We call arch_cpu_idle() with RCU disabled, but then use
local_irq_{en,dis}able(), which invokes tracing, which relies on RCU.
Switch all arch_cpu_idle() implementations to use
raw_local_irq_{en,dis}able() and carefully manage the
lockdep,rcu,tracing state like we do in entry.
(XXX: we really should change arch_cpu_idle() to not return with
interrupts enabled)
Reported-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lkml.kernel.org/r/20201120114925.594122626@infradead.org
Remove support for context switching between the guest's and host's
desired UMWAIT_CONTROL. Propagating the guest's value to hardware isn't
required for correct functionality, e.g. KVM intercepts reads and writes
to the MSR, and the latency effects of the settings controlled by the
MSR are not architecturally visible.
As a general rule, KVM should not allow the guest to control power
management settings unless explicitly enabled by userspace, e.g. see
KVM_CAP_X86_DISABLE_EXITS. E.g. Intel's SDM explicitly states that C0.2
can improve the performance of SMT siblings. A devious guest could
disable C0.2 so as to improve the performance of their workloads at the
detriment to workloads running in the host or on other VMs.
Wholesale removal of UMWAIT_CONTROL context switching also fixes a race
condition where updates from the host may cause KVM to enter the guest
with the incorrect value. Because updates are are propagated to all
CPUs via IPI (SMP function callback), the value in hardware may be
stale with respect to the cached value and KVM could enter the guest
with the wrong value in hardware. As above, the guest can't observe the
bad value, but it's a weird and confusing wart in the implementation.
Removal also fixes the unnecessary usage of VMX's atomic load/store MSR
lists. Using the lists is only necessary for MSRs that are required for
correct functionality immediately upon VM-Enter/VM-Exit, e.g. EFER on
old hardware, or for MSRs that need to-the-uop precision, e.g. perf
related MSRs. For UMWAIT_CONTROL, the effects are only visible in the
kernel via TPAUSE/delay(), and KVM doesn't do any form of delay in
vcpu_vmx_run(). Using the atomic lists is undesirable as they are more
expensive than direct RDMSR/WRMSR.
Furthermore, even if giving the guest control of the MSR is legitimate,
e.g. in pass-through scenarios, it's not clear that the benefits would
outweigh the overhead. E.g. saving and restoring an MSR across a VMX
roundtrip costs ~250 cycles, and if the guest diverged from the host
that cost would be paid on every run of the guest. In other words, if
there is a legitimate use case then it should be enabled by a new
per-VM capability.
Note, KVM still needs to emulate MSR_IA32_UMWAIT_CONTROL so that it can
correctly expose other WAITPKG features to the guest, e.g. TPAUSE,
UMWAIT and UMONITOR.
Fixes: 6e3ba4abce ("KVM: vmx: Emulate MSR IA32_UMWAIT_CONTROL")
Cc: stable@vger.kernel.org
Cc: Jingqi Liu <jingqi.liu@intel.com>
Cc: Tao Xu <tao3.xu@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200623005135.10414-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
TPAUSE instructs the processor to enter an implementation-dependent
optimized state. The instruction execution wakes up when the time-stamp
counter reaches or exceeds the implicit EDX:EAX 64-bit input value.
The instruction execution also wakes up due to the expiration of
the operating system time-limit or by an external interrupt
or exceptions such as a debug exception or a machine check exception.
TPAUSE offers a choice of two lower power states:
1. Light-weight power/performance optimized state C0.1
2. Improved power/performance optimized state C0.2
This way, it can save power with low wake-up latency in comparison to
spinloop based delay. The selection between the two is governed by the
input register.
TPAUSE is available on processors with X86_FEATURE_WAITPKG.
Co-developed-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Kyung Min Park <kyung.min.park@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/1587757076-30337-4-git-send-email-kyung.min.park@intel.com
The naming conventions in the delay code are confusing at best.
All delay variants use a loops argument and or variable which originates
from the original delay_loop() implementation. But all variants except
delay_loop() are based on TSC cycles.
Rename the argument to cycles and make it type u64 to avoid these weird
expansions to u64 in the functions.
Rename MWAITX_MAX_LOOPS to MWAITX_MAX_WAIT_CYCLES for the same reason
and fixup the comment of delay_mwaitx() as well.
Mark the delay_fn function pointer __ro_after_init and fixup the comment
for it.
No functional change and preparation for the upcoming TPAUSE based delay
variant.
