All new 32-bit architectures should have 64-bit userspace off_t type, but
existing architectures has 32-bit ones.
To enforce the rule, new config option is added to arch/Kconfig that defaults
ARCH_32BIT_OFF_T to be disabled for new 32-bit architectures. All existing
32-bit architectures enable it explicitly.
New option affects force_o_largefile() behaviour. Namely, if userspace
off_t is 64-bits long, we have no reason to reject user to open big files.
Note that even if architectures has only 64-bit off_t in the kernel
(arc, c6x, h8300, hexagon, nios2, openrisc, and unicore32),
a libc may use 32-bit off_t, and therefore want to limit the file size
to 4GB unless specified differently in the open flags.
Signed-off-by: Yury Norov <ynorov@caviumnetworks.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Yury Norov <ynorov@marvell.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
The OF_RESERVED_MEM can be used if we have either CMA or the generic
declare coherent code built and we support the early flattened DT.
So don't bother making it a user visible options that is selected
by most configs that fit the above category, but just select it when
the requirements are met.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Rob Herring <robh@kernel.org>
Consolidation of bus (PCI, PCMCIA, EISA, RapidIO) config entries
by Christoph Hellwig.
Currently, every architecture that wants to provide common peripheral
busses needs to add some boilerplate code and include the right Kconfig
files. This series instead just selects the presence (when needed) and
then handles everything in the bus-specific Kconfig file under drivers/.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJcJilwAAoJED2LAQed4NsGt1YP/RMTEUqbCSwS/CnTLrE+aVTC
O2aWwB80ZlVwpeBbHLW5/M88OvOev0UaCr+gyzgpFRl5ITzS7Jevb8VbpGzblbH7
bFxIEyZFGQiy9oEWw3Lfu9JRSsLm3jNo7hkmdBSn2Rw3KkEd/YF7K3q9GuA7BpCS
ZxAirebvEpr4KYEzkuc57NqCYx2Tc8G+JWr5D7pZCFaq9vxYt3TddGqw/c7iQVSQ
1Og1809IdhGyCSlA/ExfaqaBMaJHMRAOHX5GgkqZw1EbFcizUFhAAsKCrGL5nBtX
NiWF9jhgHR1M+L69jfctOstrmGQD2KicNgWQf1aS5RQkPfjuqIKGT/i9g6J1pVyX
TaW1J36Hcl8PpsKoPBnnrixd1T41O3/PuqtEJRm7LCBYOQiwS9sEmLO09RDRjER8
SPAAyvkhE8oq+0RHiTYN4tm8dyJc1djZ5wzgLnwFPAnU6SR+mbN02RzBMsYZXD+x
RNbBSGBRJFQDBw6Rn+ktcIQvcKYmUqe1k1YNHMy6kG3QqvhBaDy+8PA/YjIKPQYQ
B/NNUAMEJMys1OQrRL2UDXb2ysaCpzwMmlrBW2IwYsQrX5OwbPkNuQ5Mbe1Lr+mc
4NXR+HubvojsHaAby+OhFbrUX2Jcz3wqYj7aannb9sMRmw0VJXV5dPYUqje3ZhPS
P2AovKT8O9nWsEttqER5
=WxId
-----END PGP SIGNATURE-----
Merge tag 'kconfig-v4.21-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kconfig file consolidation from Masahiro Yamada:
"Consolidation of bus (PCI, PCMCIA, EISA, RapidIO) config entries by
Christoph Hellwig.
Currently, every architecture that wants to provide common peripheral
busses needs to add some boilerplate code and include the right
Kconfig files. This series instead just selects the presence (when
needed) and then handles everything in the bus-specific Kconfig file
under drivers/"
* tag 'kconfig-v4.21-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild:
pcmcia: remove per-arch PCMCIA config entry
eisa: consolidate EISA Kconfig entry in drivers/eisa
rapidio: consolidate RAPIDIO config entry in drivers/rapidio
pcmcia: allow PCMCIA support independent of the architecture
PCI: consolidate the PCI_SYSCALL symbol
PCI: consolidate the PCI_DOMAINS and PCI_DOMAINS_GENERIC config options
PCI: consolidate PCI config entry in drivers/pci
MIPS: remove the HT_PCI config option
A huge update this time, but a lot of that is just consolidating or
removing code:
- provide a common DMA_MAPPING_ERROR definition and avoid indirect
calls for dma_map_* error checking
- use direct calls for the DMA direct mapping case, avoiding huge
retpoline overhead for high performance workloads
- merge the swiotlb dma_map_ops into dma-direct
- provide a generic remapping DMA consistent allocator for architectures
that have devices that perform DMA that is not cache coherent. Based
on the existing arm64 implementation and also used for csky now.
- improve the dma-debug infrastructure, including dynamic allocation
of entries (Robin Murphy)
- default to providing chaining scatterlist everywhere, with opt-outs
for the few architectures (alpha, parisc, most arm32 variants) that
can't cope with it
- misc sparc32 dma-related cleanups
- remove the dma_mark_clean arch hook used by swiotlb on ia64 and
replace it with the generic noncoherent infrastructure
- fix the return type of dma_set_max_seg_size (Niklas Söderlund)
- move the dummy dma ops for not DMA capable devices from arm64 to
common code (Robin Murphy)
- ensure dma_alloc_coherent returns zeroed memory to avoid kernel data
leaks through userspace. We already did this for most common
architectures, but this ensures we do it everywhere.
dma_zalloc_coherent has been deprecated and can hopefully be
removed after -rc1 with a coccinelle script.
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAlwctQgLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYMxgQ//dBpAfS4/J76CdAbYry2zqgcOUU9hIrD6NHiEMWov
ltJxyvEl3LsUmIdEj3aCrYL9jZN0qsnCzn5BVj2c3jDIVgD64fAr7HDf/PbEEfKb
j6/GgEnVLPZV+sQMvhNA5jOzHrkseaqPa4/pNLFZ/l8jnuZ2d+btusDWJpMoVDer
TXVwtIfgeIu0gTygYOShLYXd5qptWKWsZEpbTZOO2sE6+x+ZJX7yQYUxYDTlcOIj
JWVO2l5QNHPc5T9o2at+6L5aNUvnZOxT79sWgyZLn0Kc+FagKAVwfLqUEl0v7foG
8k/xca5/8p3afB1DfrIrtplJqis7cVgdyGxriwuuoO8X4F0nPyWwpGmxsBhrWwwl
xTqC4UorEJ7QwoP6Azopk/vYI2QXIUBLjuCJCuFXZj9+2BGf4IfvBY1S2cLM9qLs
HMcxQonuXJii044KEFS96ePEuiT+igVINweIFBKWcgNCEG0UQtyL6RQ1U5297ipF
JiWZAqD+p9X52UdKS+oKfAiZEekMXn6Xyo97+YCiNpfOo0GP5eEcwhL+JpY4AiRq
apPXtsRy2o1s8yfjdraUIM2Mc2n62vFKb35oUbGCd/QO9piPrFQHl6T0HHcHk4YR
XrUXcHieFZBCYqh7ZVa4RL8Msq1wvGuTL4Dxl43mXdsMoUFRR6eSNWLoAV4IpOLZ
WgA=
=in72
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-4.21' of git://git.infradead.org/users/hch/dma-mapping
Pull DMA mapping updates from Christoph Hellwig:
"A huge update this time, but a lot of that is just consolidating or
removing code:
- provide a common DMA_MAPPING_ERROR definition and avoid indirect
calls for dma_map_* error checking
- use direct calls for the DMA direct mapping case, avoiding huge
retpoline overhead for high performance workloads
- merge the swiotlb dma_map_ops into dma-direct
- provide a generic remapping DMA consistent allocator for
architectures that have devices that perform DMA that is not cache
coherent. Based on the existing arm64 implementation and also used
for csky now.
