We need to pass some data to test_task() or process_task() in some cases.
Will be used later.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch tries to fix OOM Killer problems caused by hierarchy.
Now, memcg itself has OOM KILL function (in oom_kill.c) and tries to
kill a task in memcg.
But, when hierarchy is used, it's broken and correct task cannot
be killed. For example, in following cgroup
/groupA/ hierarchy=1, limit=1G,
01 nolimit
02 nolimit
All tasks' memory usage under /groupA, /groupA/01, groupA/02 is limited to
groupA's 1Gbytes but OOM Killer just kills tasks in groupA.
This patch provides makes the bad process be selected from all tasks
under hierarchy. BTW, currently, oom_jiffies is updated against groupA
in above case. oom_jiffies of tree should be updated.
To see how oom_jiffies is used, please check mem_cgroup_oom_called()
callers.
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: const fix]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have some read-only files and write-only files, but currently they are
all set to 0644, which is counter-intuitive and cause trouble for some
cgroup tools like libcgroup.
This patch adds 'mode' to struct cftype to allow cgroup subsys to set it's
own files' file mode, and for the most cases cft->mode can be default to 0
and cgroup will figure out proper mode.
Acked-by: Paul Menage <menage@google.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In following situation, with memory subsystem,
/groupA use_hierarchy==1
/01 some tasks
/02 some tasks
/03 some tasks
/04 empty
When tasks under 01/02/03 hit limit on /groupA, hierarchical reclaim
is triggered and the kernel walks tree under groupA. In this case,
rmdir /groupA/04 fails with -EBUSY frequently because of temporal
refcnt from the kernel.
In general. cgroup can be rmdir'd if there are no children groups and
no tasks. Frequent fails of rmdir() is not useful to users.
(And the reason for -EBUSY is unknown to users.....in most cases)
This patch tries to modify above behavior, by
- retries if css_refcnt is got by someone.
- add "return value" to pre_destroy() and allows subsystem to
say "we're really busy!"
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch for Per-CSS(Cgroup Subsys State) ID and private hierarchy code.
This patch attaches unique ID to each css and provides following.
- css_lookup(subsys, id)
returns pointer to struct cgroup_subysys_state of id.
- css_get_next(subsys, id, rootid, depth, foundid)
returns the next css under "root" by scanning
When cgroup_subsys->use_id is set, an id for css is maintained.
The cgroup framework only parepares
- css_id of root css for subsys
- id is automatically attached at creation of css.
- id is *not* freed automatically. Because the cgroup framework
don't know lifetime of cgroup_subsys_state.
free_css_id() function is provided. This must be called by subsys.
There are several reasons to develop this.
- Saving space .... For example, memcg's swap_cgroup is array of
pointers to cgroup. But it is not necessary to be very fast.
By replacing pointers(8bytes per ent) to ID (2byes per ent), we can
reduce much amount of memory usage.
- Scanning without lock.
CSS_ID provides "scan id under this ROOT" function. By this, scanning
css under root can be written without locks.
ex)
do {
rcu_read_lock();
next = cgroup_get_next(subsys, id, root, &found);
/* check sanity of next here */
css_tryget();
rcu_read_unlock();
id = found + 1
} while(...)
Characteristics:
- Each css has unique ID under subsys.
- Lifetime of ID is controlled by subsys.
- css ID contains "ID" and "Depth in hierarchy" and stack of hierarchy
- Allowed ID is 1-65535, ID 0 is UNUSED ID.
Design Choices:
- scan-by-ID v.s. scan-by-tree-walk.
As /proc's pid scan does, scan-by-ID is robust when scanning is done
by following kind of routine.
scan -> rest a while(release a lock) -> conitunue from interrupted
memcg's hierarchical reclaim does this.
- When subsys->use_id is set, # of css in the system is limited to
65535.
[bharata@linux.vnet.ibm.com: remove rcu_read_lock() from css_get_next()]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The ns_proxy cgroup allows moving processes to child cgroups only one
level deep at a time. This commit relaxes this restriction and makes it
possible to attach tasks directly to grandchild cgroups, e.g.:
($pid is in the root cgroup)
echo $pid > /cgroup/CG1/CG2/tasks
Previously this operation would fail with -EPERM and would have to be
performed as two steps:
echo $pid > /cgroup/CG1/tasks
echo $pid > /cgroup/CG1/CG2/tasks
Also, the target cgroup no longer needs to be empty to move a task there.