[ Kyung Min Park: Added __init to use_tsc_delay() ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kyung Min Park <kyung.min.park@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1587757076-30337-2-git-send-email-kyung.min.park@intel.com
As per "AMD64 Architecture Programmer's Manual Volume 3: General-Purpose
and System Instructions", MWAITX EAX[7:4]+1 specifies the optional hint
of the optimized C-state. For C0 state, EAX[7:4] should be set to 0xf.
Currently, a value of 0xf is set for EAX[3:0] instead of EAX[7:4]. Fix
this by changing MWAITX_DISABLE_CSTATES from 0xf to 0xf0.
This hasn't had any implications so far because setting reserved bits in
EAX is simply ignored by the CPU.
[ bp: Fixup comment in delay_mwaitx() and massage. ]
Signed-off-by: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "x86@kernel.org" <x86@kernel.org>
Cc: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20191007190011.4859-1-Janakarajan.Natarajan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a static key which controls the invocation of the CPU buffer clear
mechanism on idle entry. This is independent of other MDS mitigations
because the idle entry invocation to mitigate the potential leakage due to
store buffer repartitioning is only necessary on SMT systems.
Add the actual invocations to the different halt/mwait variants which
covers all usage sites. mwaitx is not patched as it's not available on
Intel CPUs.
The buffer clear is only invoked before entering the C-State to prevent
that stale data from the idling CPU is spilled to the Hyper-Thread sibling
after the Store buffer got repartitioned and all entries are available to
the non idle sibling.
When coming out of idle the store buffer is partitioned again so each
sibling has half of it available. Now CPU which returned from idle could be
speculatively exposed to contents of the sibling, but the buffers are
flushed either on exit to user space or on VMENTER.
When later on conditional buffer clearing is implemented on top of this,
then there is no action required either because before returning to user
space the context switch will set the condition flag which causes a flush
on the return to user path.
Note, that the buffer clearing on idle is only sensible on CPUs which are
solely affected by MSBDS and not any other variant of MDS because the other
MDS variants cannot be mitigated when SMT is enabled, so the buffer
clearing on idle would be a window dressing exercise.
This intentionally does not handle the case in the acpi/processor_idle
driver which uses the legacy IO port interface for C-State transitions for
two reasons:
- The acpi/processor_idle driver was replaced by the intel_idle driver
almost a decade ago. Anything Nehalem upwards supports it and defaults
to that new driver.
- The legacy IO port interface is likely to be used on older and therefore
unaffected CPUs or on systems which do not receive microcode updates
anymore, so there is no point in adding that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We are going to split <linux/sched/idle.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/idle.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Monitored cached line may not wake up from mwait on certain
Goldmont based CPUs. This patch will avoid calling
current_set_polling_and_test() and thereby not set the TIF_ flag.
The result is that we'll always send IPIs for wakeups.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1468867270-18493-1-git-send-email-jacob.jun.pan@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move them to a separate header and have the following
dependency:
x86/cpufeatures.h <- x86/processor.h <- x86/cpufeature.h
This makes it easier to use the header in asm code and not
include the whole cpufeature.h and add guards for asm.
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1453842730-28463-5-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
AMD Carrizo processors (Family 15h, Models 60h-6fh) added a new
feature called MWAITX (MWAIT with extensions) as an extension to
MONITOR/MWAIT.
This new instruction controls a configurable timer which causes
the core to exit wait state on timer expiration, in addition to
"normal" MWAIT condition of reading from a monitored VA.
Compared to MONITOR/MWAIT, there are minor differences in opcode
and input parameters:
MWAITX ECX[1]: enable timer if set
MWAITX EBX[31:0]: max wait time expressed in SW P0 clocks ==
TSC. The software P0 frequency is the same as the TSC frequency.
MWAIT MWAITX
opcode 0f 01 c9 | 0f 01 fb
ECX[0] value of RFLAGS.IF seen by instruction
ECX[1] unused/#GP if set | enable timer if set
ECX[31:2] unused/#GP if set
EAX unused (reserve for hint)
EBX[31:0] unused | max wait time (SW P0 == TSC)
MONITOR MONITORX
opcode 0f 01 c8 | 0f 01 fa
EAX (logical) address to monitor
ECX #GP if not zero
Max timeout = EBX/(TSC frequency)
Signed-off-by: Huang Rui <ray.huang@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andreas Herrmann <herrmann.der.user@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dirk Brandewie <dirk.j.brandewie@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <bitbucket@online.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Li <tony.li@amd.com>
Link: http://lkml.kernel.org/r/1439201994-28067-3-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In Linux-3.9 we removed the mwait_idle() loop:
69fb3676df ("x86 idle: remove mwait_idle() and "idle=mwait" cmdline param")
The reasoning was that modern machines should be sufficiently
happy during the boot process using the default_idle() HALT
loop, until cpuidle loads and either acpi_idle or intel_idle
invoke the newer MWAIT-with-hints idle loop.