- improve the dma-debug infrastructure, including dynamic allocation
of entries (Robin Murphy)
- default to providing chaining scatterlist everywhere, with opt-outs
for the few architectures (alpha, parisc, most arm32 variants) that
can't cope with it
- misc sparc32 dma-related cleanups
- remove the dma_mark_clean arch hook used by swiotlb on ia64 and
replace it with the generic noncoherent infrastructure
- fix the return type of dma_set_max_seg_size (Niklas Söderlund)
- move the dummy dma ops for not DMA capable devices from arm64 to
common code (Robin Murphy)
- ensure dma_alloc_coherent returns zeroed memory to avoid kernel
data leaks through userspace. We already did this for most common
architectures, but this ensures we do it everywhere.
dma_zalloc_coherent has been deprecated and can hopefully be
removed after -rc1 with a coccinelle script"
* tag 'dma-mapping-4.21' of git://git.infradead.org/users/hch/dma-mapping: (73 commits)
dma-mapping: fix inverted logic in dma_supported
dma-mapping: deprecate dma_zalloc_coherent
dma-mapping: zero memory returned from dma_alloc_*
sparc/iommu: fix ->map_sg return value
sparc/io-unit: fix ->map_sg return value
arm64: default to the direct mapping in get_arch_dma_ops
PCI: Remove unused attr variable in pci_dma_configure
ia64: only select ARCH_HAS_DMA_COHERENT_TO_PFN if swiotlb is enabled
dma-mapping: bypass indirect calls for dma-direct
vmd: use the proper dma_* APIs instead of direct methods calls
dma-direct: merge swiotlb_dma_ops into the dma_direct code
dma-direct: use dma_direct_map_page to implement dma_direct_map_sg
dma-direct: improve addressability error reporting
swiotlb: remove dma_mark_clean
swiotlb: remove SWIOTLB_MAP_ERROR
ACPI / scan: Refactor _CCA enforcement
dma-mapping: factor out dummy DMA ops
dma-mapping: always build the direct mapping code
dma-mapping: move dma_cache_sync out of line
dma-mapping: move various slow path functions out of line
...
Pull timer updates from Thomas Gleixner:
"The timer department delivers the following christmas presents:
Core code:
- Use proper seqcount initializer to make lockdep happy
- SPDX annotations and cleanup of license boilerplates
- Use DEFINE_SHOW_ATTRIBUTE() instead of open coding it
- Minor cleanups
Driver code:
- Add the sched_clock for the arc timer (Alexey Brodkin)
- Change the file timer names for riscv, rockchip, tegra20, sun4i and
meson6 (Daniel Lezcano)
- Add the DT bindings for r8a7796, r8a77470 and r8a774a1 (Biju Das)
- Remove the early platform driver registration for timer-ti-dm
(Bartosz Golaszewski)
- Provide the sched_clock for the riscv timer (Anup Patel)
- Add support for ARM64 for the imx-gpt and convert the imx-tpm to
the timer-of API (Anson Huang)
- Remove useless irq protection for the imx-gpt (Clément Péron)
- Remove a duplicate function name for the vt8500 (Dan Carpenter)
- Remove obsolete inclusion of <asm/smp_twd.h> for the tegra20 (Geert
Uytterhoeven)
- Demote the prcmu and the custom sched_clock for the dbx500 and the
ux500 (Linus Walleij)
- Add a new timer clock for the RDA8810PL (Manivannan Sadhasivam)
- Rename the macro to stick to the register name and add the delay
timer (Martin Blumenstingl)
- Switch the bcm2835 to the SPDX identifier (Stefan Wahren)
- Fix the interrupt register access on the fttmr010 (Tao Ren)
- Add missing of_node_put in the initialization path on the
integrator-ap (Yangtao Li)"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (39 commits)
dt-bindings: timer: Document RDA8810PL SoC timer
clocksource/drivers/rda: Add clock driver for RDA8810PL SoC
clocksource/drivers/meson6: Change name meson6_timer timer-meson6
clocksource/drivers/sun4i: Change name sun4i_timer to timer-sun4i
clocksource/drivers/tegra20: Change name tegra20_timer to timer-tegra20
clocksource/drivers/rockchip: Change name rockchip_timer to timer-rockchip
clocksource/drivers/riscv: Change name riscv_timer to timer-riscv
clocksource/drivers/riscv_timer: Provide the sched_clock
clocksource/drivers/timer-imx-tpm: Specify clock name for timer-of
clocksource/drivers/fttmr010: Fix invalid interrupt register access
clocksource/drivers/integrator-ap: Add missing of_node_put()
clocksource/drivers/bcm2835: Switch to SPDX identifier
dt-bindings: timer: renesas, cmt: Document r8a774a1 CMT support
clocksource/drivers/timer-imx-tpm: Convert the driver to timer-of
clocksource/drivers/arc_timer: Utilize generic sched_clock
dt-bindings: timer: renesas, cmt: Document r8a77470 CMT support
dt-bindings: timer: renesas, cmt: Document r8a7796 CMT support
clocksource/drivers/imx-gpt: Remove unnecessary irq protection
clocksource/drivers/imx-gpt: Add support for ARM64
clocksource/drivers/meson6_timer: Implement the ARM delay timer
...
It turned out we used to use default implementation of sched_clock()
from kernel/sched/clock.c which was as precise as 1/HZ, i.e.
by default we had 10 msec granularity of time measurement.
Now given ARC built-in timers are clocked with the same frequency as
CPU cores we may get much higher precision of time tracking.
Thus we switch to generic sched_clock which really reads ARC hardware
counters.
This is especially helpful for measuring short events.
That's what we used to have:
------------------------------>8------------------------
$ perf stat /bin/sh -c /root/lmbench-master/bin/arc/hello > /dev/null
Performance counter stats for '/bin/sh -c /root/lmbench-master/bin/arc/hello':
10.000000 task-clock (msec) # 2.832 CPUs utilized
1 context-switches # 0.100 K/sec
1 cpu-migrations # 0.100 K/sec
63 page-faults # 0.006 M/sec
3049480 cycles # 0.305 GHz
1091259 instructions # 0.36 insn per cycle
256828 branches # 25.683 M/sec
27026 branch-misses # 10.52% of all branches
0.003530687 seconds time elapsed
0.000000000 seconds user
0.010000000 seconds sys
------------------------------>8------------------------
And now we'll see:
------------------------------>8------------------------
$ perf stat /bin/sh -c /root/lmbench-master/bin/arc/hello > /dev/null
Performance counter stats for '/bin/sh -c /root/lmbench-master/bin/arc/hello':
3.004322 task-clock (msec) # 0.865 CPUs utilized
1 context-switches # 0.333 K/sec
1 cpu-migrations # 0.333 K/sec
63 page-faults # 0.021 M/sec
2986734 cycles # 0.994 GHz
1087466 instructions # 0.36 insn per cycle
255209 branches # 84.947 M/sec
26002 branch-misses # 10.19% of all branches
0.003474829 seconds time elapsed
0.003519000 seconds user
0.000000000 seconds sys
------------------------------>8------------------------
Note how much more meaningful is the second output - time spent for
execution pretty much matches number of cycles spent (we're runnign
@ 1GHz here).
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Acked-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
All architectures except for sparc64 use the dma-direct code in some
form, and even for sparc64 we had the discussion of a direct mapping
mode a while ago. In preparation for directly calling the direct
mapping code don't bother having it optionally but always build the
code in. This is a minor hardship for some powerpc and arm configs
that don't pull it in yet (although they should in a relase ot two),
and sparc64 which currently doesn't need it at all, but it will
reduce the ifdef mess we'd otherwise need significantly.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Tested-by: Jesper Dangaard Brouer <brouer@redhat.com>
Tested-by: Tony Luck <tony.luck@intel.com>
These days architectures are mostly out of the business of dealing with
struct scatterlist at all, unless they have architecture specific iommu
drivers. Replace the ARCH_HAS_SG_CHAIN symbol with a ARCH_NO_SG_CHAIN
one only enabled for architectures with horrible legacy iommu drivers
like alpha and parisc, and conditionally for arm which wants to keep it
disable for legacy platforms.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Palmer Dabbelt <palmer@sifive.com>
Change the default defconfig (used with 'make defconfig') to the ARCv2
nsim_hs_defconfig, and also switch the default Kconfig ISA selection to
ARCv2.
This allows several default defconfigs (e.g. make defconfig, make
allnoconfig, make tinyconfig) to all work with ARCv2 by default.
Note since we change default architecture from ARCompact to ARCv2
it's required to explicitly mention architecture type in ARCompact
defconfigs otherwise ARCv2 will be implied and binaries will be
generated for ARCv2.
Cc: <stable@vger.kernel.org> # 4.4.x
Signed-off-by: Kevin Hilman <khilman@baylibre.com>
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Let architectures select the syscall support instead of duplicating the
kconfig entry.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
There is no good reason to duplicate the PCI menu in every architecture.