Signed-off-by: Grzegorz Nosek <root@localdomain.pl>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Reviewed-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the style of some multi-line comments in cgroup.h to match
Documentation/CodingStyle
Signed-off-by: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I enabled all cgroup subsystems when compiling kernel, and then:
# mount -t cgroup -o net_cls xxx /mnt
# mkdir /mnt/0
This showed up immediately:
BUG: MAX_LOCKDEP_SUBCLASSES too low!
turning off the locking correctness validator.
It's caused by the cgroup hierarchy lock:
for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
struct cgroup_subsys *ss = subsys[i];
if (ss->root == root)
mutex_lock_nested(&ss->hierarchy_mutex, i);
}
Now we have 9 cgroup subsystems, and the above 'i' for net_cls is 8, but
MAX_LOCKDEP_SUBCLASSES is 8.
This patch uses different lockdep keys for different subsystems.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
css_tryget() and cgroup_clear_css_refs() contain polling loops; these
loops should have cpu_relax calls in them to reduce cross-cache traffic.
Signed-off-by: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add css_tryget(), that obtains a counted reference on a CSS. It is used
in situations where the caller has a "weak" reference to the CSS, i.e.
one that does not protect the cgroup from removal via a reference count,
but would instead be cleaned up by a destroy() callback.
css_tryget() will return true on success, or false if the cgroup is being
removed.
This is similar to Kamezawa Hiroyuki's patch from a week or two ago, but
with the difference that in the event of css_tryget() racing with a
cgroup_rmdir(), css_tryget() will only return false if the cgroup really
does get removed.
This implementation is done by biasing css->refcnt, so that a refcnt of 1
means "releasable" and 0 means "released or releasing". In the event of a
race, css_tryget() distinguishes between "released" and "releasing" by
checking for the CSS_REMOVED flag in css->flags.
Signed-off-by: Paul Menage <menage@google.com>
Tested-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These patches introduce new locking/refcount support for cgroups to
reduce the need for subsystems to call cgroup_lock(). This will
ultimately allow the atomicity of cgroup_rmdir() (which was removed
recently) to be restored.
These three patches give:
1/3 - introduce a per-subsystem hierarchy_mutex which a subsystem can
use to prevent changes to its own cgroup tree
2/3 - use hierarchy_mutex in place of calling cgroup_lock() in the
memory controller
3/3 - introduce a css_tryget() function similar to the one recently
proposed by Kamezawa, but avoiding spurious refcount failures in
the event of a race between a css_tryget() and an unsuccessful
cgroup_rmdir()
Future patches will likely involve:
- using hierarchy mutex in place of cgroup_lock() in more subsystems
where appropriate
- restoring the atomicity of cgroup_rmdir() with respect to cgroup_create()
This patch:
Add a hierarchy_mutex to the cgroup_subsys object that protects changes to
the hierarchy observed by that subsystem. It is taken by the cgroup
subsystem (in addition to cgroup_mutex) for the following operations:
- linking a cgroup into that subsystem's cgroup tree
- unlinking a cgroup from that subsystem's cgroup tree
- moving the subsystem to/from a hierarchy (including across the
bind() callback)
Thus if the subsystem holds its own hierarchy_mutex, it can safely
traverse its own hierarchy.
Signed-off-by: Paul Menage <menage@google.com>
Tested-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix races between /proc/sched_debug by freeing cgroup objects via an RCU
callback. Thus any cgroup reference obtained from an RCU-safe source will
remain valid during the RCU section. Since dentries are also RCU-safe,
this allows us to traverse up the tree safely.
Additionally, make cgroup_path() check for a NULL cgrp->dentry to avoid
trying to report a path for a partially-created cgroup.