But two machines reported problems:
1. Certain Core2-era machines support MWAIT-C1 and HALT only.
MWAIT-C1 is preferred for optimal power and performance.
But if they support just C1, cpuidle never loads and
so they use the boot-time default idle loop forever.
2. Some laptops will boot-hang if HALT is used,
but will boot successfully if MWAIT is used.
This appears to be a hidden assumption in BIOS SMI,
that is presumably valid on the proprietary OS
where the BIOS was validated.
https://bugzilla.kernel.org/show_bug.cgi?id=60770
So here we effectively revert the patch above, restoring
the mwait_idle() loop. However, we don't bother restoring
the idle=mwait cmdline parameter, since it appears to add
no value.
Maintainer notes:
For 3.9, simply revert 69fb3676df
for 3.10, patch -F3 applies, fuzz needed due to __cpuinit use in
context For 3.11, 3.12, 3.13, this patch applies cleanly
Tested-by: Mike Galbraith <bitbucket@online.de>
Signed-off-by: Len Brown <len.brown@intel.com>
Acked-by: Mike Galbraith <bitbucket@online.de>
Cc: <stable@vger.kernel.org> # 3.9+
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ian Malone <ibmalone@gmail.com>
Cc: Josh Boyer <jwboyer@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/345254a551eb5a6a866e048d7ab570fd2193aca4.1389763084.git.len.brown@intel.com
[ Ported to recent kernels. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
X86_FEATURE_FXSAVE_LEAK, X86_FEATURE_11AP and
X86_FEATURE_CLFLUSH_MONITOR are not really features but synthetic bits
we use for applying different bug workarounds. Call them what they
really are, and make sure they get the proper cross-CPU behavior (OR
rather than AND).
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1403042783-23278-1-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
With various drivers wanting to inject idle time; we get people
calling idle routines outside of the idle loop proper.
Therefore we need to be extra careful about not missing
TIF_NEED_RESCHED -> PREEMPT_NEED_RESCHED propagations.
While looking at this, I also realized there's a small window in the
existing idle loop where we can miss TIF_NEED_RESCHED; when it hits
right after the tif_need_resched() test at the end of the loop but
right before the need_resched() test at the start of the loop.
So move preempt_fold_need_resched() out of the loop where we're
guaranteed to have TIF_NEED_RESCHED set.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-x9jgh45oeayzajz2mjt0y7d6@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use static_cpu_has() to conditionalize the CLFLUSH workaround, and add
memory barriers around it since the documentation is explicit that
CLFLUSH is only ordered with respect to MFENCE.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Len Brown <len.brown@intel.com>
Link: http://lkml.kernel.org/r/CA%2B55aFzGxcML7j8CEvQPYzh0W81uVoAAVmGctMOUZ7CZ1yYd2A@mail.gmail.com
People seem to delight in writing wrong and broken mwait idle routines;
collapse the lot.
This leaves mwait_play_dead() the sole remaining user of __mwait() and
new __mwait() users are probably doing it wrong.
Also remove __sti_mwait() as its unused.
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jacob Jun Pan <jacob.jun.pan@linux.intel.com>
Cc: Mike Galbraith <bitbucket@online.de>
Cc: Len Brown <lenb@kernel.org>
Cc: Rui Zhang <rui.zhang@intel.com>
Acked-by: Rafael Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20131212141654.616820819@infradead.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Remove the assumption that cstate_tables are
indexed by MWAIT flag values. Each entry
identifies itself via its own flags value.
This change is needed to support multiple states
that share the same MWAIT flags.
Note that this can have an effect on what state is described
by 'N' on cmdline intel_idle.max_cstate=N on some systems.
intel_idle.max_cstate=0 still disables the driver
intel_idle.max_cstate=1 still results in just C1(E)
However, "place holders" in the sparse C-state name-space
(eg. Atom) have been removed.
Signed-off-by: Len Brown <len.brown@intel.com>
Cosmetic only.
Replace use of MWAIT_MAX_NUM_CSTATES with CPUIDLE_STATE_MAX.
They are both 8, so this patch has no functional change.
The reason to change is that intel_idle will soon be able
to export more than the 8 "major" states supported by MWAIT.
When we hit that limit, it is important to know
where the limit comes from.
Signed-off-by: Len Brown <len.brown@intel.com>
We have MWAIT constants spread across three different .c files, for no
good reason. Move them all into a common header file.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: Len Brown <lenb@kernel.org>
LKML-Reference: <tip-*@git.kernel.org>