Instead provide a selectable HAVE_PCI symbol that indicates availability
of PCI support, and a FORCE_PCI symbol to for PCI on and the handle the
rest in drivers/pci.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Palmer Dabbelt <palmer@sifive.com>
Acked-by: Max Filippov <jcmvbkbc@gmail.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Paul Burton <paul.burton@mips.com>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
'default n' is the default value for any bool or tristate Kconfig
setting so there is no need to write it explicitly.
Also since commit f467c5640c ("kconfig: only write '# CONFIG_FOO
is not set' for visible symbols") the Kconfig behavior is the same
regardless of 'default n' being present or not:
...
One side effect of (and the main motivation for) this change is making
the following two definitions behave exactly the same:
config FOO
bool
config FOO
bool
default n
With this change, neither of these will generate a
'# CONFIG_FOO is not set' line (assuming FOO isn't selected/implied).
That might make it clearer to people that a bare 'default n' is
redundant.
...
Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
All architecures use memblock for early memory management. There is no need
for the CONFIG_HAVE_MEMBLOCK configuration option.
[rppt@linux.vnet.ibm.com: of/fdt: fixup #ifdefs]
Link: http://lkml.kernel.org/r/20180919103457.GA20545@rapoport-lnx
[rppt@linux.vnet.ibm.com: csky: fixups after bootmem removal]
Link: http://lkml.kernel.org/r/20180926112744.GC4628@rapoport-lnx
[rppt@linux.vnet.ibm.com: remove stale #else and the code it protects]
Link: http://lkml.kernel.org/r/1538067825-24835-1-git-send-email-rppt@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/1536927045-23536-4-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All achitectures select NO_BOOTMEM which essentially becomes 'Y' for any
kernel configuration and therefore it can be removed.
[alexander.h.duyck@linux.intel.com: remove now defunct NO_BOOTMEM from depends list for deferred init]
Link: http://lkml.kernel.org/r/20180925201814.3576.15105.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/1536927045-23536-3-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- mostly more consolidation of the direct mapping code, including
converting over hexagon, and merging the coherent and non-coherent
code into a single dma_map_ops instance (me)
- cleanups for the dma_configure/dma_unconfigure callchains (me)
- better handling of dma_masks in odd setups (me, Alexander Duyck)
- better debugging of passing vmalloc address to the DMA API
(Stephen Boyd)
- CMA command line parsing fix (He Zhe)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAlvNg6YLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYMm/Q/9FFVOH73Nc3rT40N2HdaPbzV2hXmI1//hEJcImDP5
mLGq8XqieGuo8Pmu9+xp1tC2UnfUkhK4FjhQbWM+qKER/RNYES2BD50xVFmt6ICS
9d8IaRcs+ceggljfdwszkkucJspBsYNxpiKjjao0OsHn6UDatu6elZs/yvb2nXci
HCJUvs9vYm9MkAtVXEtOQtij3YRaJ/9xYY4h5Dy5vBtHPp+kjUMF0mWAwA2+Ec1V
8iqKjUY3c8nr8Kf6WE9tzJ0wrMFijc4HJlE3W1ud8YsKdfCkCf8XiIuS6PgTzOeK
0cn9h8dVrV1ZXJ/D/9JZDivmYvIsoKWAYVQHNzAiq7PI3uOJY1ggCxyZpWtTHZhM
ATHF0sJGpIenkSWybYpKee8e8RsS7L9dUgu6bYpK5pVkirNYnR9IOGVJNmS63L7Q
B0uUtqjBKDG2yNGZGY9zqBQFgxiPO0wxFLeKyHbIsC0b7FBti3rXGAimch5WiBuL
zlDV0zEfMH0BW6gNPrjfFur84duKtGZ/0DBSxQ0E1Mvk8B1LBr78MgZt8OfJEuoe
dx1FYU70u8PYi+hjmn386YnNNMTjd1GT5XW7AWedM2wCjRYmNy0yMGmm9cACMneN
5eBv/SYr7X1zKNL7w7H6KQVZilTJcBoj3f/lmjL7i22m9FXYQpcUP61L8wHNM8H2
iJo=
=AVSD
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-4.20' of git://git.infradead.org/users/hch/dma-mapping
Pull dma mapping updates from Christoph Hellwig:
"First batch of dma-mapping changes for 4.20.
There will be a second PR as some big changes were only applied just
before the end of the merge window, and I want to give them a few more
days in linux-next.
Summary:
- mostly more consolidation of the direct mapping code, including
converting over hexagon, and merging the coherent and non-coherent
code into a single dma_map_ops instance (me)
- cleanups for the dma_configure/dma_unconfigure callchains (me)
- better handling of dma_masks in odd setups (me, Alexander Duyck)
- better debugging of passing vmalloc address to the DMA API (Stephen
Boyd)
- CMA command line parsing fix (He Zhe)"
* tag 'dma-mapping-4.20' of git://git.infradead.org/users/hch/dma-mapping: (27 commits)
dma-direct: respect DMA_ATTR_NO_WARN
dma-mapping: translate __GFP_NOFAIL to DMA_ATTR_NO_WARN
dma-direct: document the zone selection logic
dma-debug: Check for drivers mapping invalid addresses in dma_map_single()
dma-direct: fix return value of dma_direct_supported
dma-mapping: move dma_default_get_required_mask under ifdef
dma-direct: always allow dma mask <= physiscal memory size
dma-direct: implement complete bus_dma_mask handling
dma-direct: refine dma_direct_alloc zone selection
dma-direct: add an explicit dma_direct_get_required_mask
dma-mapping: make the get_required_mask method available unconditionally
unicore32: remove swiotlb support
Revert "dma-mapping: clear dev->dma_ops in arch_teardown_dma_ops"
dma-mapping: support non-coherent devices in dma_common_get_sgtable
dma-mapping: consolidate the dma mmap implementations
dma-mapping: merge direct and noncoherent ops
dma-mapping: move the dma_coherent flag to struct device
MIPS: don't select DMA_MAYBE_COHERENT from DMA_PERDEV_COHERENT
dma-mapping: add the missing ARCH_HAS_SYNC_DMA_FOR_CPU_ALL declaration
dma-mapping: fix panic caused by passing empty cma command line argument
...
The only functional differences (modulo a few missing fixes in the arch
code) is that architectures without coherent caches need a hook to
convert a virtual or dma address into a pfn, given that we don't have
the kernel linear mapping available for the otherwise easy virt_to_page
call. As a side effect we can support mmap of the per-device coherent
area even on architectures not providing the callback, and we make
previous dangerous default methods dma_common_mmap actually save for
non-coherent architectures by rejecting it without the right helper.
In addition to that we need a hook so that some architectures can
override the protection bits when mmaping a dma coherent allocations.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Paul Burton <paul.burton@mips.com> # MIPS parts
All the cache maintainance is already stubbed out when not enabled,
but merging the two allows us to nicely handle the case where
cache maintainance is required for some devices, but not others.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Paul Burton <paul.burton@mips.com> # MIPS parts
Move the source statements of arch-independent Kconfig files instead of
duplicating the includes in every arch/$(SRCARCH)/Kconfig.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJbdFsfAAoJED2LAQed4NsGxHsP/1tmA57OOOj8oGxO2OXhXVbr
Q0MZqCoV4bqMvK/hgCQdl9f+tp0m+j12x4xDLdVf4OqnTXMbqvPDu3uQVKvaj/k1
gHhsFA1tFgSbuJ8InltUsrPEQqbceeJsj50xHVAKijqI6LYeRPPSU7aE9obn+OzH
n2nd5sLKvMI/dqdJvW6i5KPydqTH3r3iA7D+ne/XQj0s0EMXvXUPmDT1+ijTnM4a
yfm6W5p7L/c3Ugf1Pz5PfnPl4BxBwZMfW5ie/UO8j5C6Rl0iPaOGuuHurocaaJb3
MefR/7NEAR3G8MhJyL2+70jbbwhjpqR2b5ooz1vpuulPHxjeU45BY60XIBWq1afR
ewsc12MMCYB695ieYWoHdaWgxD/jhffyRuajfpkXKIZEMgDxS03sMhdULXENVMx1
M0ZQ01g/NLWt9ti9DY3eTKB3ymOhnBa1sa77nGGUHkITq4DQKwPX1J9FP/HT6RNt
uOvzeH5kGzc7tqOlZAO0kHbwhQG1uqGcd78IYd4lgf/XfkSgDERTWjnJmnQbwr9m
3PFuST2u8eyO+8Lh1MK76TXOEkXsHMdFugPmb6SlgtMEPKGVLDPlsj52o/LFtgzl
eygfMiBFr2+ttkZ6IpNcpmQ4IztmDpz6XoMk3PqDAfUTUSYpCnq1gAEuff/eisCM
Odva1ZZaeQ7WpxhsP8rr
=gsQJ
-----END PGP SIGNATURE-----
Merge tag 'kconfig-v4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kconfig consolidation from Masahiro Yamada:
"Consolidation of Kconfig files by Christoph Hellwig.