[lizf@cn.fujitsu.com: call deactive_super() in cgroup_diput()]
Signed-off-by: Paul Menage <menage@google.com>
Reviewed-by: Li Zefan <lizf@cn.fujitsu.com>
Tested-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't access struct cgroupfs_root in fast path, so we should not put
struct cgroupfs_root protected by RCU
But the comment in struct cgroup_subsys.root confuse us.
struct cgroup_subsys.root is used in these places:
1 find_css_set(): if (ss->root->subsys_list.next == &ss->sibling)
2 rebind_subsystems(): if (ss->root != &rootnode)
rcu_assign_pointer(ss->root, root);
rcu_assign_pointer(subsys[i]->root, &rootnode);
3 cgroup_has_css_refs(): if (ss->root != cgrp->root)
4 cgroup_init_subsys(): ss->root = &rootnode;
5 proc_cgroupstats_show(): ss->name, ss->root->subsys_bits,
ss->root->number_of_cgroups, !ss->disabled);
6 cgroup_clone(): root = subsys->root;
if ((root != subsys->root) ||
All these place we have held cgroup_lock() or we don't dereference to
struct cgroupfs_root. It's means wo don't need RCU when use struct
cgroup_subsys.root, and we should not put struct cgroupfs_root protected
by RCU.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Reviewed-by: Paul Menage <menage@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cgroup_mm_owner_callbacks() was brought in to support the memrlimit
controller, but sneaked into mainline ahead of it. That controller has
now been shelved, and the mm_owner_changed() args were inadequate for it
anyway (they needed an mm pointer instead of a task pointer).
Remove the dead code, and restore mm_update_next_owner() locking to how it
was before: taking mmap_sem there does nothing for memcontrol.c, now the
only user of mm->owner.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Paul Menage <menage@google.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The choice of real/dummy declaration for cgroup_mm_owner_callbacks()
shouldn't be based on CONFIG_MM_OWNER, but on CONFIG_CGROUPS. Otherwise
kernel/exit.c fails to compile when something other than a cgroups
controller selects CONFIG_MM_OWNER
Signed-off-by: Paul Menage <menage@google.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rather than pre-generating the entire text for the "tasks" file each
time the file is opened, we instead just generate/update the array of
process ids and use a seq_file to report these to userspace. All open
file handles on the same "tasks" file can share a pid array, which may
be updated any time that no thread is actively reading the array. By
sharing the array, the potential for userspace to DoS the system by
opening many handles on the same "tasks" file is removed.
[Based on a patch by Lai Jiangshan, extended to use seq_file]
Signed-off-by: Paul Menage <menage@google.com>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Serge Hallyn <serue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
put_css_set_taskexit may be called when find_css_set is called on other
cpu. And the race will occur:
put_css_set_taskexit side find_css_set side
|
atomic_dec_and_test(&kref->refcount) |
/* kref->refcount = 0 */ |
....................................................................
| read_lock(&css_set_lock)
| find_existing_css_set
| get_css_set
| read_unlock(&css_set_lock);
....................................................................
__release_css_set |
....................................................................
| /* use a released css_set */
|
[put_css_set is the same. But in the current code, all put_css_set are
put into cgroup mutex critical region as the same as find_css_set.]
[akpm@linux-foundation.org: repair comments]
[menage@google.com: eliminate race in css_set refcounting]
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds an additional field to the mm_owner callbacks. This field
is required to get to the mm that changed. Hold mmap_sem in write mode
before calling the mm_owner_changed callback
[hugh@veritas.com: fix mmap_sem deadlock]
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Sudhir Kumar <skumar@linux.vnet.ibm.com>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cgroup_clone creates a new cgroup with the pid of the task. This works
correctly for unshare, but for clone cgroup_clone is called from
copy_namespaces inside copy_process, which happens before the new pid is
created. As a result, the new cgroup was created with current's pid.
This patch:
1. Moves the call inside copy_process to after the new pid
is created
2. Passes the struct pid into ns_cgroup_clone (as it is not
yet attached to the task)
3. Passes a name from ns_cgroup_clone() into cgroup_clone()
so as to keep cgroup_clone() itself simpler
4. Uses pid_vnr() to get the process id value, so that the
pid used to name the new cgroup is always the pid as it
would be known to the task which did the cloning or
unsharing. I think that is the most intuitive thing to
do. This way, task t1 does clone(CLONE_NEWPID) to get
t2, which does clone(CLONE_NEWPID) to get t3, then the
cgroup for t3 will be named for the pid by which t2 knows
t3.
