasonable hint for the root cause. This
debug hack was fine for temporary use, but far from a mergeable solution due
to the intrusiveness into the timer code.
The code further lacked the ability to detect and report the root cause
instantly and keep the system operational.
Keeping the system operational is important to get hold of the debug
information without special debugging aids like serial consoles and special
knowledge of the bug reporter.
The problems described above are not restricted to timers, but timers tend to
expose it usually in a full system crash. Other objects are less explosive,
but the symptoms caused by such mistakes can be even harder to debug.
Instead of creating specialized debugging code for the timer subsystem a
generic infrastructure is created which allows developers to verify their code
and provides an easy to enable debug facility for users in case of trouble.
The debugobjects core code keeps track of operations on static and dynamic
objects by inserting them into a hashed list and sanity checking them on
object operations and provides additional checks whenever kernel memory is
freed.
The tracked object operations are:
- initializing an object
- adding an object to a subsystem list
- deleting an object from a subsystem list
Each operation is sanity checked before the operation is executed and the
subsystem specific code can provide a fixup function which allows to prevent
the damage of the operation. When the sanity check triggers a warning message
and a stack trace is printed.
The list of operations can be extended if the need arises. For now it's
limited to the requirements of the first user (timers).
The core code enqueues the objects into hash buckets. The hash index is
generated from the address of the object to simplify the lookup for the check
on kfree/vfree. Each bucket has it's own spinlock to avoid contention on a
global lock.
The debug code can be compiled in without being active. The runtime overhead
is minimal and could be optimized by asm alternatives. A kernel command line
option enables the debugging code.
Thanks to Ingo Molnar for review, suggestions and cleanup patches.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Greg KH <greg@kroah.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Not all architectures define cache_line_size() so as suggested by Andrew move
the private implementations in mm/slab.c and mm/slob.c to <linux/cache.h>.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Filtering zonelists requires very frequent use of zone_idx(). This is costly
as it involves a lookup of another structure and a substraction operation. As
the zone_idx is often required, it should be quickly accessible. The node idx
could also be stored here if it was found that accessing zone->node is
significant which may be the case on workloads where nodemasks are heavily
used.
This patch introduces a struct zoneref to store a zone pointer and a zone
index. The zonelist then consists of an array of these struct zonerefs which
are looked up as necessary. Helpers are given for accessing the zone index as
well as the node index.
[kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers]
[hugh@veritas.com: mm-have-zonelist: fix memcg ooms]
[hugh@veritas.com: just return do_try_to_free_pages]
[hugh@veritas.com: do_try_to_free_pages gfp_mask redundant]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently a node has two sets of zonelists, one for each zone type in the
system and a second set for GFP_THISNODE allocations. Based on the zones
allowed by a gfp mask, one of these zonelists is selected. All of these
zonelists consume memory and occupy cache lines.
This patch replaces the multiple zonelists per-node with two zonelists. The
first contains all populated zones in the system, ordered by distance, for
fallback allocations when the target/preferred node has no free pages. The
second contains all populated zones in the node suitable for GFP_THISNODE
allocations.
An iterator macro is introduced called for_each_zone_zonelist() that interates
through each zone allowed by the GFP flags in the selected zonelist.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a node_zonelist() helper function. It is used to lookup the
appropriate zonelist given a node and a GFP mask. The patch on its own is a
cleanup but it helps clarify parts of the two-zonelist-per-node patchset. If
necessary, it can be merged with the next patch in this set without problems.
Reviewed-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Use new node_to_cpumask_ptr. This creates a pointer to the
cpumask for a given node. This definition is in mm patch:
asm-generic-add-node_to_cpumask_ptr-macro.patch
* Use new set_cpus_allowed_ptr function.
Depends on:
[mm-patch]: asm-generic-add-node_to_cpumask_ptr-macro.patch
[sched-devel]: sched: add new set_cpus_allowed_ptr function
[x86/latest]: x86: add cpus_scnprintf function
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: Greg Banks <gnb@melbourne.sgi.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit 556a169dab ("slab: fix bootstrap on
memoryless node") introduced bootstrap-time cache_cache list3s for all nodes
but forgot that initkmem_list3 needs to be accessed by [somevalue + node]. This
patch fixes list_add() corruption in mm/slab.c seen on the ES7000.
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Olaf Hering <olaf@aepfle.de>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Dan Yeisley <dan.yeisley@unisys.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Fix various kernel-doc notation in mm/:
filemap.c: add function short description; convert 2 to kernel-doc
fremap.c: change parameter 'prot' to @prot
pagewalk.c: change "-" in function parameters to ":"
slab.c: fix short description of kmem_ptr_validate()
swap.c: fix description & parameters of put_pages_list()
swap_state.c: fix function parameters
vmalloc.c: change "@returns" to "Returns:" since that is not a parameter
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
NUMA slab allocator cpu migration bugfix
The NUMA slab allocator (specifically, cache_alloc_refill)
is not refreshing its local copies of what cpu and what
numa node it is on, when it drops and reacquires the irq
block that it inherited from its caller. As a result
those values become invalid if an attempt to migrate the
process to another numa node occured while the irq block
had been dropped.
The solution is to make cache_alloc_refill reload these
variables whenever it drops and reacquires the irq block.
The error is very difficult to hit. When it does occur,
one gets the following oops + stack traceback bits in
check_spinlock_acquired:
kernel BUG at mm/slab.c:2417
cache_alloc_refill+0xe6
kmem_cache_alloc+0xd0
...
This patch was developed against 2.6.23, ported to and
compiled-tested only against 2.6.25-rc4.
Signed-off-by: Joe Korty <joe.korty@ccur.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Make them all use angle brackets and the directory name.
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
The NUMA fallback logic should be passing local_flags to kmem_get_pages() and not simply the
flags passed in.
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
- alloc_slabmgmt: initialize all slab fields in 1 place
- slab->nodeid was initialized twice: in alloc_slabmgmt
and immediately after it in cache_grow
Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
CC: Christoph Lameter <clameter@sgi.com>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
This patch converts the known per-subsystem mutexes to get_online_cpus
put_online_cpus. It also eliminates the CPU_LOCK_ACQUIRE and
CPU_LOCK_RELEASE hotplug notification events.
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If the node we're booting on doesn't have memory, bootstrapping kmalloc()
caches resorts to fallback_alloc() which requires ->nodelists set for all
nodes. Fix that by calling set_up_list3s() for CACHE_CACHE in
kmem_cache_init().
As kmem_getpages() is called with GFP_THISNODE set, this used to work before
because of breakage in 2.6.22 and before with GFP_THISNODE returning pages from
the wrong node if a node had no memory. So it may have worked accidentally and
in an unsafe manner because the pages would have been associated with the wrong
node which could trigger bug ons and locking troubles.
Tested-by: Mel Gorman <mel@csn.ul.ie>
Tested-by: Olaf Hering <olaf@aepfle.de>
Reviewed-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
[ With additional one-liner by Olaf Hering - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>