Move the source statements of arch-independent Kconfig files instead
of duplicating the includes in every arch/$(SRCARCH)/Kconfig"
* tag 'kconfig-v4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild:
kconfig: add a Memory Management options" menu
kconfig: move the "Executable file formats" menu to fs/Kconfig.binfmt
kconfig: use a menu in arch/Kconfig to reduce clutter
kconfig: include kernel/Kconfig.preempt from init/Kconfig
Kconfig: consolidate the "Kernel hacking" menu
kconfig: include common Kconfig files from top-level Kconfig
kconfig: remove duplicate SWAP symbol defintions
um: create a proper drivers Kconfig
um: cleanup Kconfig files
um: stop abusing KBUILD_KCONFIG
Almost all architectures include it. Add a ARCH_NO_PREEMPT symbol to
disable preempt support for alpha, hexagon, non-coldfire m68k and
user mode Linux.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Move the source of lib/Kconfig.debug and arch/$(ARCH)/Kconfig.debug to
the top-level Kconfig. For two architectures that means moving their
arch-specific symbols in that menu into a new arch Kconfig.debug file,
and for a few more creating a dummy file so that we can include it
unconditionally.
Also move the actual 'Kernel hacking' menu to lib/Kconfig.debug, where
it belongs.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Instead of duplicating the source statements in every architecture just
do it once in the toplevel Kconfig file.
Note that with this the inclusion of arch/$(SRCARCH/Kconfig moves out of
the top-level Kconfig into arch/Kconfig so that don't violate ordering
constraits while keeping a sensible menu structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
As for today we don't setup SMP_CACHE_BYTES and cache_line_size for
ARC, so they are set to L1_CACHE_BYTES by default. L1 line length
(L1_CACHE_BYTES) might be easily smaller than L2 line (which is
usually the case BTW). This breaks code.
For example this breaks ethernet infrastructure on HSDK/AXS103 boards
with IOC disabled, involving manual cache flushes
Functions which alloc and manage sk_buff packet data area rely on
SMP_CACHE_BYTES define. In the result we can share last L2 cache
line in sk_buff linear packet data area between DMA buffer and
some useful data in other structure. So we can lose this data when
we invalidate DMA buffer.
sk_buff linear packet data area
|
|
| skb->end skb->tail
V | |
V V
----------------------------------------------.
packet data | <tail padding> | <useful data in other struct>
----------------------------------------------.
---------------------.--------------------------------------------------.
SLC line | SLC (L2 cache) line (128B) |
---------------------.--------------------------------------------------.
^ ^
| |
These cache lines will be invalidated when we invalidate skb
linear packet data area before DMA transaction starting.
This leads to issues painful to debug as it reproduces only if
(sk_buff->end - sk_buff->tail) < SLC_LINE_SIZE and
if we have some useful data right after sk_buff->end.
Fix that by hardcode SMP_CACHE_BYTES to max line length we may have.
Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This manifsted as strace segfaulting on HSDK because gcc was targetting
the accumulator registers as GPRs, which kernek was not saving/restoring
by default.
Cc: stable@vger.kernel.org #4.14+
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Currently the PTE special supports is turned on in per architecture
header files. Most of the time, it is defined in
arch/*/include/asm/pgtable.h depending or not on some other per
architecture static definition.
This patch introduce a new configuration variable to manage this
directly in the Kconfig files. It would later replace
__HAVE_ARCH_PTE_SPECIAL.
Here notes for some architecture where the definition of
__HAVE_ARCH_PTE_SPECIAL is not obvious:
arm
__HAVE_ARCH_PTE_SPECIAL which is currently defined in
arch/arm/include/asm/pgtable-3level.h which is included by
arch/arm/include/asm/pgtable.h when CONFIG_ARM_LPAE is set.
So select ARCH_HAS_PTE_SPECIAL if ARM_LPAE.
powerpc
__HAVE_ARCH_PTE_SPECIAL is defined in 2 files:
- arch/powerpc/include/asm/book3s/64/pgtable.h
- arch/powerpc/include/asm/pte-common.h
The first one is included if (PPC_BOOK3S & PPC64) while the second is
included in all the other cases.
So select ARCH_HAS_PTE_SPECIAL all the time.
sparc:
__HAVE_ARCH_PTE_SPECIAL is defined if defined(__sparc__) &&
defined(__arch64__) which are defined through the compiler in
sparc/Makefile if !SPARC32 which I assume to be if SPARC64.
So select ARCH_HAS_PTE_SPECIAL if SPARC64
There is no functional change introduced by this patch.
Link: http://lkml.kernel.org/r/1523433816-14460-2-git-send-email-ldufour@linux.vnet.ibm.com
Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Suggested-by: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Albert Ou <albert@sifive.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Christophe LEROY <christophe.leroy@c-s.fr>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Switch to the generic noncoherent direct mapping implementation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Alexey Brodkin <abrodkin@synopsys.com>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
Define this symbol if the architecture either uses 64-bit pointers or the
PHYS_ADDR_T_64BIT is set. This covers 95% of the old arch magic. We only
need an additional select for Xen on ARM (why anyway?), and we now always
set ARCH_DMA_ADDR_T_64BIT on mips boards with 64-bit physical addressing
instead of only doing it when highmem is set.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: James Hogan <jhogan@kernel.org>
Instead select the PHYS_ADDR_T_64BIT for 32-bit architectures that need a
64-bit phys_addr_t type directly.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: James Hogan <jhogan@kernel.org>
- MCIP aka ARconnect fixes for SMP builds [Euginey]
- Preventive fix for SLC (L2 cache) flushing [Euginey]
- Kconfig default fix [Ulf Magnusson]
- trailing semicolon fixes [Luis de Bethencourt]
- other assorted minor fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJamHh7AAoJEGnX8d3iisJeM+MQAL+cIkdRd9NJoPPL66IOgwmi
68jUkVQ8PSgR2P/sWvwIRTionOG9siu58Q1ygXpPR9SNnSJlyIYIW4Onuoajs+Ii
TmTwWm8jnKtuPtKMBep8XpYQQ+FRL6sDNn0QLjCnnvqAeE7rTFODSlpBR+jL6ur4
t2h1wHQem6oas1YRwnKrxxMnfV3KP3TkCS2a/lvmeAAt8xi+ll+9OnzVcSCj7pCJ
ZToenfH3UAbhAd5T7gWkJv2v00zbHNzKtpdluSW6WBybP1Ib2IxOxEiUlAvxQgpl
NctvS8Q1uveOPQZHO+fNXsJvf+imP2RdWh5RaOcmm8a4tp8jsR51BScX55usjr/z
ybg4bzHBV3x9YbZkkW9DKyF9eeZ7hWST8nNoebcHNVjboUeD+wgtV8e3Fvc6bIoo
/Xkw28y/mZwCs7mBfu1fNOIIiiZDSgz7YeeqzOPBzEYVcHE4VGINwX+9cLXPOsgz
rmI/Md3buSjrfXPnXTuk1R4fl0WKM5FT/2BJ+IbNU2w6VO1/iKqiBQREH5lBfYAI
BUikxKNwrJ9+zG8EXFUAEi6gn4dxosxMKJ04CTviwGFc1y6yNsmMgizevFpPUyx7
9o3z19hHUZLx94QsGHLI7QJe3Kawamu0tmdJvQBgB/eZ9lj6OdkzY48I2lgGezSw
00e+JPSy6EDi8YrlMki5
=+Bmc
-----END PGP SIGNATURE-----
Merge tag 'arc-4.15-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
Pull ARC fixes from Vineet Gupta:
- MCIP aka ARconnect fixes for SMP builds [Euginey]
- preventive fix for SLC (L2 cache) flushing [Euginey]
- Kconfig default fix [Ulf Magnusson]
- trailing semicolon fixes [Luis de Bethencourt]
- other assorted minor fixes
* tag 'arc-4.15-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc:
ARC: setup cpu possible mask according to possible-cpus dts property
ARC: mcip: update MCIP debug mask when the new cpu came online
ARC: mcip: halt GFRC counter when ARC cores halt
ARCv2: boot log: fix HS48 release number
arc: dts: use 'atmel' as manufacturer for at24 in axs10x_mb
ARC: Fix malformed ARC_EMUL_UNALIGNED default
ARC: boot log: Fix trailing semicolon
ARC: dw2 unwind: Fix trailing semicolon
ARC: Enable fatal signals on boot for dev platforms
ARCv2: Don't pretend we may set L-bit in STATUS32 with kflag instruction
ARCv2: cache: fix slc_entire_op: flush only instead of flush-n-inv
We always use the stub definitions, so remove the unused other code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
This patch fixes some spelling typos found in Kconfig files.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
This initial port adds support of ARC HS Development Kit board with some
basic features such serial port, USB, SD/MMC and Ethernet.