(Thanks to Dan Smith for finding the main bug)
Changelog:
June 11: Incorporate Paul Menage's feedback: don't pass
NULL to ns_cgroup_clone from unshare, and reduce
patch size by using 'nodename' in cgroup_clone.
June 10: Original version
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Serge Hallyn <serge@us.ibm.com>
Acked-by: Paul Menage <menage@google.com>
Tested-by: Dan Smith <danms@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch contains cleanups suggested by reviewers for the recent
write_string() patchset:
- pair cgroup_lock_live_group() with cgroup_unlock() in cgroup.c for
clarity, rather than directly unlocking cgroup_mutex.
- make the return type of cgroup_lock_live_group() a bool
- use a #define'd constant for the local buffer size in read/write functions
Signed-off-by: Paul Menage <menage@google.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Balbir Singh <balbir@in.ibm.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adds cgroup_release_agent_write() and cgroup_release_agent_show()
methods to handle writing/reading the path to a cgroup hierarchy's
release agent. As a result, cgroup_common_file_read() is now unnecessary.
As part of the change, a previously-tolerated race in
cgroup_release_agent() is avoided by copying the current
release_agent_path prior to calling call_usermode_helper().
Signed-off-by: Paul Menage <menage@google.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Balbir Singh <balbir@in.ibm.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds a write_string() method for cgroups control files. The
semantics are that a buffer is copied from userspace to kernelspace
and the handler function invoked on that buffer. The buffer is
guaranteed to be nul-terminated, and no longer than max_write_len
(defaulting to 64 bytes if unspecified). Later patches will convert
existing raw file write handlers in control group subsystems to use
this method.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Acked-by: Balbir Singh <balbir@in.ibm.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch removes some extraneous spaces from method declarations in
struct cftype, to fit in with conventional kernel style.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Serge Hallyn <serue@us.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the mem_cgroup member from mm_struct and instead adds an owner.
This approach was suggested by Paul Menage. The advantage of this approach
is that, once the mm->owner is known, using the subsystem id, the cgroup
can be determined. It also allows several control groups that are
virtually grouped by mm_struct, to exist independent of the memory
controller i.e., without adding mem_cgroup's for each controller, to
mm_struct.
A new config option CONFIG_MM_OWNER is added and the memory resource
controller selects this config option.
This patch also adds cgroup callbacks to notify subsystems when mm->owner
changes. The mm_cgroup_changed callback is called with the task_lock() of
the new task held and is called just prior to changing the mm->owner.
I am indebted to Paul Menage for the several reviews of this patchset and
helping me make it lighter and simpler.
This patch was tested on a powerpc box, it was compiled with both the
MM_OWNER config turned on and off.
After the thread group leader exits, it's moved to init_css_state by
cgroup_exit(), thus all future charges from runnings threads would be
redirected to the init_css_set's subsystem.
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Sudhir Kumar <skumar@linux.vnet.ibm.com>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Hirokazu Takahashi <taka@valinux.co.jp>
Cc: David Rientjes <rientjes@google.com>,
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Reviewed-by: Paul Menage <menage@google.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a read_seq() helper in cftype, which uses seq_file to print out
lists. Use it in the devices cgroup. Also split devices.allow into two
files, so now devices.deny and devices.allow are the ones to use to manipulate
the whitelist, while devices.list outputs the cgroup's current whitelist.
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: Paul Menage <menage@google.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now we can run through the hash table instead of running through the
linked-list.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Reviewed-by: Paul Menage <menage@google.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we attach a process to a different cgroup, the css_set linked-list will
be run through to find a suitable existing css_set to use. This patch
implements a hash table for better performance.
The following benchmarks have been tested:
For N in 1, 5, 10, 50, 100, 500, 1000, create N cgroups with one sleeping
task in each, and then move an additional task through each cgroup in
turn.
Here is a test result:
N Loop orig - Time(s) hash - Time(s)
----------------------------------------------
1 10000 1.201231728 1.196311177
5 2000 1.065743872 1.040566424
10 1000 0.991054735 0.986876440
50 200 0.976554203 0.969608733
100 100 0.998504680 0.969218270
500 20 1.157347764 0.962602963
1000 10 1.619521852 1.085140172
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Reviewed-by: Paul Menage <menage@google.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Trigger callback can be used to receive a kick-up from the user space. The
string written is ignored.
