Commit Graph

5 Commits

Author SHA1 Message Date
David Howells 29e44f4535 watch_queue: Limit the number of watches a user can hold
Impose a limit on the number of watches that a user can hold so that
they can't use this mechanism to fill up all the available memory.

This is done by putting a counter in user_struct that's incremented when
a watch is allocated and decreased when it is released.  If the number
exceeds the RLIMIT_NOFILE limit, the watch is rejected with EAGAIN.

This can be tested by the following means:

 (1) Create a watch queue and attach it to fd 5 in the program given - in
     this case, bash:

	keyctl watch_session /tmp/nlog /tmp/gclog 5 bash

 (2) In the shell, set the maximum number of files to, say, 99:

	ulimit -n 99

 (3) Add 200 keyrings:

	for ((i=0; i<200; i++)); do keyctl newring a$i @s || break; done

 (4) Try to watch all of the keyrings:

	for ((i=0; i<200; i++)); do echo $i; keyctl watch_add 5 %:a$i || break; done

     This should fail when the number of watches belonging to the user hits
     99.

 (5) Remove all the keyrings and all of those watches should go away:

	for ((i=0; i<200; i++)); do keyctl unlink %:a$i; done

 (6) Kill off the watch queue by exiting the shell spawned by
     watch_session.

Fixes: c73be61ced ("pipe: Add general notification queue support")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-17 09:39:18 -07:00
Linus Torvalds 6c32978414 Notifications over pipes + Keyring notifications
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAl7U/i8ACgkQ+7dXa6fL
 C2u2eg/+Oy6ybq0hPovYVkFI9WIG7ZCz7w9Q6BEnfYMqqn3dnfJxKQ3l4pnQEOWw
 f4QfvpvevsYfMtOJkYcG6s66rQgbFdqc5TEyBBy0QNp3acRolN7IXkcopvv9xOpQ
 JxedpbFG1PTFLWjvBpyjlrUPouwLzq2FXAf1Ox0ZIMw6165mYOMWoli1VL8dh0A0
 Ai7JUB0WrvTNbrwhV413obIzXT/rPCdcrgbQcgrrLPex8lQ47ZAE9bq6k4q5HiwK
 KRzEqkQgnzId6cCNTFBfkTWsx89zZunz7jkfM5yx30MvdAtPSxvvpfIPdZRZkXsP
 E2K9Fk1/6OQZTC0Op3Pi/bt+hVG/mD1p0sQUDgo2MO3qlSS+5mMkR8h3mJEgwK12
 72P4YfOJkuAy2z3v4lL0GYdUDAZY6i6G8TMxERKu/a9O3VjTWICDOyBUS6F8YEAK
 C7HlbZxAEOKTVK0BTDTeEUBwSeDrBbvH6MnRlZCG5g1Fos2aWP0udhjiX8IfZLO7
 GN6nWBvK1fYzfsUczdhgnoCzQs3suoDo04HnsTPGJ8De52T4x2RsjV+gPx0nrNAq
 eWChl1JvMWsY2B3GLnl9XQz4NNN+EreKEkk+PULDGllrArrPsp5Vnhb9FJO1PVCU
 hMDJHohPiXnKbc8f4Bd78OhIvnuoGfJPdM5MtNe2flUKy2a2ops=
 =YTGf
 -----END PGP SIGNATURE-----

Merge tag 'notifications-20200601' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs

Pull notification queue from David Howells:
 "This adds a general notification queue concept and adds an event
  source for keys/keyrings, such as linking and unlinking keys and
  changing their attributes.

  Thanks to Debarshi Ray, we do have a pull request to use this to fix a
  problem with gnome-online-accounts - as mentioned last time:

     https://gitlab.gnome.org/GNOME/gnome-online-accounts/merge_requests/47

  Without this, g-o-a has to constantly poll a keyring-based kerberos
  cache to find out if kinit has changed anything.