Essentially we run Linux kernel on all 4 cores (i.e. utilize SMP) and
heavily use IO Coherency for speeding-up DMA-aware peripherals.
Note as opposed to other ARC boards we link Linux kernel to
0x9000_0000 intentionally because cores 1 and 3 configured with DCCM
situated at our more usual link base 0x8000_0000. We still can use
memory region starting at 0x8000_0000 as we reallocate DCCM in our
platform code.
Note that PAE remapping for DMA clients does not work due to an RTL bug,
so CREG_PAE register must be programmed to all zeroes, otherwise it will
cause problems with DMA to/from peripherals even if PAE40 is not used.
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
[Needed for HSDK]
Currently the first page of system (hence RAM base) is assumed to be
@ CONFIG_LINUX_LINK_BASE, where kernel itself is linked.
However is case of HSDK platform, for reasons explained in that patch,
this is not true. kernel needs to be linked @ 0x9000_0000 while DDR
is still wired at 0x8000_0000. To properly account for this 256M of RAM,
we need to introduce a new option and base page frame accountiing off of
it.
Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
[vgupta: renamed CONFIG_KERNEL_RAM_BASE_ADDRESS => CONFIG_LINUX_RAM_BASE
: simplified changelog]
Essentially remove CONFIG_ARC_PLAT_SIM
There is no need for any platform specific code, just the board DTS
match strings which we can include unconditionally
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This reverts commit 7cab91b87d.
Now when we have a real hardware platform with PAE40 enabled
(here I mean axs103 with firmware v1.2) and 1 Gb of DDR mapped to
0x1_a000_0000-0x1_ffff_ffff we're really targeting memory above 4Gb
when PAE40 is enabled. This in its turn requires HIGHMEM to be enabled
otherwise user won't see any difference with enabling PAE in
kernel configuration as only lowmem will be used anyways.
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Accumulator is present in configs with FPU and/or DSP MPY (mpy > 6)
Instead of doing this in pt_regs (and thus every kernel entry/exit),
this could have been done in context switch (and for user task only) as
currently kernel doesn't clobber these registers for its own accord.
However we will soon start using 64-bit multiply instructions for kernel
which can clobber these. Also gcc folks also plan to start using these
as GPRs, hence better to always save/restore them
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
A typical SMP system expects cache coherency. Initial NPS platform
support was slated to be SMP w/o cache coherency.
However it seems the platform now selects that option, so there is no
point in keeping it around.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Currently Kconfig knob ARC_NUMBER_OF_INTERRUPTS is used as indicator of
hard irq count. But it is flawed that it doesn't affect
- NR_IRQS : for number of virtual interrupts
- NR_CPU_IRQS : for number of hardware interrupts
Moreover the actual hardware irq count might still not be same as
ARC_NUMBER_OF_INTERRUPTS. So use the information availble in the
Build Configuration Registers and get rid of the Kconfig option.
We still need "some" build time info about irq count to set up
sufficient number of vector table entries. This is done with a
sufficiently large NR_CPU_IRQS which will eventually be used soley for
that purpose (subsequent patches will remove its usage elsewhere)
So to summarize what this patch does:
* NR_CPU_IRQS defines a maximum number of hardware interrupts.
* Remove ARC_NUMBER_OF_INTERRUPTS option and create interrupts
table for all possible hardware interrupts.
* Increase a maximum number of virtual IRQs to 512. ARCv2 can
support 240 interrupts in the core interrupts controllers
and 128 interrupts in IDU. Thus 512 virtual IRQs must be
enough for most configurations of boards.
This patch leads to NR_CPU_IRQS in 2 places, to reduce the overall
churn. The next patch will remove the 2nd definition anyways.
Signed-off-by: Yuriy Kolerov <yuriy.kolerov@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
[vgupta: reworked the changelog a bit]
commit d65283f7b6 added mod->arch.secstr under
CONFIG_ARC_DW2_UNWIND, but used it unconditionally which broke builds
when the option was disabled. Fix that by adjusting the #ifdef guard.
And while at it add a missing guard (for unwinder) in module.c as well
Reported-by: Waldemar Brodkorb <wbx@openadk.org>
Cc: stable@vger.kernel.org #4.9
Fixes: d65283f7b6 ("ARC: module: elide loop to save reference to .eh_frame")
Tested-by: Anton Kolesov <akolesov@synopsys.com>
Reviewed-by: Alexey Brodkin <abrodkin@synopsys.com>
[abrodkin: provided fixlet to Kconfig per failure in allnoconfig build]
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This adds support for
- CONFIG_ARC_TIMERS : legacy 32-bit TIMER0 and TIMER1 which count UP
from @CNT to @LIMIT, before optionally triggering an interrupt.
These are programmed using ARC auxiliary register interface.
These are present in all ARC cores (ARC700 and ARC HS38)
TIMER0 serves as clockevent for all ARC linux builds.
TIMER1 is used for clocksource in arc700 builds.
- CONFIG_ARC_TIMERS_64BIT: 64-bit counters, RTC and GFRC found in
ARC HS38 cores. These are independnet IP blocks with different
programming model respectively.
Link: http://lkml.kernel.org/r/20161111231132.GA4186@mai
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
The original distinction was done as they were developed at different
times and primarily because they are specific to UP (RTC) and SMP (GFRC).
But given that driver handles that at runtime, (i.e. not allowing
RTC as clocksource in SMP), we can simplify things a bit.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Add support for lzma compressed uImage.
Support for gzip was already available but could not be enabled because
we were missing CONFIG_HAVE_KERNEL_GZIP in arch/arc/Kconfig.
Signed-off-by: Daniel Mentz <danielmentz@google.com>
Cc: linux-snps-arc@lists.infradead.org
Cc: Vineet Gupta <Vineet.Gupta1@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
The IDU intc is technically part of MCIP (Multi-core IP) hence
historically was only available in a SMP hardware build (and thus only
in a SMP kernel build). Now that hardware restriction has been lifted,
so a UP kernel needs to support it.
This requires breaking mcip.c into parts which are strictly SMP
(inter-core interrupts) and IDU which in reality is just another
intc and thus has no bearing on SMP.
This change allows IDU in UP builds and with a suitable device tree, we
can have the cascaded intc system
ARCv2 core intc <---> ARCv2 IDU intc <---> periperals
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Seem like values assigned as absolute number and not and
shift value, i.e. should be 0 for one node (2^0) and 1 for
couple of nodes (2^1)
Signed-off-by: Noam Camus <noamca@mellanox.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
ARCv2 ISA provides 64-bit exclusive load/stores so use them to implement
the 64-bit atomics and elide the spinlock based generic 64-bit atomics
boot tested with atomic64 self-test (and GOD bless the person who wrote
them, I realized my inline assmebly is sloppy as hell)
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-snps-arc@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This reverts commit e78fdfef84.
The issue was fixed in hardware in HS2.1C release and there are no known
external users of affected RTL so revert the whole delayed retry series !
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
ARC700 support for 2 interrupt priorities historically allowed even slow
perpherals such as emac and uart to setup high priority interrupts
which was wrong from the beginning as they could possibly delay the more
critical timer interrupt.
The hardware support for 2 level interrupts in ARCompact is less than
ideal anyways (judging from the "hacks" in low level entry code and thus
is not used in productions systems I know of.