The cftype->private is used for multiplexing events.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Acked-by: Paul Menage <menage@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These patches add cgroups read_s64 and write_s64 control file methods (the
signed equivalent of read_u64/write_u64) and use them to implement the
cpu.rt_runtime_us control file in the CFS cgroup subsystem.
This patch:
These are the signed equivalents of the read_u64/write_u64 methods
Signed-off-by: Paul Menage <menage@google.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The "releasable" control file provided by the cgroup framework exports the
state of a per-cgroup flag that's related to the notify-on-release feature.
This isn't really generally useful, unless you're trying to debug this
particular feature of cgroups.
This patch moves the "releasable" file to the cgroup_debug subsystem.
Signed-off-by: Paul Menage <menage@google.com>
Cc: "Li Zefan" <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "YAMAMOTO Takashi" <yamamoto@valinux.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adds a new type of supported control file representation, a map from strings
to u64 values.
Each map entry is printed as a line in a similar format to /proc/vmstat, i.e.
"$key $value\n"
Signed-off-by: Paul Menage <menage@google.com>
Cc: "Li Zefan" <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "YAMAMOTO Takashi" <yamamoto@valinux.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Several people have justifiably complained that the "_uint" suffix is
inappropriate for functions that handle u64 values, so this patch just renames
all these functions and their users to have the suffic _u64.
[peterz@infradead.org: build fix]
Signed-off-by: Paul Menage <menage@google.com>
Cc: "Li Zefan" <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "YAMAMOTO Takashi" <yamamoto@valinux.co.jp>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The effects of cgroup_disable=foo are:
- foo isn't auto-mounted if you mount all cgroups in a single hierarchy
- foo isn't visible as an individually mountable subsystem
As a result there will only ever be one call to foo->create(), at init time;
all processes will stay in this group, and the group will never be mounted on
a visible hierarchy. Any additional effects (e.g. not allocating metadata)
are up to the foo subsystem.
This doesn't handle early_init subsystems (their "disabled" bit isn't set be,
but it could easily be extended to do so if any of the early_init systems
wanted it - I think it would just involve some nastier parameter processing
since it would occur before the command-line argument parser had been run.
Hugh said:
Ballpark figures, I'm trying to get this question out rather than
processing the exact numbers: CONFIG_CGROUP_MEM_RES_CTLR adds 15% overhead
to the affected paths, booting with cgroup_disable=memory cuts that back to
1% overhead (due to slightly bigger struct page).
I'm no expert on distros, they may have no interest whatever in
CONFIG_CGROUP_MEM_RES_CTLR=y; and the rest of us can easily build with or
without it, or apply the cgroup_disable=memory patches.
Unix bench's execl test result on x86_64 was
== just after boot without mounting any cgroup fs.==
mem_cgorup=off : Execl Throughput 43.0 3150.1 732.6
mem_cgroup=on : Execl Throughput 43.0 2932.6 682.0
==
[lizf@cn.fujitsu.com: fix boot option parsing]
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Sudhir Kumar <skumar@linux.vnet.ibm.com>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- replace old name 'cont' with 'cgrp' (Paul Menage did this cleanup for
cgroup.c in commit bd89aabc67)
- remove a duplicate declaration of cgroup_path()
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
fix:
- comments about need_forkexit_callback
- comments about release agent
- typo and comment style, etc.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch corrects a situation that occurs when one disables all the cpus in
a cpuset.
Currently, the disabled (cpu-less) cpuset inherits the cpus of its parent,
which is incorrect because it may then overlap its cpu-exclusive sibling.
Tasks of an empty cpuset should be moved to the cpuset which is the parent of
their current cpuset. Or if the parent cpuset has no cpus, to its parent,
etc.
And the empty cpuset should be released (if it is flagged notify_on_release).
Depends on the cgroup_scan_tasks() function (proposed by David Rientjes) to
iterate through all tasks in the cpu-less cpuset. We are deliberately
avoiding a walk of the tasklist.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Cliff Wickman <cpw@sgi.com>
Cc: Paul Menage <menage@google.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Provide cgroup_scan_tasks(), which iterates through every task in a cgroup,
calling a test function and a process function for each. And call the process
function without holding the css_set_lock lock.