  [ There are other notification pending: mount/sb fsinfo notifications
    for libmount that Karel Zak and Ian Kent have been working on, and
    Christian Brauner would like to use them in lxc, but let's see how
    this one works first ]

  LSM hooks are included:

   - A set of hooks are provided that allow an LSM to rule on whether or
     not a watch may be set. Each of these hooks takes a different
     "watched object" parameter, so they're not really shareable. The
     LSM should use current's credentials. [Wanted by SELinux & Smack]

   - A hook is provided to allow an LSM to rule on whether or not a
     particular message may be posted to a particular queue. This is
     given the credentials from the event generator (which may be the
     system) and the watch setter. [Wanted by Smack]

  I've provided SELinux and Smack with implementations of some of these
  hooks.

  WHY
  ===

  Key/keyring notifications are desirable because if you have your
  kerberos tickets in a file/directory, your Gnome desktop will monitor
  that using something like fanotify and tell you if your credentials
  cache changes.

  However, we also have the ability to cache your kerberos tickets in
  the session, user or persistent keyring so that it isn't left around
  on disk across a reboot or logout. Keyrings, however, cannot currently
  be monitored asynchronously, so the desktop has to poll for it - not
  so good on a laptop. This facility will allow the desktop to avoid the
  need to poll.

  DESIGN DECISIONS
  ================

   - The notification queue is built on top of a standard pipe. Messages
     are effectively spliced in. The pipe is opened with a special flag:

        pipe2(fds, O_NOTIFICATION_PIPE);

     The special flag has the same value as O_EXCL (which doesn't seem
     like it will ever be applicable in this context)[?]. It is given up
     front to make it a lot easier to prohibit splice&co from accessing
     the pipe.

     [?] Should this be done some other way?  I'd rather not use up a new
         O_* flag if I can avoid it - should I add a pipe3() system call
         instead?

     The pipe is then configured::

        ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, queue_depth);
        ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);

     Messages are then read out of the pipe using read().

   - It should be possible to allow write() to insert data into the
     notification pipes too, but this is currently disabled as the
     kernel has to be able to insert messages into the pipe *without*
     holding pipe->mutex and the code to make this work needs careful
     auditing.

   - sendfile(), splice() and vmsplice() are disabled on notification
     pipes because of the pipe->mutex issue and also because they
     sometimes want to revert what they just did - but one or more
     notification messages might've been interleaved in the ring.

   - The kernel inserts messages with the wait queue spinlock held. This
     means that pipe_read() and pipe_write() have to take the spinlock
     to update the queue pointers.

   - Records in the buffer are binary, typed and have a length so that
     they can be of varying size.

     This allows multiple heterogeneous sources to share a common
     buffer; there are 16 million types available, of which I've used
     just a few, so there is scope for others to be used. Tags may be
     specified when a watchpoint is created to help distinguish the
     sources.

   - Records are filterable as types have up to 256 subtypes that can be
     individually filtered. Other filtration is also available.

   - Notification pipes don't interfere with each other; each may be
     bound to a different set of watches. Any particular notification
     will be copied to all the queues that are currently watching for it
     - and only those that are watching for it.

   - When recording a notification, the kernel will not sleep, but will
     rather mark a queue as having lost a message if there's
     insufficient space. read() will fabricate a loss notification
     message at an appropriate point later.

   - The notification pipe is created and then watchpoints are attached
     to it, using one of:

        keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);
        watch_mount(AT_FDCWD, "/", 0, fd, 0x02);
        watch_sb(AT_FDCWD, "/mnt", 0, fd, 0x03);

     where in both cases, fd indicates the queue and the number after is
     a tag between 0 and 255.

   - Watches are removed if either the notification pipe is destroyed or
     the watched object is destroyed. In the latter case, a message will
     be generated indicating the enforced watch removal.

  Things I want to avoid:

   - Introducing features that make the core VFS dependent on the
     network stack or networking namespaces (ie. usage of netlink).

   - Dumping all this stuff into dmesg and having a daemon that sits
     there parsing the output and distributing it as this then puts the
     responsibility for security into userspace and makes handling
     namespaces tricky. Further, dmesg might not exist or might be
     inaccessible inside a container.

   - Letting users see events they shouldn't be able to see.