So reduce the scope of this to timer only, thereby reducing a bunch of
complexity.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
The binary GCD algorithm is based on the following facts:
1. If a and b are all evens, then gcd(a,b) = 2 * gcd(a/2, b/2)
2. If a is even and b is odd, then gcd(a,b) = gcd(a/2, b)
3. If a and b are all odds, then gcd(a,b) = gcd((a-b)/2, b) = gcd((a+b)/2, b)
Even on x86 machines with reasonable division hardware, the binary
algorithm runs about 25% faster (80% the execution time) than the
division-based Euclidian algorithm.
On platforms like Alpha and ARMv6 where division is a function call to
emulation code, it's even more significant.
There are two variants of the code here, depending on whether a fast
__ffs (find least significant set bit) instruction is available. This
allows the unpredictable branches in the bit-at-a-time shifting loop to
be eliminated.
If fast __ffs is not available, the "even/odd" GCD variant is used.
I use the following code to benchmark:
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#define swap(a, b) \
do { \
a ^= b; \
b ^= a; \
a ^= b; \
} while (0)
unsigned long gcd0(unsigned long a, unsigned long b)
{
unsigned long r;
if (a < b) {
swap(a, b);
}
if (b == 0)
return a;
while ((r = a % b) != 0) {
a = b;
b = r;
}
return b;
}
unsigned long gcd1(unsigned long a, unsigned long b)
{
unsigned long r = a | b;
if (!a || !b)
return r;
b >>= __builtin_ctzl(b);
for (;;) {
a >>= __builtin_ctzl(a);
if (a == b)
return a << __builtin_ctzl(r);
if (a < b)
swap(a, b);
a -= b;
}
}
unsigned long gcd2(unsigned long a, unsigned long b)
{
unsigned long r = a | b;
if (!a || !b)
return r;
r &= -r;
while (!(b & r))
b >>= 1;
for (;;) {
while (!(a & r))
a >>= 1;
if (a == b)
return a;
if (a < b)
swap(a, b);
a -= b;
a >>= 1;
if (a & r)
a += b;
a >>= 1;
}
}
unsigned long gcd3(unsigned long a, unsigned long b)
{
unsigned long r = a | b;
if (!a || !b)
return r;
b >>= __builtin_ctzl(b);
if (b == 1)
return r & -r;
for (;;) {
a >>= __builtin_ctzl(a);
if (a == 1)
return r & -r;
if (a == b)
return a << __builtin_ctzl(r);
if (a < b)
swap(a, b);
a -= b;
}
}
unsigned long gcd4(unsigned long a, unsigned long b)
{
unsigned long r = a | b;
if (!a || !b)
return r;
r &= -r;
while (!(b & r))
b >>= 1;
if (b == r)
return r;
for (;;) {
while (!(a & r))
a >>= 1;
if (a == r)
return r;
if (a == b)
return a;
if (a < b)
swap(a, b);
a -= b;
a >>= 1;
if (a & r)
a += b;
a >>= 1;
}
}
static unsigned long (*gcd_func[])(unsigned long a, unsigned long b) = {
gcd0, gcd1, gcd2, gcd3, gcd4,
};
#define TEST_ENTRIES (sizeof(gcd_func) / sizeof(gcd_func[0]))
#if defined(__x86_64__)
#define rdtscll(val) do { \
unsigned long __a,__d; \
__asm__ __volatile__("rdtsc" : "=a" (__a), "=d" (__d)); \
(val) = ((unsigned long long)__a) | (((unsigned long long)__d)<<32); \
} while(0)
static unsigned long long benchmark_gcd_func(unsigned long (*gcd)(unsigned long, unsigned long),
unsigned long a, unsigned long b, unsigned long *res)
{
unsigned long long start, end;
unsigned long long ret;
unsigned long gcd_res;
rdtscll(start);
gcd_res = gcd(a, b);
rdtscll(end);
if (end >= start)
ret = end - start;
else
ret = ~0ULL - start + 1 + end;
*res = gcd_res;
return ret;
}
#else
static inline struct timespec read_time(void)
{
struct timespec time;
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time);
return time;
}
static inline unsigned long long diff_time(struct timespec start, struct timespec end)
{
struct timespec temp;
if ((end.tv_nsec - start.tv_nsec) < 0) {
temp.tv_sec = end.tv_sec - start.tv_sec - 1;
temp.tv_nsec = 1000000000ULL + end.tv_nsec - start.tv_nsec;
} else {
temp.tv_sec = end.tv_sec - start.tv_sec;
temp.tv_nsec = end.tv_nsec - start.tv_nsec;
}
return temp.tv_sec * 1000000000ULL + temp.tv_nsec;
}
static unsigned long long benchmark_gcd_func(unsigned long (*gcd)(unsigned long, unsigned long),
unsigned long a, unsigned long b, unsigned long *res)
{
struct timespec start, end;
unsigned long gcd_res;
start = read_time();
gcd_res = gcd(a, b);
end = read_time();
*res = gcd_res;
return diff_time(start, end);
}
#endif
static inline unsigned long get_rand()
{
if (sizeof(long) == 8)
return (unsigned long)rand() << 32 | rand();
else
return rand();
}
int main(int argc, char **argv)
{
unsigned int seed = time(0);
int loops = 100;
int repeats = 1000;
unsigned long (*res)[TEST_ENTRIES];
unsigned long long elapsed[TEST_ENTRIES];
int i, j, k;
for (;;) {
int opt = getopt(argc, argv, "n:r:s:");
/* End condition always first */
if (opt == -1)
break;
switch (opt) {
case 'n':
loops = atoi(optarg);
break;
case 'r':
repeats = atoi(optarg);
break;
case 's':
seed = strtoul(optarg, NULL, 10);
break;
default:
/* You won't actually get here. */
break;
}
}
res = malloc(sizeof(unsigned long) * TEST_ENTRIES * loops);
memset(elapsed, 0, sizeof(elapsed));
srand(seed);
for (j = 0; j < loops; j++) {
unsigned long a = get_rand();
/* Do we have args? */
unsigned long b = argc > optind ? strtoul(argv[optind], NULL, 10) : get_rand();
unsigned long long min_elapsed[TEST_ENTRIES];
for (k = 0; k < repeats; k++) {
for (i = 0; i < TEST_ENTRIES; i++) {
unsigned long long tmp = benchmark_gcd_func(gcd_func[i], a, b, &res[j][i]);
if (k == 0 || min_elapsed[i] > tmp)
min_elapsed[i] = tmp;
}
}
for (i = 0; i < TEST_ENTRIES; i++)
elapsed[i] += min_elapsed[i];
}
for (i = 0; i < TEST_ENTRIES; i++)
printf("gcd%d: elapsed %llu\n", i, elapsed[i]);
k = 0;
srand(seed);
for (j = 0; j < loops; j++) {
unsigned long a = get_rand();
unsigned long b = argc > optind ? strtoul(argv[optind], NULL, 10) : get_rand();
for (i = 1; i < TEST_ENTRIES; i++) {
if (res[j][i] != res[j][0])
break;
}
if (i < TEST_ENTRIES) {
if (k == 0) {
k = 1;
fprintf(stderr, "Error:\n");
}
fprintf(stderr, "gcd(%lu, %lu): ", a, b);
for (i = 0; i < TEST_ENTRIES; i++)
fprintf(stderr, "%ld%s", res[j][i], i < TEST_ENTRIES - 1 ? ", " : "\n");
}
}
if (k == 0)
fprintf(stderr, "PASS\n");
free(res);
return 0;
}
Compiled with "-O2", on "VirtualBox 4.4.0-22-generic #38-Ubuntu x86_64" got:
zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10
gcd0: elapsed 10174
gcd1: elapsed 2120
gcd2: elapsed 2902
gcd3: elapsed 2039
gcd4: elapsed 2812
PASS
zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10
gcd0: elapsed 9309
gcd1: elapsed 2280
gcd2: elapsed 2822
gcd3: elapsed 2217
gcd4: elapsed 2710
PASS
zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10
gcd0: elapsed 9589
gcd1: elapsed 2098
gcd2: elapsed 2815
gcd3: elapsed 2030
gcd4: elapsed 2718
PASS
zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10
gcd0: elapsed 9914
gcd1: elapsed 2309
gcd2: elapsed 2779
gcd3: elapsed 2228
gcd4: elapsed 2709
PASS
[akpm@linux-foundation.org: avoid #defining a CONFIG_ variable]
Signed-off-by: Zhaoxiu Zeng <zhaoxiu.zeng@gmail.com>
Signed-off-by: George Spelvin <linux@horizon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On ARC, lower 2G of address space is translated and used for
- user vaddr space (region 0 to 5)
- unused kernel-user gutter (region 6)
- kernel vaddr space (region 7)
where each region simply represents 256MB of address space.