The idea is David Rientjes', predicting that such a function will make it much
easier in the future to extend things that require access to each task in a
cgroup without holding the lock,
[akpm@linux-foundation.org: cleanup]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Cliff Wickman <cpw@sgi.com>
Cc: Paul Menage <menage@google.com>
Cc: Paul Jackson <pj@sgi.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a handler "pre_destroy" to cgroup_subsys. It is called before
cgroup_rmdir() checks all subsys's refcnt.
I think this is useful for subsys which have some extra refs even if there
are no tasks in cgroup. By adding pre_destroy(), the kernel keeps the rule
"destroy() against subsystem is called only when refcnt=0." and allows css
ref to be used by other objects than tasks.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Paul Menage <menage@google.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is inspired by the discussion at
http://lkml.org/lkml/2007/4/11/187 and implements per cgroup statistics
as suggested by Andrew Morton in http://lkml.org/lkml/2007/4/11/263. The
patch is on top of 2.6.21-mm1 with Paul's cgroups v9 patches (forward
ported)
This patch implements per cgroup statistics infrastructure and re-uses
code from the taskstats interface. A new set of cgroup operations are
registered with commands and attributes. It should be very easy to
*extend* per cgroup statistics, by adding members to the cgroupstats
structure.
The current model for cgroupstats is a pull, a push model (to post
statistics on interesting events), should be very easy to add. Currently
user space requests for statistics by passing the cgroup file
descriptor. Statistics about the state of all the tasks in the cgroup
is returned to user space.
TODO's/NOTE:
This patch provides an infrastructure for implementing cgroup statistics.
Based on the needs of each controller, we can incrementally add more statistics,
event based support for notification of statistics, accumulation of taskstats
into cgroup statistics in the future.
Sample output
# ./cgroupstats -C /cgroup/a
sleeping 2, blocked 0, running 1, stopped 0, uninterruptible 0
# ./cgroupstats -C /cgroup/
sleeping 154, blocked 0, running 0, stopped 0, uninterruptible 0
If the approach looks good, I'll enhance and post the user space utility for
the same
Feedback, comments, test results are always welcome!
[akpm@linux-foundation.org: build fix]
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Jay Lan <jlan@engr.sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the following files to the cgroup filesystem:
notify_on_release - configures/reports whether the cgroup subsystem should
attempt to run a release script when this cgroup becomes unused
release_agent - configures/reports the release agent to be used for this
hierarchy (top level in each hierarchy only)
releasable - reports whether this cgroup would have been auto-released if
notify_on_release was true and a release agent was configured (mainly useful
for debugging)
To avoid locking issues, invoking the userspace release agent is done via a
workqueue task; cgroups that need to have their release agents invoked by
the workqueue task are linked on to a list.
[pj@sgi.com: Need to include kmod.h]
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace the struct css_set embedded in task_struct with a pointer; all tasks
that have the same set of memberships across all hierarchies will share a
css_set object, and will be linked via their css_sets field to the "tasks"
list_head in the css_set.
Assuming that many tasks share the same cgroup assignments, this reduces
overall space usage and keeps the size of the task_struct down (three pointers
added to task_struct compared to a non-cgroups kernel, no matter how many
subsystems are registered).
[akpm@linux-foundation.org: fix a printk]
[akpm@linux-foundation.org: build fix]
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add support for cgroup_clone(), a way to create new cgroups intended to
be used for systems such as namespace unsharing. A new subsystem callback,
post_clone(), is added to allow subsystems to automatically configure cloned
cgroups.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds the necessary hooks to the fork() and exit() paths to ensure
that new children inherit their parent's cgroup assignments, and that
exiting processes release reference counts on their cgroups.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add write_uint() helper method for cgroup subsystems
This helper is analagous to the read_uint() helper method for
reporting u64 values to userspace. It's designed to reduce the amount
of boilerplate requierd for creating new cgroup subsystems.
Signed-off-by: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the per-directory "tasks" file for cgroupfs mounts; this allows the
user to determine which tasks are members of a cgroup by reading a
cgroup's "tasks", and to move a task into a cgroup by writing its pid to
its "tasks".
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>