  TESTING AND MANPAGES
  ====================

   - The keyutils tree has a pipe-watch branch that has keyctl commands
     for making use of notifications. Proposed manual pages can also be
     found on this branch, though a couple of them really need to go to
     the main manpages repository instead.

     If the kernel supports the watching of keys, then running "make
     test" on that branch will cause the testing infrastructure to spawn
     a monitoring process on the side that monitors a notifications pipe
     for all the key/keyring changes induced by the tests and they'll
     all be checked off to make sure they happened.

        https://git.kernel.org/pub/scm/linux/kernel/git/dhowells/keyutils.git/log/?h=pipe-watch

   - A test program is provided (samples/watch_queue/watch_test) that
     can be used to monitor for keyrings, mount and superblock events.
     Information on the notifications is simply logged to stdout"

* tag 'notifications-20200601' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
  smack: Implement the watch_key and post_notification hooks
  selinux: Implement the watch_key security hook
  keys: Make the KEY_NEED_* perms an enum rather than a mask
  pipe: Add notification lossage handling
  pipe: Allow buffers to be marked read-whole-or-error for notifications
  Add sample notification program
  watch_queue: Add a key/keyring notification facility
  security: Add hooks to rule on setting a watch
  pipe: Add general notification queue support
  pipe: Add O_NOTIFICATION_PIPE
  security: Add a hook for the point of notification insertion
  uapi: General notification queue definitions
2020-06-13 09:56:21 -07:00
David Howells e7d553d69c pipe: Add notification lossage handling
Add handling for loss of notifications by having read() insert a
loss-notification message after it has read the pipe buffer that was last
in the ring when the loss occurred.

Lossage can come about either by running out of notification descriptors or
by running out of space in the pipe ring.

Signed-off-by: David Howells <dhowells@redhat.com>
2020-05-19 15:40:28 +01:00
David Howells 8cfba76383 pipe: Allow buffers to be marked read-whole-or-error for notifications
Allow a buffer to be marked such that read() must return the entire buffer
in one go or return ENOBUFS.  Multiple buffers can be amalgamated into a
single read, but a short read will occur if the next "whole" buffer won't
fit.

This is useful for watch queue notifications to make sure we don't split a
notification across multiple reads, especially given that we need to
fabricate an overrun record under some circumstances - and that isn't in
the buffers.

Signed-off-by: David Howells <dhowells@redhat.com>
2020-05-19 15:38:18 +01:00
David Howells c73be61ced pipe: Add general notification queue support
Make it possible to have a general notification queue built on top of a
standard pipe.  Notifications are 'spliced' into the pipe and then read
out.  splice(), vmsplice() and sendfile() are forbidden on pipes used for
notifications as post_one_notification() cannot take pipe->mutex.  This
means that notifications could be posted in between individual pipe
buffers, making iov_iter_revert() difficult to effect.

The way the notification queue is used is:

 (1) An application opens a pipe with a special flag and indicates the
     number of messages it wishes to be able to queue at once (this can
     only be set once):

	pipe2(fds, O_NOTIFICATION_PIPE);
	ioctl(fds[0], IOC_WATCH_QUEUE_SET_SIZE, queue_depth);

 (2) The application then uses poll() and read() as normal to extract data
     from the pipe.  read() will return multiple notifications if the
     buffer is big enough, but it will not split a notification across
     buffers - rather it will return a short read or EMSGSIZE.

     Notification messages include a length in the header so that the
     caller can split them up.

Each message has a header that describes it:

	struct watch_notification {
		__u32	type:24;
		__u32	subtype:8;
		__u32	info;
	};

The type indicates the source (eg. mount tree changes, superblock events,
keyring changes, block layer events) and the subtype indicates the event
type (eg. mount, unmount; EIO, EDQUOT; link, unlink).  The info field
indicates a number of things, including the entry length, an ID assigned to
a watchpoint contributing to this buffer and type-specific flags.

Supplementary data, such as the key ID that generated an event, can be
attached in additional slots.  The maximum message size is 127 bytes.
Messages may not be padded or aligned, so there is no guarantee, for
example, that the notification type will be on a 4-byte bounary.

Signed-off-by: David Howells <dhowells@redhat.com>
2020-05-19 15:08:24 +01:00