The kernel vaddr space of 256MB is used to implement vmalloc, modules
So far this was enough, but not on EZChip system with 4K CPUs (given
that per cpu mechanism uses vmalloc for allocating chunks)
So allow VMALLOC_SIZE to be configurable by expanding down into the unused
kernel-user gutter region which at default 256M was excessive anyways.
Also use _BITUL() to fix a build error since PGDIR_SIZE cannot use "1UL"
as called from assembly code in mm/tlbex.S
Signed-off-by: Noam Camus <noamc@ezchip.com>
[vgupta: rewrote changelog, debugged bootup crash due to int vs. hex]
Acked-by: Vineet Gupta <vgupta@synopsys.com>
The primary interrupt handler arch_do_IRQ() was passing hwirq as linux
virq to core code. This was fragile and worked so far as we only had legacy/linear
domains.
This came out of a rant by Marc Zyngier.
http://lists.infradead.org/pipermail/linux-snps-arc/2015-December/000298.html
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Noam Camus <noamc@ezchip.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
- call clocksource_probe()
- This in turns needs of_clk_init() to be called earlier
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Noam Camus <noamc@ezchip.com>
[vgupta: broken off from a bigger patch]
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Initial HIGHMEM support on ARC was introduced for PAE40 where the low
memory (0x8000_0000 based) and high memory (0x1_0000_0000) were
physically contiguous. So CONFIG_FLATMEM sufficed (despite a peipheral
hole in the middle, which wasted a bit of struct page memory, but things
worked).
However w/o PAE, highmem was not possible and we could only reach
~1.75GB of DDR. Now there is a use case to access ~4GB of DDR w/o PAE40
The idea is to have low memory at canonical 0x8000_0000 and highmem
at 0 so enire 4GB address space is available for physical addressing
This needs additional platform/interconnect mapping to convert
the non contiguous physical addresses into linear bus adresses.
From Linux point of view, non contiguous divide means FLATMEM no
longer works and DISCONTIGMEM is needed to track the pfns in the 2
regions.
This scheme would also work for PAE40, only better in that we don't
waste struct page memory for the peripheral hole.
The DT description will be something like
memory {
...
reg = <0x80000000 0x200000000 /* 512MB: lowmem */
0x00000000 0x10000000>; /* 256MB: highmem */
}
Signed-off-by: Noam Camus <noamc@ezchip.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Commit 5f8fc43217 ("PCI: Include pci/pcie/Kconfig directly from
pci/Kconfig") in linux-next changed drivers/pci/Kconfig to include
drivers/pci/pcie/Kconfig itself, so that architectures do not need
to source both files themselves. ARC just recently gained PCI support
through commit 6b3fb77998dd ("ARC: Add PCI support"), but this change
was based on the old behaviour of the Kconfig files. This makes
Kconfig now spit out the following warnings:
drivers/pci/pcie/Kconfig:61:warning: choice value used outside its choice group
drivers/pci/pcie/Kconfig:67:warning: choice value used outside its choice group
drivers/pci/pcie/Kconfig:74:warning: choice value used outside its choice group
This change updates the Kconfig file for ARC, dropping the now
unnecessary 'source' statement, which makes the warning disappear.
Signed-off-by: Andreas Ziegler <andreas.ziegler@fau.de>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
- Big Endian io accessors fix [Lada]
- Spellos fixes [Adam]
- Fix for DW GMAC breakage [Alexey]
- Making DMA API 64-bit ready
- Shutting up -Wmaybe-uninitialized noise for ARC
- Other minor fixes here and there, comments update
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW738lAAoJEGnX8d3iisJeProP/icm32aIHY0QXmJCBXCmQfLa
HHzfBeJ2KsG8pIRgrvraK3FJkmFr+WxZ7x6b5hPNYeHIT3c179/GZ3DlssM1md0u
sa50o5jmwd/J4o5jCKpUB/hx7wiAjpC2CYb6qIg39A2Nq5JhOFJV30XMbCscXkLI
ae/o8oATi1502cf1OQ2EqNWKfME4ogG1KsEUNrSzcd+1P8LZxsnEVBmXuPHVdHLw
kTHVgmCELsEchaV/QY9pY+uHkm9Y4vV18v0vqbklwED+cHkjmXQ2UysP3/J8KXKN
PVSqmtUJIS2vxDGK5mWvz6jkWmU8gRXoT14ZqdmMARmhVhp3+JTm2fQ53NUwZ+b2
JpPNGWVQRi86AaiUE8Fm+eWjC242CAm+lsBfx+mvqWpEvFGMlnRKw8oZiyeJhhIw
3M1yrulQG7QbTSuQrgQwfGqtrhl2nnq+X0uoMJXYHupNDQ42QK8wmJ9bT7cmutD0
K3Tmi84qoiSnN/HhWK/D9d60bLGvUY4RKiLjAcJz7lbMjtRhT/rpFFcFYCIhJyZs
y//jOZK67o1ecDXBTaUcvT+edOrQVsmatn3w0p9VwATe8OiKHsLA/0UD34gwiECy
o9g/i4tc2GfOLFoLv66czXTU9IuoKDh3HrTJgET7r1Re/+FKgJ+2+GX6AbiJzbhY
9jsAAI/ZpsS6qMhvSz3d
=n0fk
-----END PGP SIGNATURE-----
Merge tag 'arc-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
Pull ARC architecture updates from Vineet Gupta:
- Big Endian io accessors fix [Lada]
- Spellos fixes [Adam]
- Fix for DW GMAC breakage [Alexey]
- Making DMA API 64-bit ready
- Shutting up -Wmaybe-uninitialized noise for ARC
- Other minor fixes here and there, comments update
* tag 'arc-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc: (21 commits)
ARCv2: ioremap: Support dynamic peripheral address space
ARC: dma: reintroduce platform specific dma<->phys
ARC: dma: ioremap: use phys_addr_t consistenctly in code paths
ARC: dma: pass_phys() not sg_virt() to cache ops
ARC: dma: non-coherent pages need V-P mapping if in HIGHMEM
ARC: dma: Use struct page based page allocator helpers
ARC: build: Turn off -Wmaybe-uninitialized for ARC gcc 4.8
ARC: [plat-axs10x] add Ethernet PHY description in .dts
arc: use of_platform_default_populate() to populate default bus
ARC: thp: unbork !CONFIG_TRANSPARENT_HUGEPAGE build
arc: [plat-nsimosci*] use ezchip network driver
ARCv2: LLSC: software backoff is NOT needed starting HS2.1c
ARC: mm: Use virt_to_pfn() for addr >> PAGE_SHIFT pattern
ARC: [plat-nsim] document ranges
ARC: build: Better way to detect ISA compatible toolchain
ARCv2: Allow enabling PAE40 w/o HIGHMEM
ARC: [BE] readl()/writel() to work in Big Endian CPU configuration
ARC: [*defconfig] No need to specify CONFIG_CROSS_COMPILE
ARC: [BE] Select correct CROSS_COMPILE prefix
ARC: bitops: Remove non relevant comments
...
This allows for regression testing in PAE specific code as we lack
a 32+ bit physical memory platform other than nSIM.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Add PCI support to ARC and update drivers/pci Makefile enabling the ARC
arch to use the generic PCI setup functions.
[bhelgaas: fold in Joao's pci-dma-compat.h & pci-bridge.h build fix (I
should have caught this myself, sorry]
Signed-off-by: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
Even though DEVTMPFS is required when our pre-built initramfs
is used it is not the case in general. It is perfectly possible
to use initramfs with device nodes already populated or there
could be other usages, see discussion below for more detials:
http://thread.gmane.org/gmane.comp.embedded.openwrt.devel/37819/focus=37821
This change removes mentioned dependency from arch/arc/Kconfig
updating instead those defconfigs that are usually used with this
kind of pre-build initramfs.
And while at it all touched defconfigs were regenerated via
savedefconfig and some options were removed:
* USB is selected by other options implicitly
* VGA_CONSOLE is disableb for ARC since
031e29b587
* EXT3_FS automatically selects EXT4_FS
* MTDxxx and JFFS2_FS make no sense for AXS because
AXS NAND controller is not upstreamed
* NET_OSCI_LAN is not in upstream as well
* ARCPGU_xxx options make no sense because ARC PGU is not yet
in upstream and when it gets there all config options would
be taken from devicetree
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
It is unlikely that designs running Linux will not have multiplier.
Further the current support is not complete as tool don't generate a
multilib w/o multiplier.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
- Corner case of returning to delay slot from interrupt
- Changing default interrupt prioiry level
- Kconfig'ize support for super pages
- Other minor fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWvxdUAAoJEGnX8d3iisJeRkYP/2HZAt4J6c5MPk/NSy8rabVX
2bB1m5jYXlBmJAIsmWm+WcDL72MdrB1Owtc5tEN+hIoQQa2QQpxolp32IslHg0o8
C9CCzmF+iR8wz3caVk3javpsbze23XbHho/kdx/l2Ed3Fi+syI/9jF1GiboydRtR
X22an1lslA6Y44pYxFmSFcMCv7XclFkJNe1ltxsgN9/QapnNrE/HWqUIy+SMr2Oo
Tpo3m/Dc+IfMMejYyupc3keyAhyeux69lJXPuOzYiurgGUIyXz15Un2mQ9gZWf0u
W56L/55VpQVuah46qrp5CBTLmdJA5cBqr0F8RqmZAqrEYLgn5SD4IhDjamo1qsP/
FfFh0cG955SoEyCsUOPILWUFR5TeS4rJK+ZJjErUb+dwEC1BWZR0/Dn1s9KJN8b7
GgGV8yXruDACFlFnCqnlxVs1TKOPOUqD2NZRAdsKunp+ywNrvGdD43xWONcriyvr
2KW0nb+mH3RRk8HQzKjfqsVhLMoR7n1MD/+tg8ME8usLn1ik0hBerT56CX0Wh/yQ
VnOUX6xqlaRydeJJgCUyByz3+jJVvj8sk/VZbr19F0p9id6wpiPQeNus2AcoHFKW
OyvWcfxzqKegXrYtMsy8IoFzx73zJaXV3ht0I09rhAj3JkdF7vFEIUpKIhsWqxAK
yWKKqLcVKga/2Yc8jduI
=FNDd
-----END PGP SIGNATURE-----
Merge tag 'arc-4.5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
Pull ARC fixes from Vineet Gupta:
"I've been sitting on some of these fixes for a while.
- Corner case of returning to delay slot from interrupt
- Changing default interrupt prioiry level
- Kconfig'ize support for super pages
- Other minor fixes"
* tag 'arc-4.5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc:
ARC: mm: Introduce explicit super page size support
ARCv2: intc: Allow interruption by lowest priority interrupt
ARCv2: Check for LL-SC livelock only if LLSC is enabled
ARC: shrink cpuinfo by not saving full timer BCR
ARCv2: clocksource: Rename GRTC -> GFRC ...
ARCv2: STAR 9000950267: Handle return from intr to Delay Slot #2
MMUv4 supports 2 concurrent page sizes: Normal and Super [4K to 16M]
So far Linux supported a single super page size for a given Normal page,
depending on the software page walking address split.
e.g. we had 11:8:13 address split for 8K page, which meant super page
was 2 ^(8+13) = 2M (given that THP size has to be PMD_SHIFT)
Now we turn this around, by allowing multiple Super Pages in Kconfig
(currently 2M and 16M only) and forcing page walker address split to
PGDIR_SHIFT and PAGE_SHIFT
For configs without Super page, things are same as before and
PGDIR_SHIFT can be hacked to get non default address split
The motivation for this change is a customer who needs 16M super page
and a 8K Normal page combo.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
As illustrated by commit a3afe70b83 ("[S390] latencytop s390
support."), HAVE_LATENCYTOP_SUPPORT is defined by an architecture to
advertise an implementation of save_stack_trace_tsk.
However, as of 9212ddb5ea ("stacktrace: provide save_stack_trace_tsk()
weak alias") a dummy implementation is provided if STACKTRACE=y. Given
that LATENCYTOP already depends on STACKTRACE_SUPPORT and selects
STACKTRACE, we can remove HAVE_LATENCYTOP_SUPPORT altogether.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Helge Deller <deller@gmx.de>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
HIGHMEM support bumped the default memory size for nsim platform to 1G.
Thus total memory ended at the very edge of start of peripherals address
space. With linux link base shifted, memory started bleeding into
peripheral space which caused early boot bad_page spew !
Fixes: 29e332261d ("ARC: mm: HIGHMEM: populate high memory from DT")
Reported-by: Anton Kolesov <akolesov@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This is the first working implementation of 40-bit physical address
extension on ARCv2.
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Implement kmap* API for ARC.
This enables
- permanent kernel maps (pkmaps): :kmap() API
- fixmap : kmap_atomic()
We use a very simple/uniform approach for both (unlike some of the other
arches). So fixmap doesn't use the customary compile time address stuff.
The important semantic is sleep'ability (pkmap) vs. not (fixmap) which
the API guarantees.
Note that this patch only enables highmem for subsequent PAE40 support
as there is no real highmem for ARC in pure 32-bit paradigm as explained
below.
ARC has 2:2 address split of the 32-bit address space with lower half
being translated (virtual) while upper half unstranslated
(0x8000_0000 to 0xFFFF_FFFF). kernel itself is linked at base of
unstranslated space (i.e. 0x8000_0000 onwards), which is mapped to say
DDR 0x0 by external Bus Glue logic (outside the core). So kernel can
potentially access 1.75G worth of memory directly w/o need for highmem.
(the top 256M is taken by uncached peripheral space from 0xF000_0000 to
0xFFFF_FFFF)
In PAE40, hardware can address memory beyond 4G (0x1_0000_0000) while
the logical/virtual addresses remain 32-bits. Thus highmem is required
for kernel proper to be able to access these pages for it's own purposes
(user space is agnostic to this anyways).
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
For Run-on-reset, non masters need to spin wait. For Halt-on-reset they
can jump to entry point directly.
Also while at it, made reset vector handler as "the" entry point for
kernel including host debugger based boot (which uses the ELF header
entry point)
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
support.
Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
new bit "SZ" in TLB page desciptor to distinguish between them.
Super Page size is configurable in hardware (4K to 16M), but fixed once
RTL builds.
The exact THP size a Linx configuration will support is a function of:
- MMU page size (typical 8K, RTL fixed)
- software page walker address split between PGD:PTE:PFN (typical
11:8:13, but can be changed with 1 line)
So for above default, THP size supported is 8K * 256 = 2M
Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
reduces to 1 level (as PTE is folded into PGD and canonically referred
to as PMD).
Thus thp PMD accessors are implemented in terms of PTE (just like sparc)
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
ARC doesn't need the runtime detection of futex cmpxchg op
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This is to workaround the llock/scond livelock
HS38x4 could get into a LLOCK/SCOND livelock in case of multiple overlapping
coherency transactions in the SCU. The exclusive line state keeps rotating
among contenting cores leading to a never ending cycle. So break the cycle
by deferring the retry of failed exclusive access (SCOND). The actual delay
needed is function of number of contending cores as well as the unrelated
coherency traffic from other cores. To keep the code simple, start off with
small delay of 1 which would suffice most cases and in case of contention
double the delay. Eventually the delay is sufficient such that the coherency
pipeline is drained, thus a subsequent exclusive access would succeed.
Link: http://lkml.kernel.org/r/1438612568-28265-1-git-send-email-vgupta@synopsys.com
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Being highly configurable core ARC HS among other features might be
configured with or without DIV_REM_OPTION (hardware divider).
That option when enabled adds following instructions: div, divu, rem, remu.
By default ARC HS38 has this option enabled. So we add here possibility
to disable usage of hardware divider by compiler.
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Caveats about cache flush on ARCv2 based cores
- dcache is PIPT so paddr is sufficient for cache maintenance ops (no
need to setup PTAG reg
- icache is still VIPT but only aliasing configs need PTAG setup
So basically this is departure from MMU-v3 which always need vaddr in
line ops registers (DC_IVDL, DC_FLDL, IC_IVIL) but paddr in DC_PTAG,
IC_PTAG respectively.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
The AXS10x platforms consist of a mainboard with peripherals,
on which several daughter cards can be placed. The daughter cards
typically contain a CPU and memory.
Signed-off-by: Mischa Jonker <mjonker@synopsys.com>
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>